

PROCEEDINGS OF THE 23RD
CONFERENCE ON FORMAL
METHODS IN COMPUTER-AIDED
DESIGN – FMCAD 2023

Alexander Nadel / Kristin Yvonne Rozier (Eds.)

23

N
adel / R

ozier (E
ds.)

PR
O

C
EED

IN
G

S O
F TH

E 23R
D

 C
O

N
FER

EN
C

E O
N

 FO
R

M
A

L
M

ETH
O

D
S IN

 C
O

M
PU

TER
-A

ID
ED

 D
ESIG

N
 – FM

C
A

D
 2023

4

Alexander Nadel / Kristin Yvonne Rozier (Eds.)
PROCEEDINGS OF THE 23RD CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED
DESIGN – FMCAD 2023

Conference Series: Formal Methods in Computer-Aided Design
Volume 4

Conference Series: Formal Methods in Computer-Aided Design

Series edited by:
Warren A. Hunt, Jr., The University of Texas at Austin
 Austin, TX 78705 | hunt@cs.utexas.edu
Georg Weissenbacher, TU Wien
 Karlsplatz 13, 1040 Vienna, Austria | georg.weissenbacher@tuwien.ac.at

The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system
verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical
results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification,
synthesis, and testing.

Information on this publication series and the volumes published therein is available at www.tuwien.ac.at/academicpress.

Volume 4 edited by:
Alexander Nadel, Intel and Technion - Israel Institute of Technology
 Technion City, Haifa, Israel | alexander.nadel@cs.tau.ac.il
Kristin Yvonne Rozier, Iowa State University of Science and Technology
 Ames, Iowa, USA | kyrozier@iastate.edu

Alexander Nadel / Kristin Yvonne Rozier (Eds.)

PROCEEDINGS OF THE 23RD
CONFERENCE ON FORMAL
METHODS IN COMPUTER-AIDED
DESIGN – FMCAD 2023

This work is licensed under a Creative Commons attribution 4.0 international license (CC BY 4.0).
https://creativecommons.org/licenses/by/4.0/

ISBN (online): 978-3-85448-060-0
ISSN (online): 2708-7824

Available online: https://doi.org/10.34727/2023/isbn.978-3-85448-060-0

Media proprietor: TU Wien, Karlsplatz 13, 1040 Wien
Publisher: TU Wien Academic Press
Publication series editor: Warren A. Hunt, Jr. and Georg Weissenbacher
Editors (responsible for the content): Alexander Nadel and Kristin Yvonne Rozier

Cite as:
Nadel, A. & Rozier, K. Y. (Eds.). (2023). Proceedings of the 23rd Conference on Formal Methods in Computer-Aided
Design – FMCAD 2023. TU Wien Academic Press. https://doi.org/10.34727/2023/isbn.978-3-85448-060-0

TU Wien Academic Press, 2023

c/o TU Wien Bibliothek
TU Wien
Resselgasse 4, 1040 Wien
academicpress@tuwien.ac.at
www.tuwien.at/academicpress

https://www.tuwien.at/academicpress/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0

Preface

These are the proceedings of the twenty-third International Conference on Formal Methods in Computer-Aided
Design (FMCAD), which was held in Ames, Iowa, USA from October 24 – October 27, 2023. FMCAD was first
held in 1996, and was a bi-annual conference until 2006, when the FMCAD and CHARME conferences merged into
a single FMCAD conference, and since then has been held annually. FMCAD 2023 is the twenty-third edition in the
series, covering formal aspects of computer-aided system design including verification, specification, synthesis, and
testing. It provides a leading forum to researchers in academia and industry to present and discuss groundbreaking
methods, technologies, theoretical results, and tools for reasoning formally about computing systems.

The program of FMCAD 2023 consists of four tutorials, three invited talks, a student forum, and the main
program consisting of presentations of 31 accepted peer-reviewed papers.

The tutorial day featured four presentations:
• Developing an Open-Source, State-of-the-Art Symbolic Model-Checking Framework for the Model-Checking

Research Community by The NSF:CCRI Project Investigators (Kristin Y. Rozier, Natarajan Shankar, Cesare
Tinelli, Moshe Vardi)

• MiniZinc for Formal Methods by Peter J. Stuckey
• Local Search and Its Application in CDCL/CDCL(T) solvers for SAT/SMT by Shaowei Cai
• NASA’s core Flight System Framework Overview/Tutorial by David Swartwout

and the main conference featured three invited talks:
• Reasoning about quantifiers in SMT: the QSMA algorithm by Maria Paola Bonacina
• Distribution Testing: The New Frontier for Formal Methods by Kuldeep Meel
• Formal Methods for Trusted AI by Bettina Könighofer
FMCAD 2023 received 73 submissions out of which the committee decided to accept 31 for publication. Each

submission received at least four reviews, except for two submissions which received three reviews. The topics of
the accepted papers include machine learning, model checking, hardware validation, SAT & SMT solving, avionics,
security, synthesis and others. Among the accepted papers, there are 23 regular papers (20 long and 3 short) and
8 tool/case study papers (all long).

FMCAD 2023 hosted the eleventh edition of the Student Forum, which has been held annually since 2013 and
provides a platform for graduate students at any career stage to introduce their research to the FMCAD community.
The FMCAD Student Forum 2023 was organized by Mikoláš Janota and Nina Narodytska and featured short
presentations of 16 accepted contributions. The proceedings provide a detailed description of the Student Forum
and lists all accepted contributions.

Organizing this event was made possible by the support of a large number of people and our sponsors. The
program committee members and additional reviewers, listed on the following pages, did an excellent job providing
detailed and insightful reviews. The reviews helped us build a strong program and helped the authors improve
their submissions. We thank each and everyone of them for dedicating their time and providing their expertise. We
thank our web master Yogev Shalmon, our sponsorship chair Yoni Zohar and the Student Forum organizers Mikoláš
Janota and Nina Narodytska. We thank Georg Weissenbacher both for his exceptional assistance in organizing the
event, communicating to us the decisions of the steering committee, as well as being the publication chair.

Holding a conference like FMCAD would not be feasible without the financial support of our sponsors. We would
like to express our gratitude to our sponsors (in alphabetical order): AWS, Cadence, Futurewei, GE Aerospace,
Siemens, Synopsys and Toyota.

The conference proceedings are available as Open Access Proceedings published by TU Wien Academic Press,
and through the IEEE Xplore Digital Library. Last but not least, we thank all authors who submitted their papers
to FMCAD 2023 (accepted or not), and whose contributions and presentations form the core of the conference.

V

We are grateful to everyone who presented their paper, gave a keynote or gave a tutorial. We thank all attendees
of FMCAD for supporting the conference and making FMCAD an engaging and enjoyable event.

October 2023 Kristin Y. Rozier Iowa State University, IA, USA
Alexander Nadel Intel Corporation and Technion, Israel

VI

Organizing Committee

Program Co-Chairs

Kristin Y. Rozier Iowa State University, IA, USA
Alexander Nadel Intel Corporation and Technion, Israel

Student Forum Chairs

Mikoláš Janota Czech Technical University, Czechia
Nina Narodytska VMware Research, CA, USA

Sponsorship Chair

Yoni Zohar Bar Ilan University, Israel

Web Chair

Yogev Shalmon Intel Corporation and Open University, Israel

Publication Chair

Georg Weissenbacher TU Wien, Austria

FMCAD Steering Committee

Clark Barrett Stanford University, CA, USA
Armin Biere University of Freiburg, Germany
Ruzica Piskac Yale University, CT, USA
Anna Slobodova Intel Corporation, TX, USA
Georg Weissenbacher TU Wien, Austria

VII

Program Committees

FMCAD 2023 Program Committee

Alessandro Abate Oxford
Guy Amir Hebrew University
Clark Barrett Stanford University
Per Bjesse Synopsys Inc.
Roderick Bloem Graz University of Technology
Ivana Cerna Masaryk University
Supratik Chakraborty IIT Bombay
Sylvain Conchon Universite Paris-Sud
Rayna Dimitrova CISPA Helmholtz Center for Information Security
Rohit Dureja IBM
Grigory Fedyukovich Florida State University
Mathias Fleury University of Freiburg
Amit Goel Amazon
Alberto Griggio Fondazione Bruno Kessler
Arie Gurfinkel University of Waterloo
Liana Hadarean Amazon Web Services
Ziyad Hanna Cadence Design Systems
William Harrison Two Six Technologies
Bo-Yuan Huang Intel
Alan Jović University of Zagreb
Daniela Kaufmann TU Wien
Tim King Google
Stepan Kochemazov ISDCT SB RAS, ITMO University
Rebekah Leslie-Hurd Rain
Andreas Lööw Imperial College London
Kuldeep Meel University of Toronto
Baoluo Meng GE Research
Naoko Okubo Japan Aerospace Exploration Agency (JAXA)
Andrew Reynolds University of Iowa
Philipp Ruemmer University of Regensburg
Cristoph Scholl University of Freiburg
Roberto Sebastiani University of Trento
Shaowei Cai Chinese Academy of Sciences
Natasha Sharygina Università della Svizzera Italiana (USI Lugano)
Christoph Sticksel The Mathworks
Christoph Torens DLR (German Aerospace Center)
Nestan Tsikaridze Stanford University
Yakir Vizel Technion
Georg Weissenbacher TU Wien
Michael Whalen Amazon Web Services, Inc.
Shufang Zhu Oxford

VIII

FMCAD 2023 Student Forum Committee

Haniel Barbosa Universidade Federal de Minas Gerais
Jaroslav Bendik Certora
Armin Biere University of Freiburg
Martin Blicha University of Lugano
Nikolaj Bjørner Microsoft Research
Martin Nyx Brain University of London
Isabel Garcia Contreras University of Waterloo
Rayna Dimitrova CISPA Helmholtz Center for Information Security
Katalin Fazekas TU Wien
Mathias Fleury University of Freiburg
Arie Gurfinkel University of Waterloo
Antti Hyvärinen Università della Svizzera Italiana (USI Lugano)
Martin Jonáš Fondazione Bruno Kessler
Daniela Kaufmann TU Wien
Konstantin Korovin The University of Manchester
Giles Reger AWS and The University of Manchester
Andrew Reynolds University of Iowa
Corina Pasareanu NASA and Carnegie Mellon University
Mathias Preiner Stanford
Karem Sakallah University of Michigan
Mark Santolucito Barnard College
Carsten Sinz Karlsruhe Institute of Technology
Nestan Tsiskaridze Stanford University
Tom van Dijk University of Twente
Florian Zuleger TU Wien

IX

Additional Reviewers

Ahlbrecht, Alexander
Athavale, Anagha

Bayless, Samuel
Blicha, Martin
Blumensath, Achim
Bombardelli, Alberto
Britikov, Konstantin

Ernst, Gidon
Esen, Zafer

Fraer, Ranan

Gacek, Andrew
Gajavelly, Raj Kumar

Hader, Thomas
Hamza, Ameer
Hjort, Håkan

Isac, Omri

Justino, Daniel
Jünger, Franz

Kiesl-Reiter, Benjamin
Kobayashi, Tsutomu

Le, Nham
Leslie-Hurd, Joe
Liang, Chencheng
Lukina, Anna
Lundgren, Lars

Mann, Makai
Masina, Gabriele
Meggendorfer, Tobias
Micheli, Andrea
Möhle, Sibylle
Morettin, Paolo

Neider, Daniel
Noetzli, Andres

Oertel, Andy
Otoni, Rodrigo

Paul, Saswata
Prabhu, Sumanth
Preiner, Mathias
Priya, Siddharth

Rappoport, Omer
Rath, Jakob
Redondi, Gianluca
Riley, Daniel
Roveri, Marco

S, Akshay
Schirmer, Sebastian
Sharma, Vaibhav
Singhania, Nimit
Somech, Nir
Spallitta, Giuseppe

Temel, Mertcan
Tiemeyer, Andreas

Ueda, Yasushi

Varanasi, Sarat Chandra

Westphal, Bernd
Wilson, Amalee
Wolfovitz, Guy
Wu, Haoze

Zelazny, Tom
Zavalia, Lucas
Zohar, Yoni

X

Table of Contents

Invited Talks

Reasoning about Quantifiers in SMT: The QSMA Algorithm . 1
Maria Paola Bonacina

Distribution Testing: The New Frontier for Formal Methods . 2
Kuldeep Meel

Formal Methods for Trusted AI . 3
Bettina Könighofer

Tutorials

Developing an Open-Source, State-of-the-Art Symbolic Model-Checking Framework for the
Model-Checking Research Community. 4

Kristin Y. Rozier, Natarajan Shankar, Cesare Tinelli, Moshe Vardi

MiniZinc for Formal Methods . 5
Peter J. Stuckey

Local Search and Its Application in CDCL/CDCL(T) solvers for SAT/SMT . 6
Shaowei Cai

NASA’s core Flight System Framework Overview . 7
David Swartwout

Student Forum

The FMCAD 2022 Student Forum . 8
Mikoláš Janota, Nina Narodytska

Neural Networks and Machine Learning

Formally Explaining Neural Networks within Reactive Systems . 10
Shahaf Bassan, Guy Amir, Davide Corsi, Idan Refaeli, and Guy Katz

Lightweight Online Learning for Sets of Related Problems in Automated Reasoning 23
Haoze Wu, Christopher Hahn, Florian Lonsing, Makai Mann, Raghuram Ramanujan, and Clark
Barrett

DelBugV: Delta-Debugging Neural Network Verifiers . 34
Raya Elsaleh and Guy Katz

Model Checking

Towards Compositional Hardware Model Checking Certification . 44
Emily Yu, Nils Froleyks, Armin Biere, and Keijo Heljanko

XI

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_4

Btor2MLIR: A Format and Toolchain for Hardware Verification . 55
Joseph Tafese, Isabel Garcia-Contreras, and Arie Gurfinkel

Data-Driven Learning of Strong Conjunctive Invariants . 64
Arkesh Thakkar and Deepak D’Souza

Automating Cutoff-based Verification of Distributed Protocols . 75
Shreesha G. Bhat and Kartik Nagar

Optimal Bounded Partial Order Reduction . 86
Iason Marmanis and Viktor Vafeiadis

Hardware

Datapath Verification via Word-Level E-Graph Rewriting . 92
Samuel Coward, Emiliano Morini, Bryan Tan, Theo Drane, and George A. Constantinides

µArchiFI: Formal Modeling and Verification Strategies for Microarchitetural Fault Injections 101
Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann, and Mathieu Jan

Sylvia: Countering the Path Explosion Problem in the Symbolic Execution of Hardware Designs . . . 110
Kaki Ryan and Cynthia Sturton

Binary decision diagrams on modern hardware . 122
Samuel Pastva and Thomas Henzinger

SAT

Proofs for Incremental SAT with Inprocessing . 132
Benjamin Kiesl-Reiter and Michael W. Whalen

Verified Encodings for SAT Solvers . 141
Cayden R. Codel, Jeremy Avigad, and Marijn J. H. Heule

SAT-Based Quantified Symmetric Minimization of the Reachable States of Distributed Protocols . . . 152
Katalin Fazekas, Aman Goel, and Karem A. Sakallah

BIG Backbones . 162
Nils Froleyks, Emily Yu, and Armin Biere

SMT

Local Search For SMT On Linear and Multilinear Real Arithmetic . 168
Bohan Li and Shaowei Cai

Mariposa: Measuring SMT Instability in Automated Program Verification . 178
Yi Zhou, Jay Bosamiya, Yoshiki Takashima, Jessica Li, Marijn J. H. Heule, and Bryan Parno

A Procedure for SyGuS Solution Fitting via Matching and Rewrite Rule Discovery 189
Abdalrhman Mohamed, Andrew Reynolds, Clark Barrett, and Cesare Tinelli

Partitioning Strategies for Distributed SMT Solving. 199
Amalee Wilson, Andres Noetzli, Andrew Reynolds, Byron Cook, Cesare Tinelli, and Clark Barrett

XII

Avionics

CRV: An Automated Resiliency Reasoner for System Design Models . 209
Daniel Larraz, Robert Lorch, Moosa Yahyazadeh, M. Fareed Arif, Omar Chowdhury, and
Cesare Tinelli

Towards a Correct-by-Construction Design of Integrated Modular Avionics . 221
Baoluo Meng, Joyanta Debnath, Sarat Chandra Varanasi, Emmanuel Manolios, Michael
Durling, Saswata Paul, Daniel Prince, Saif Alsabbagh, Richard Haadsma, Craig McMillan, Chi
Zhang, and Tim Oates

Fortis: A Tool for Analysis and Repair of Robust Software Systems . 228
Changjian Zhang, Ian Dardik, Rômulo Meira-Góes, David Garlan, and Eunsuk Kang

A provably correct floating-point implementation of Well Clear Avionics Concepts 237
Nikson Bernardes Fernandes Ferreira, Mariano M. Moscato, Laura Titolo, and Mauricio
Ayala-Rincón

Security and Synthesis

Formal Verification of Correctness and Information Flow Security for an In-Order Pipelined
Processor . 247

Ning Dong, Roberto Guanciale, Mads Dam, and Andreas Lööw

Modular System Synthesis . 257
Kanghee Park, Keith J. C. Johnson, Loris D’Antoni, and Thomas Reps

Modelling and Verification of Security-Oriented Resource Partitioning Schemes 268
Adwait Godbole, Leiqi Ye, Yatin A. Manerkar, and Sanjit A. Seshia

Cyber-Physical Systems

Lift-off: Trustworthy ARMv8 semantics from formal specifications . 274
Kait Lam and Nicholas Coughlin

Cycle and Commute: Rare-Event Probability Verification for Chemical Reaction Networks 284
Landon Taylor, Bryant Israelsen, and Zhen Zhang

Conformance Testing for Stochastic Cyber-Physical Systems . 294
Xin Qin, Navid Hashemi, Lars Lindemann, Jyotirmoy V. Deshmukh

MediK: Towards Safe Guideline-based Clinical Decision Support . 306
Manasvi Saxena, Shuang Song, and Lui Sha

XIII

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_33

Formal Methods in Computer-Aided Design 2023

Reasoning about Quantifiers in SMT:
The QSMA algorithm

Maria Paola Bonacina
Università degli Studi di Verona

Verona, Italy
mariapaola.bonacina@univr.it

Abstract—Automated reasoning is a key enabling technology for formal methods. Automated theorem provers (ATP) for first-
order and lately higher-order logic and solvers for satisfiability modulo theories (SMT) showcase impressive power and amazing
sophistication. However, ATP systems reason well about formulas with arbitrary quantification and free symbols, while SMT solvers
reason well about ground formulas with defined symbols. Since formulas from applications involve both quantifiers and defined
symbols, a hiatus remains open. QSMA is a new algorithm for quantifiers in SMT [4]. QSMA stands for Quantified Satisfiability
Modulo theory and Assignment. Currently, QSMA works for one theory with a unique intended model, so that models differ only
in the assignment of values to variables. QSMA accepts arbitrary formulas, viewing all quantifiers as existential by double negation.
Since QSMA operates a recursive descent over the tree structure of the formula, peeling off quantifiers and instantiating variables,
each call works modulo an assignment. By building under- and over- approximations of the formula, QSMA zooms in on a model
or finds that none exists. The implementation of QSMA in the YicesQS solver [6] built on top of the Yices 2 solver [5] exhibited
excellent performances in linear rational arithmetic and nonlinear arithmetic [4]. Integrating QSMA in the CDSAT framework for
conflict-driven satisfiability in a union of theories [1]–[3] is the next challenge.

REFERENCES

[1] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan Shankar. Conflict-driven satisfiability for theory combination: transition system and
completeness. J. Autom. Reason., 64(3):579–609, March 2020.

[2] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan Shankar. CDSAT for nondisjoint theories with shared predicates: arrays with abstract
length. In Antti Hyvärinen and David Déharbe, editors, Proc. SMT-20, volume 3185 of CEUR Proceedings, pages 18–37. CEUR WS-org, August 2022.

[3] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan Shankar. Conflict-driven satisfiability for theory combination: lemmas, modules, and
proofs. J. Autom. Reason., 66(1):43–91, February 2022.

[4] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Christophe Vauthier. QSMA: a new algorithm for quantified satisfiability modulo theory and
assignment. In Brigitte Pientka and Cesare Tinelli, editors, Proceedings of the 29th International Conference on Automated Deduction (CADE), volume
14132 of Lecture Notes in Artificial Intelligence, pages 78–95. Springer, 2023.

[5] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Proceedings of the 26th International Conference on Computer Aided Verification
(CAV), volume 8559 of Lecture Notes in Computer Science, pages 737–744. Springer, 2014.

[6] Stéphane Graham-Lengrand. The yicesQS solver web page. https://github.com/disteph/yicesQS, 2023. Last seen on September 14, 2023.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 1 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://github.com/disteph/yicesQS
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_1
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_1
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2023

Distribution Testing:
The New Frontier for Formal Methods

Kuldeep Meel
University of Toronto

Toronto, Canada
meel@cs.toronto.edu

Abstract—The dominant guiding philosophy in the first sixty years of Computer Science was for designers to design systems that
were always correct, and to accept nothing less as users. But times have changed: Users and designers are accustomed to systems
with statistical components and behaviors. What does it mean for the formal methods community?
In this talk, we argue that such a dramatic change in the acceptance and design of systems presents exciting opportunities to
make fundamental contributions: we need to rethink the notions and techniques for the design of specifications and verification
methodologies. In particular, we will focus on the systems whose behaviors are not naturally captured by symbolic relations but
rather require reliance on probability distributions. We will discuss our recent efforts in designing formal methodologies for testing
whether a sampling subroutine generates a desired distribution. We will showcase the challenges, opportunities, and rewards in our
journey.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 2 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_2
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_2
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2023

Formal Methods for Trused AI
Bettina Könighofer

Graz University of Technology
Graz, Austria

bettina.koenighofer@tugraz.at

Abstract—The enormous influence of systems deploying AI is contrasted by the growing concerns about their safety and the relative
lack of trust by the society. This talk will focus on a few aspects of trustworthy AI: safety, accountability, and explainability. First,
we will discuss recent work on evaluating safety for systems deploying deep learning, and correct-by-construction runtime assurance
methods to enforce safety during runtime (aka shielding). For accountability, we outline the potential of formal computing tools
to analyse the decisions of autonomous agents and to assign responsibility. Finally, we approach explainability from the automata
learning perspective. We will discuss recent automata learning approaches which are able to learn compact probabilistic models for
high-dimensional environments and outline how learned environmental models can effectively be used to understand and to evaluate
the decisions of the agent.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 3 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_3
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_3
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2023

Developing an Open-Source, State-of-the-Art
Symbolic Model-Checking Framework for the

Model-Checking Research Community
Kristin Y. Rozier

Iowa State University
Ames, IA, USA

kyrozier@iastate.edu

Natarajan Shankar
SRI

Menlo Park, CA, USA
shankar@csl.sri.com

Cesare Tinelli
University of Iowa

Iowa City, IA, USA
cesare-tinelli@uiowa.edu

Moshe Vardi
Rice University

Houston, TX, USA
vardi@cs.rice.edu

Abstract—As model checking becomes more integrated into the standard design and verification process for safety-critical systems,
the platforms for model checking research have become more limited. Previous options have become closed-source or industry tools;
current research platforms don’t have support for expressive specification languages needed for verifying real systems. Our goal
is to fill the current gap in model checking research platforms: building a freely-available, open-source, scalable model checking
infrastructure that accepts expressive models and efficiently interfaces with the currently-maintained state-of-the-art back-end
algorithms to provide an extensible research and verification tool. With extensive involvement from the research community, we
have been creating a community resource with a well-documented intermediate representation to enable extensibility, and a web
portal, facilitating new modeling languages and back-end algorithmic advances. To add new modeling languages or algorithms,
researchers need only to develop a translator to/from the new intermediate language, and will then be able to integrate each
advance with the full state-of-the-art in model checking. This tutorial will include an overview of the model checking intermediate
language semantics and demonstrations of (provably correct) translators to and from that representation.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 4 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_4
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_4
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2023

MiniZinc for Formal Methods
Peter J. Stuckey
Monash University

Melbourne, Australia
Peter.Stuckey@monash.edu

Abstract—MiniZinc is a free and open-source constraint modeling language, designed for solving discrete optimisation problems.
You can use MiniZinc to model constraint satisfaction and optimization problems in a high-level, solver-independent way, taking
advantage of a large library of pre-defined constraints encapsulting different combinatorial substructures of the problem. Your
model is then compiled into FlatZinc, a solver input language that is understood by a wide range of solvers including leading CP
solvers such as OR-tools from Google, and CP-optimiser from IBM, and leading MIP solvers such as Gurobi and Cplex.
MiniZinc is useful for Formal Reasoning problems where we reason about a bounded size problem on discrete objects (including
integers). In this tutorial we will give an introduction to MiniZinc focusing, at least in the latter part, on where it can be applied
to Formal Methods problems. Formal methods modelling through MiniZinc leads to different ways to model things such as state
progression, and can take advantage of combinatorial substructures that occur in such problems, such as injective mappings. Overall
MiniZinc gives an alternate, and often highly competitive, approach to using SMT for answering some kinds of formal reasoning
questions.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 5 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_5
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_5
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2023

Local Search and Its Application in
CDCL/CDCL(T) solvers for SAT/SMT

Shaowei Cai
Chinese Academy of Sciences

Beijing, China
caisw@ios.ac.cn

Abstract—Modern SAT solvers are based on a paradigm named conflict driven clause learning (CDCL), and CDCL(T) remains the
main method for SMT. Local search is an important alternative for satisfiable instances, which has witnessed significant progress
in SAT, and has begun to show promising results in SMT. Furthermore, recent techniques integrating local search into CDCL have
brought significant improvements, and local search is widely used in state of the art CDCL solvers as an important component.
Similar results have also been observed in CDCL(T). This talk will introduce state of the art local search methods for SAT and
SMT, and also present the recent techniques of combining local search and CDCL/CDCL(T).

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 6 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_6
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_6
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2023

NASA’s core Flight System Framework Overview
David Swartwout

NASA
Houston, TX, USA

dave.c.swartwout@nasa.gov

Abstract—The core Flight System (cFS) is a platform and project independent reusable software framework and set of reusable
software applications. There are three key aspects to the cFS architecture: a dynamic run-time environment, layered software, and
a component-based design. It is the combination of these key aspects that makes it suitable for reuse on any number of flight
projects and/or embedded software systems at a significant cost and schedule savings. This tutorial will give a brief overview of the
architecture and demonstrate a simple app development and deployment.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 7 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_7
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_7
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2023

The FMCAD 2023 Student Forum
Mikolas Janota

Czech Technical University
Prague, Czechia

mikolas.janota@gmail.com

Nina Narodytska
VMware Research
Palo Alto, USA

n.narodytska@gmail.com

Abstract—The Student Forum at the International Confer-
ence on Formal Methods in Computer–Aided Design (FMCAD)
gives undergraduate and graduate students the opportunity to
introduce their research to the Formal Methods community and
receive feedback. In 2023, the event took place in Ames, Iowa,
USA. Eighteen students were invited to give a short talk and
present a poster of their work.

Since 2013, the FMCAD Student Forum provides a platform
for undergraduate and graduate students at any career stage
to present their research to the audience of the FMCAD
conference. The 2023 edition of the FMCAD Student Forum
follows the tradition of its predecessors, which took place in:

• Portland, Oregon, USA in 2013 [1]
• Lausanne, Switzerland in 2014 [2]
• Austin, Texas in 2015 [3] and 2018 [4]
• Mountain View, California, USA in 2016 [5]
• Vienna, Austria in 2017 [6]
• San Jose, California, USA in 2019 [7]
• Virtual in 2020 [8] and 2021 [9]
• Trento, Italy in 2022 [10]

FMCAD 2023 hosted the eleventh edition of the Student
Forum. Graduate and undergraduate students were invited to
submit two-page reports of their current research and ongoing
work in the scope of the FMCAD conference. There were
16 submissions to the forum and all of them were accepted.
The Student Forum program committee reviews were based on
the overall quality, novelty of the work, its potential impact
on the Formal Methods community, as well as the potential
positive impact on the student to have the opportunity to
participate in the forum. The accepted submissions covered
a wide range of topics relevant to the FMCAD community,
from foundational aspects of automated reasoning, to analysis
and verification of software, hardware, and neural networks,
as well as applications of formal methods to confidential
computing, security and chemistry. Each submission received
at least 2 reviews. The following contributions have been
accepted1:

• Arijit Shaw: Towards Building A Scalable Bit-vector
Model Counter

• Rachel Cleaveland: MemGlue: An Update-Based Cache
Coherence Protocol for Heterogeneous Hardware

• Guy Amir: Finding Formal Explanations of Reactive
DNNs

1Only student authors listed for brevity.

• Landon Taylor: Enhancing Property-Directed Reachabil-
ity for Chemical Reaction Networks

• Benjamin Valpey: Formal Analysis of Tensor Core Math
via SMT

• Samuel Coward: Datapath Optimization, Analysis and
Verification: E-Graphs Can Do It All

• Joseph Tafese: Btor2MLIR: A Format for Hardware Ver-
ification

• Sophie Andrews and Matthew Sotoudeh: Incremental
Bounded Model Checking as Program Source Changes

• Cayden Codel: Modifying the DDFW Local Search Algo-
rithm

• Viansa Schmulbach: Ordering Interventions for Hard-
ware Security

• Áron Ricardo Perez-Lopez and Akshay Srivatsan : Mixed-
Signal Verification via Digital Simulation

• Raya Elsaleh: On Facilitating the Development of Neural
Networks Verifiers

• Muhammad Usama Sardar: Formal Specification and
Verification of Attestation in Confidential Computing

• Charles Pert: Synthesizing Omega-Regular Expressions
from Omega-automata

• Tephilla Prince: Two-dimensional Bounded Model Check-
ing for Petri Nets

• Ankit Shukla: Simplifying Dependency Quantified
Boolean Formulas with Biclique Cover Transformations

We formed a program committee to cover a wide range
of topics so students could receive expert feedback on their
work. The 2023 FMCAD Student Forum program committee
consisted of Mikolas Janota (co-chair), Nina Narodytska (co-
chair), Haniel Barbosa, Jaroslav Bendı́k, Armin Biere, Niko-
laj Bjørner, Martin Blicha, Martin Brain, Rayna Dimitrova,
Katalin Fazekas, Mathias Fleury, Isabel Garcia, Arie Gurfinkel,
Martin Jonas, Daniela Kaufmann, Konstantin Korovin, Corina
Pasareanu, Mathias Preiner, Giles Reger, Andrew Reynolds,
Karem Sakallah, Mark Santolucito, Carsten Sinz, Nestan
Tsiskaridze, and Florian Zuleger.

We would like to thank the organizers of FMCAD, as
well as the FMCAD Student Forum program committee,
who have made the FMCAD Student Forum possible. We
would like to thank FMCAD and NSF for providing travel
support to students. Additionally, we are grateful to the student
authors and their research mentors who have contributed their
excellent work to the program.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 8 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0003-3487-784X
https://orcid.org/0000-0002-5181-4560
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_8
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_8
https://creativecommons.org/licenses/by/4.0/

REFERENCES

[1] T. Wahl, “The FMCAD graduate student forum,” in Formal Methods
in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013. IEEE, 2013, pp. 16–17. [Online]. Available:
https://doi.org/10.1109/FMCAD.2013.7035523

[2] R. Piskac, “The FMCAD 2014 graduate student forum,” in Formal
Methods in Computer-Aided Design, FMCAD 2014, Lausanne,
Switzerland, October 21-24, 2014. IEEE, 2014, p. 13. [Online].
Available: https://doi.org/10.1109/FMCAD.2014.6987589

[3] G. Weissenbacher, “The FMCAD 2015 graduate student forum,”
in Formal Methods in Computer-Aided Design, FMCAD 2015,
Austin, Texas, USA, September 27-30, 2015, R. Kaivola and
T. Wahl, Eds. IEEE, 2015, p. 8. [Online]. Available: https:
//doi.org/10.1109/FMCAD.2015.7542246

[4] D. Jovanović and A. Reynolds, “The FMCAD 2018 graduate student
forum,” in 2018 Formal Methods in Computer Aided Design (FMCAD).
IEEE, 2018, pp. 1–1, https://www.cs.utexas.edu/users/hunt/FMCAD/
FMCAD18/student-forum/.

[5] H. Hojjat, “The FMCAD 2016 graduate student forum,” in Formal
Methods in Computer-Aided Design (FMCAD), 2016. IEEE, 2016,
pp. 8–8, https://fmcad.forsyte.at/FMCAD16/student-forum.html.

[6] K. Heljanko, “The FMCAD 2017 graduate student forum,” in Proceed-
ings of the 17th Conference on Formal Methods in Computer-Aided
Design. FMCAD Inc, 2017, pp. 10–10, https://fmcad.org/FMCAD17/
student-forum/.

[7] G. Fedyukovich, “The FMCAD 2019 student forum,” in 2019 Formal
Methods in Computer Aided Design (FMCAD). IEEE, 2019, pp. 1–1,
https://fmcad.forsyte.at/FMCAD19/student-forum/.

[8] P. Schrammel, “The FMCAD 2020 student forum,” in 2020 Formal
Methods in Computer Aided Design (FMCAD). IEEE, 2020, pp. 1–1,
https://fmcad.forsyte.at/FMCAD20/student-forum/.

[9] M. Santolucito, “The FMCAD 2021 student forum,” in 2021 Formal
Methods in Computer Aided Design (FMCAD). IEEE, 2021, pp. 1–1,
https://fmcad.org/FMCAD21/student forum/.

[10] M. Preiner, “The FMCAD 2023 student forum,” in 2022 Formal Methods
in Computer Aided Design (FMCAD). IEEE, 2022, pp. 1–1, https:
//fmcad.org/FMCAD22/student forum/.

9

https://doi.org/10.1109/FMCAD.2013.7035523
https://doi.org/10.1109/FMCAD.2014.6987589
https://doi.org/10.1109/FMCAD.2015.7542246
https://doi.org/10.1109/FMCAD.2015.7542246
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD18/student-forum/
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD18/student-forum/
https://fmcad.forsyte.at/FMCAD16/student-forum.html
https://fmcad.org/FMCAD17/student-forum/
https://fmcad.org/FMCAD17/student-forum/
https://fmcad.forsyte.at/FMCAD19/student-forum/
https://fmcad.forsyte.at/FMCAD20/student-forum/
https://fmcad.org/FMCAD21/student_forum/
https://fmcad.org/FMCAD22/student_forum/
https://fmcad.org/FMCAD22/student_forum/

Formal Methods in Computer-Aided Design 2023

Formally Explaining Neural Networks
within Reactive Systems

Shahaf Bassan1,∗ , Guy Amir1,∗ , Davide Corsi2, Idan Refaeli1, and Guy Katz1

1The Hebrew University of Jerusalem, Jerusalem, Israel, {shahaf, guyam, idan0610, guykatz}@cs.huji.ac.il
2University of Verona, Verona, Italy, davide.corsi@univr.it

Abstract—Deep neural networks (DNNs) are increasingly being
used as controllers in reactive systems. However, DNNs are highly
opaque, which renders it difficult to explain and justify their
actions. To mitigate this issue, there has been a surge of interest
in explainable AI (XAI) techniques, capable of pinpointing the
input features that caused the DNN to act as it did. Existing XAI
techniques typically face two limitations: (i) they are heuristic,
and do not provide formal guarantees that the explanations
are correct; and (ii) they often apply to “one-shot” systems,
where the DNN is invoked independently of past invocations,
as opposed to reactive systems. Here, we begin bridging this gap,
and propose a formal DNN-verification-based XAI technique for
reasoning about multi-step, reactive systems. We suggest methods
for efficiently calculating succinct explanations, by exploiting the
system’s transition constraints in order to curtail the search space
explored by the underlying verifier. We evaluate our approach
on two popular benchmarks from the domain of automated
navigation; and observe that our methods allow the efficient
computation of minimal and minimum explanations, significantly
outperforming the state of the art. We also demonstrate that our
methods produce formal explanations that are more reliable than
competing, non-verification-based XAI techniques.

I. INTRODUCTION

Deep neural networks (DNNs) [56] are used in numerous
key domains, such as computer vision [54], natural language
processing [24], computational biology [9], and more [23].
However, despite their tremendous success, DNNs remain
“black boxes”, uninterpretable by humans. This issue is con-
cerning, as DNNs are prone to critical errors [19], [96] and
unexpected behaviors [10], [28].

DNN opacity has prompted significant research on ex-
plainable AI (XAI) techniques [62], [77], [78], aimed at
explaining the decisions made by DNNs, in order to increase
their trustworthiness and reliability. Modern XAI methods
are useful and scalable, but they are typically heuristic; i.e.,
there is no provable guarantee that the produced explanation
is correct [20], [45]. This hinders the applicability of these
approaches to critical systems, where regulatory bars are
high [66].

These limitations provide ample motivation for formally
explaining DNN decisions [20], [33], [39], [66]. And indeed,
the formal verification community has suggested harnessing
recent developments in DNN verification [13], [22], [26],
[29], [36], [67], [69]–[71], [81], [86], [91], [92] to produce

∗ Both authors contributed equally.

provable explanations for DNNs [17], [39], [44]. Typically,
such approaches consider a particular input to the DNN,
and return a subset of its features that caused the DNN to
classify the input as it did. These subsets are called abductive
explanations, prime implicants or PI-explanations [17], [44],
[84]. This line of work constitutes a promising step towards
more reliable XAI; but so far, existing work has focused on
explaining decisions of “one-shot” DNNs, such as image and
tabular data classifiers [17], [43], [44], and has not addressed
more complex systems.

Modern DNNs are often used as controllers within elaborate
reactive systems, where a DNN’s decisions affect its future
invocations. A prime example is deep reinforcement learning
(DRL) [59], where DNNs learn control policies for complex
systems [11], [18], [57], [63], [72], [85], [95]. Explaining the
decisions of DRL agents (XRL) [32], [50], [64], [74] is an
important domain within XAI; but here too, modern XRL
techniques are heuristic, and do not provide formally correct
explanations.

In this work, we make a first attempt at formally defining
abductive explanations for multi-step decision processes. We
propose novel methods for computing such explanations and
supply the theoretical groundwork for justifying the soundness
of these methods. Our framework is model-agnostic, and could
be applied to diverse kinds of models; but here, we focus on
DNNs, where producing abductive explanations is known to be
quite challenging [14], [17], [44]. With DNNs, our technique
allows us to reduce the number of times a network has to
be unrolled, circumventing a potential exponential blow-up in
runtime; and also allows us to exploit the reactive system’s
transition constraints, as well as the DNN’s sensitivity to small
input perturbations, to curtail the search space even further.

For evaluation purposes, we implemented our approach
as a proof-of-concept tool, which is publicly available as
an artifact accompanying this paper [16]. We used this
tool to automatically generate explanations for two popular
DRL benchmarks: a navigation system on an abstract, two-
dimensional grid, and a real-world robotic navigation system.
Our evaluation demonstrates that our methods significantly
outperform state-of-the-art, rigorous methods for generating
abductive explanations, both in terms of efficiency and in
the size of the explanation generated. When comparing our
approach to modern, heuristic-based XAI approaches, our

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 9 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_9
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_9
https://creativecommons.org/licenses/by/4.0/

explanations were found to be significantly more precise. We
regard these results as strong evidence of the usefulness of
applying verification in the context of XAI.

The rest of this paper is organized as follows: Sec. II
contains background on DNNs, their verification, and their
formal explainability. Sec. III contains our definitions for
formal abductive explanations and contrastive examples for
reactive systems. In Sec. IV we propose different methods
for computing such abductive explanations. We then evaluate
these approaches in Sec. V, followed by a discussion of related
work in Sec. VI; and we conclude in Sec. VII.

II. BACKGROUND

DNNs. Deep neural networks (DNNs) [56] are directed, lay-
ered graphs, whose nodes are referred to as neurons. They
propagate data from the first (input) layer, through intermedi-
ate (hidden) layers, and finally onto an output layer. A DNN’s
output is calculated by assigning values (representing input
features) to the input layer, and then iteratively calculating the
neurons’ values in subsequent layers. In classification, each
output neuron corresponds to a class, and the input is classified
as the class matching the greatest output. Fig. 1 depicts a toy
DNN. The input layer has three neurons and is followed by a
weighted-sum layer that calculates an affine transformation of
the input values. For example, given input V1 = [1,1,1]T , the
second layer evaluates to V2 = [7,8,11]T . This is followed
by a ReLU layer, which applies the ReLU(x) = max(0, x)
function to each value in the previous layer, resulting in
V3 = [7,8,11]T . The output layer computes the weighted sum
V4 = [15,−4]T . Because the first output neuron has the great-
est value, V1 is classified as the output class corresponding to
that neuron.

2

-1

-4

0

1

3

2

2
3

6
6
6

0

0

0

1
-1

1

-1

0

1

ReLU

ReLU

ReLU

Fig. 1: A toy DNN.

DNN Verification. We define a DNN verification query as
a tuple ⟨P,N,Q⟩, where N is a DNN that maps an input
vector x to an output vector y = N(x), P is a predicate
over x, and Q is a predicate over y [51]. A DNN verifier
needs to answer whether there exists some input x′ that
satisfies P (x′)∧Q(N(x′)) (a SAT result) or not (an UNSAT
result). It is common to express P and Q in the logic of real
arithmetic [61]. The problem of verifying DNNs is known to
be NP-Complete [51].

Formal Explanations for Classification DNNs. A classifica-
tion problem is a tuple ⟨F,D,K,N⟩, where (i) F = {1, . . . ,m}

is the feature set; (ii) D = {D1,D2, . . . ,Dm} are the domains
of individual features, and the entire feature space is F =
(D1 ×D2 × . . . ×Dm); (iii) K = {c1, c2, . . . , cn} represents
the set of all classes; and (iv) N ∶ F→K is the classification
function, represented by a neural network. A classification
instance is a pair (v, c), where v ∈ F, c ∈ K, and c = N(v).
Intuitively, this means that N maps the input v to class c.

Formally explaining the instance (v, c) entails determining
why v is classified as c. An explanation (also known as an
abductive explanation) is defined as a subset of features,
E ⊆ F , such that fixing these features to their values in
v guarantees that the input is classified as c, regardless of
features in F ∖E. The features not part of the explanation are
“free” to take on any arbitrary value, but cannot affect the
classification. Formally, given an input v = (v1, . . . , vm) ∈ F
classified by the neural network to N(v) = c, we define an
explanation as a subset of features E ⊆ F , such that:

∀x ∈ F. ⋀
i∈E
(xi = vi)→ (N(x) = c) (1)

We demonstrate formal explanations using the running ex-
ample from Fig. 1. For simplicity, assume that each input can
only take the values 0 or 1. Fig. 2 shows that the set {v11 , v21}
is an explanation for the input vector V1 = [1,1,1]T : setting
the first two features in V1 to 1 ensures that the classification
is unchanged, regardless of the values the third feature takes.

2

-1

-4

0

1

3

2

2
3

6
6
6

0

0

0

1
-1

1

-1

0

1

ReLU

ReLU

ReLU

Fig. 2: {v11 , v21} is an explanation for input V1 = [1,1,1]T .

A candidate explanation E can be verified through a verifi-
cation query ⟨P,N,Q⟩ = ⟨E = v,N,Q¬c⟩, where E = v means
that all of the features in E are set to their corresponding
values in v, and Q¬c implies that the classification of this
query is not c. If this query is UNSAT, then E is a valid
explanation for the instance (v, c).

It is straightforward to show that the set of all features is
a trivial explanation. However, smaller explanations typically
provide more meaningful information regarding the decision
of the classifier; and we thus focus on finding minimal and
minimum explanations. A minimal explanation is an expla-
nation E ⊆ F that ceases to be an explanation if any of its
features are removed:

(∀x ∈ F. ⋀
i∈E
(xi = vi)→ (N(x) = c)) ∧

(∀j ∈ E. ∃y ∈ F. ⋀
i∈E∖j

(yi = vi) ∧ (N(y) ≠ c))
(2)

A minimal explanation for our running example, {v11 , v21}, is
depicted in Fig. 15 in the extended version of this paper [15].

11

A minimum explanation is a subset E ⊆ F which is a
minimal explanation of minimum size; i.e., there is no other
minimal explanation E′ ≠ E such that ∣E′∣ < ∣E∣. Fig. 16 in
the extended version of this paper [15] shows that {v31} is a
minimal explanation of minimal cardinality, and is hence a
minimum explanation in our example.

Contrastive Examples. We define a contrastive example (also
known as a contrastive explanation (CXP)) as a subset of
features C ⊆ F , whose alteration may cause the classification
of v to change. More formally:

∃x ∈ F. ⋀
i∈F∖C

(xi = vi) ∧ (N(x) ≠ c) (3)

A contrastive example for our running example appears in
Fig. 3.

2

-1

-4

0

1

3

2

2
3

6
6
6

0

0

0

1
-1

1

-1

0

1

ReLU

ReLU

ReLU

Fig. 3: {v21 , v31} is a contrastive example for V1 = [1,1,1]T .

Checking whether C is a contrastive example can be per-
formed using the query ⟨P,N,Q⟩ = ⟨(F ∖ C) = v,N,Q¬c⟩:
C is contrastive iff the quest is SAT. Any set containing a
contrastive example is contrastive, and so we consider only
contrastive examples that are minimal, i.e., which do not
contain any smaller contrastive examples.

Contrastive examples have an important property: every ex-
planation contains at least one element from every contrastive
example [17], [43]. This can be used for showing that a min-
imum hitting set (MHS; see [15]) of all contrastive examples
is a minimum explanation [41], [76]. In addition, there exists
a duality between contrastive examples and explanations [43],
[47]: minimal hitting sets of all contrastive examples are min-
imal explanations, and minimal hitting sets of all explanations
are minimal contrastive examples. This relation can be proved
by reducing explanations and contrastive examples to minimal
unsatisfiable sets and minimal correction sets, respectively,
where this duality is known to hold [43]. Calculating an MHS
is NP-hard, but can be performed in practice using modern
MaxSAT or MILP solvers [38], [58]. The duality is thus useful
since computing contrastive examples and calculating their
MHS is often more efficient than directly computing minimum
explanations [17], [43], [44].

III. K-STEP FORMAL EXPLANATIONS

A reactive system is a tuple R = ⟨S,A, I, T ⟩, where S is a
set of states, A is a set of actions, I is a predicate over the
states of S that indicates initial states, and T ⊆ S ×A × S is
a transition relation. In our context, a reactive system has an
associated neural network N ∶ S → A. A k-step execution E of

Fig. 4: ({s3},∅) is a (minimum) multi-step explanation for
E .

R is a sequence of k states (s1, . . . , sk), such that I(s1) holds,
and for all 1 ≤ i ≤ k−1 it holds that T (si,N(si), si+1). We use
ES = (s1, . . . , sk) to denote the sequence of k states visited in
E , and EA = (a1, . . . , ak) to denote the sequence of k actions
selected in these states. More broadly, a reactive system can
be considered as a deterministic, finite-state transducer Mealy
automaton [82]. Our goal is to better understand E , by finding
abductive explanations and contrastive examples that explain
why N selected the actions in EA.

K-Step Abductive Explanations. Informally, we define an
explanation E for a k-step execution E as a subset of features
of each of the visited states in ES , such that fixing these
features (while freeing all other features) is sufficient for
forcing the DNN to select the actions in EA. More formally,
E = (E1, . . . ,Ek), such that ∀x1, x2, . . . , xk ∈ F,

(
k−1
⋀
i=1

T (xi,N(xi), xi+1) ∧
k

⋀
i=1
⋀
j∈Ei

(xj
i = s

j
i))→

k

⋀
i=1

N(xi) = ai
(4)

We continue with our running example. Consider the tran-
sition relation T = {(s, a, s′) ∣ s3 = s′3}; i.e., we can
transition from state s to state s′ provided that the third
input neuron has the same value in both states, regardless
of the action selected in s. Observe the 2-step execution
E ∶ s1 = (1,1,1)

c1→ s2 = (1,0,1)
c1→, depicted in Fig. 4

(for simplicity, we omit the network’s hidden neurons), and
suppose we wish to explain EA = {c1, c1}. Because {s3} is
an explanation for the first step, and because fixing s31 also
fixes the value of s32, it follows that fixing s31 is sufficient to
guarantee that action c1 is selected twice — i.e., ({s3},∅) is
a multi-step explanation for E .

Given a candidate k-step explanation, we can check its
validity by encoding Eq. 4 as a DNN verification query. This is
achieved by unrolling the network N for k subsequent steps;
i.e., by encoding a network that is k times larger than N ,
with input and output vectors that are k times larger than the
original. We must also encode the transition relation T as a
set of constraints involving the input values, to mimic k time-
steps within a single feed-forward pass. We use N[i] to denote
an unrolling of the neural network N for i steps, for 1 ≤ i ≤ k.

Using the unrolled network N[k], we encode the negation of
Eq. 4 as the query ⟨P,N,Q⟩ = ⟨E = ES ,N[k],Q¬EA⟩, where
E = ES means that we restrict the features in each subset
Ei ∈ E to their corresponding values in si; and Q¬EA indicates

12

Fig. 5: ({s3},{s3}) is a multi-step contrastive example for E .

that in some step i, an action that is not ai was selected by the
DNN. An UNSAT result for this query indicates that E is an
explanation for E , because fixing E’s features to their values
forces the given sequence of actions to occur.

We can naturally define a minimal k-step explanation as a k-
step explanation that ceases to be a k-step explanation when
we remove any of its features. A minimum k-step explana-
tion is a minimal k-step explanation of the lowest possible
cardinality; i.e., there does not exist a k-step explanation
E′ = (E′

1,E
′
2, . . . ,E

′
k) such that ∑k

i=1 ∣E′
i∣ < ∑

k
i=1 ∣Ei∣.

K-Step Contrastive Examples. A contrastive example C for
an execution E is a subset of features whose alteration can
cause the selection of an action not in EA. A k-step contrastive
example is depicted in Fig. 5: altering the features s31 and
s32 may cause action c2 to be chosen instead of c1 in the
second step. Formally, C is an ordered set of (possibly empty)
subsets C = (C1,C2, . . . ,Ck), such that Ci ⊆ F , and for which
∃x1, x2, . . . , xk ∈ F such that

(
k−1
⋀
i=1

T (xi,N(xi), xi+1))∧

(
k

⋀
i=1

⋀
j∈F∖Ci

(xj
i = s

j
i)) ∧ (

k

⋁
i=1

N(xi) ≠ ai)
(5)

Similarly to multi-step explanations, C is a multi-step con-
trastive example iff the verification query: ⟨P,N,Q⟩ = ⟨(F ∖
C1, F ∖C2, . . . , F ∖Ck) = ES ,N[k],Q¬EA⟩ is SAT.

IV. COMPUTING FORMAL K-STEP EXPLANATIONS

We now propose four different methods for computing
formal k-step explanations, focusing on minimal and minimum
explanations. All four methods use an underlying DNN verifier
to check candidate explanations, but differ in how they enu-
merate different explanation candidates until ultimately con-
verging to an answer. We begin with the more straightforward
methods.

Method 1: A Single, K-Sized Step. The first method is
to encode the negation of Eq. 4 by unrolling all k steps of
the network, as described in Sec. III. This transforms the
problem into explaining a non-reactive, single-step system
(e.g., a “one-shot” classifier). We can then use any existing
abductive explanation algorithm for explaining the unrolled
DNN (e.g., [17], [43], [44]).

This method is likely to produce small explanation sets but
is extremely inefficient. Encoding N[k] results in an input

space roughly k times the size of any single-step encoding.
Such an unrolling for our running example is depicted in
Fig. 6. Due to the NP-completeness of DNN verification,
this may cause an exponential growth in the verification time
of each query. Since finding minimal explanations requires a
linear number of queries (and for minimum explanations — a
worst-case exponential number), this may cause a substantial
increase in runtime.

-

Fig. 6: Finding explanations using a 2-step unrolling.

Method 2: Combining Independent, Single-Step Explana-
tions. Here, we dismantle any k-step execution into k individ-
ual steps. Then, we independently compute an explanation for
each step, using any existing algorithm, and without taking
the transition relation into account. Finally, we concatenate
these explanations to form a multi-step explanation. Fixing
the features of the explanation in each step ensures that the
ensuing action remains the same, guaranteeing the soundness
of the combined explanation.

The downside of this method is that the resulting E need not
be minimal or minimum, even if its constituent Ei explana-
tions are minimal or minimum themselves; see Fig. 7. In this
instance, finding a minimum explanation for each step results
in the 2-step explanation ({s3},{s3}), which is not minimal
— even though its components are minimum explanations for
their respective steps. The reason for this phenomenon is that
this method ignores the transition constraints and information
flow across time-steps. This can result in larger and less
meaningful explanations, as we later show in Sec. V.

Method 3: Incremental Explanation Enumeration. We now
suggest a scheme that takes into consideration the transition

Fig. 7: Explaining each step individually.

13

constraints between steps (unlike Method 2), but which en-
codes the verification queries for validating explanations in a
more efficient manner than Method 1. The scheme relies on
the following lemma:

Lemma 1. Let E = (E1,E2, . . . ,Ek) be a k-step explanation
for execution E , and let 1 ≤ i ≤ k such that ∀j > i it holds
that Ej = F . Let E′ be the set obtained by removing a set
of features F ′ ⊆ Ei from Ei, i.e., E′ = (E1, . . . ,Ei−1,Ei ∖
F ′,Ei+1, . . . ,Ek). In this case, fixing the features in E′

prevents any changes in the first i − 1 actions (a1, . . . , ai−1);
and if any of the last k − i + 1 actions (ai, . . . , ak) change,
then ai must also change.

A proof appears in the extended version of this paper [15].
The lemma states that “breaking” an explanation E of E at
some step i (by removing features from the i’th step), given
that the features in steps i + 1, . . . , k are fixed, causes ai
to change before any other action. In this scenario, we can
determine whether E explains E using a simplified verification
query: we can check whether (E1, . . . ,Ei) explains the first i
steps of E , regardless of steps i+1, ..., k. If so, then ai cannot
change; and from Lemma 1, no action in EA can change, and
(E1, . . . ,Ek) is an explanation for E . Otherwise, E allows an
action in EA to change, and it does not explain E . We can
leverage this property to efficiently enumerate candidates as
part of a search for a minimal/minimum explanation for E , as
explained next.

Finding Minimal Explanations with Method 3. A common
approach for finding minimal explanations for a “one-shot”
classification instance is via a greedy algorithm, which dis-
patches a linear number of queries to the underlying veri-
fier [44]. Such an algorithm can start with the explanation set
to be the entire feature space, and then iteratively attempt to re-
move features. If removing a feature allows misclassification,
the algorithm keeps it as part of the explanation; otherwise,
it removes the feature and continues. A pseudo-code for this
approach appears in Alg. 1.

Algorithm 1 Greedy-Minimal-Explanation

Input N (DNN), F (N ’s features), v (values), c (predicted
class)

1: Explanation ← F
2: for each f ∈ F do
3: if verify ((Explanation∖{f})=v,N,Q¬c) is UNSAT

then
4: Explanation ← Explanation ∖{f}
5: return Explanation

We suggest performing a similar process for explaining E .
We start by fixing all features in all states of E to their values;
i.e., we start with E = (E1, . . . ,Ek) where Ei = F for all i,
and then perform the following steps:

First, we iteratively remove individual features from E1,
each time checking whether the modified E remains an
explanation for E . Since all features in steps 2, . . . , k are fixed,

it follows from Lemma 1 that checking whether the modified
E explains E is equivalent to checking whether the modified
E1 explains the selection of a1. Thus, we perform a process
that is identical to the one in the greedy Alg. 1 for finding
a minimal explanation for a “one-shot” classification DNN.
At the end of this phase, we are left with E = (E1, . . . ,Ek)
where Ei = F for all i > 1 and E1 was reduced by removing
features from it. We keep all current features in E fixed for
the following steps.

Second, we begin to iteratively remove features from E2,
each time checking whether the modified E still explains E .
Since the features in steps 3, . . . , k are entirely fixed, it suffices
(from Lemma 1) to check whether the modified (E1,E2)
explains the selection of the first two actions (a1, a2) of EA.
This is performed by checking whether

(∀x1, x2 ∈ F. T (x1, a1, x2) ∧ ⋀
j∈E1

(xj
1 = s

j
1)∧

⋀
j∈E2

(xj
2 = s

j
2))→ N(x2) = a2

(6)

We do not need to require that N(x1) = a1 (as in Method 1) —
this is guaranteed by Lemma 1. This is significant, because it
exempts us from encoding the neural network twice as part of
the verification query. We denote the negation of Eq. 6 for val-
idating (E1,E2) as: ⟨P,N,Q⟩ = ⟨(E1,E2) = ES[2] ,N,Q¬a2⟩.

Third, we continue this iterative process for all k steps of
E , and find the minimal explanation for each step separately.
In step i, for each query we encode i transitions and check
whether the modified E still explains the first i steps of E
(by encoding ⟨(E1, . . . ,Ei) = ES[i] ,N,Q¬ai⟩), which does not
require encoding the DNN i times. The correctness of each
step follows directly from Lemma 1.

The pseudo-code for this process appears in Alg. 2. The
minimality of the resulting explanation holds because remov-
ing any feature from this explanation would allow the action
in that step to change (since minimality is maintained in each
step of the algorithm). An example of the first two iterations of
this process on our running example appears in Fig. 8: in the
first iteration, we attempt to remove features from the first step,
until converging to an explanation E1. In the second iteration,
while the features in E1 remain fixed to their values, we
encode the constraints of the transition relation T (s1, a1, s2)
between the first two steps, and dispatch queries to verify
candidate explanations for the second step — until converging
to a minimal explanation (E1,E2). In this case, E2 = ∅, and
({s3},∅) is a valid explanation for the 2-step execution, since
fixing the value of s31 determines the value of s32 — which
forces the selection of a2 in the second step.

We emphasize that incrementally enumerating candidate
explanations for a k-step execution in this way is preferable to
simply finding a minimal explanation by encoding verification
queries that encompass all k-steps, à la Method 1: (i) in each
iteration, we dispatch a verification query involving only a
single invocation of the DNN, thus circumventing the linear
growth in the network’s size — which causes an exponential
worst-case increase in verification times; and (ii) in each

14

-

(a) First iteration

(b) Second iteration

Fig. 8: Running Method 3 for finding minimal explanations,
for two iterations.

iteration, we do not need to encode the entire set of k disjuncts
(from the negation of Eq. 4), since we only need to validate
ai on the i’th iteration, and not all actions of EA.

Algorithm 2 Incremental-Minimal-Explanation
-Enumeration
Input N (DNN), F (N ’s features), E (execution of length k
to explain)

1: Explanation ← (E1, . . . ,Ek) where Ei = F for all 1 ≤ i ≤
k

2: for each i ∈ {1, ..., k} and f ∈ Ei do
3: if verify ((E1, . . . ,Ei ∖ f)=ES[i] ,N,Q¬ai) is
UNSAT then

4: Ei ← Ei ∖ f
5: return Explanation

Finding Minimum Explanations with Method 3. We can
also use our proposed enumeration to efficiently find mini-
mum explanations, using a recursive approach. In each step
i = 1, . . . , k, we iterate over all the possible explanations,
each time considering a candidate explanation and recursively
invoking the procedure for step i + 1. In this way, we iterate
over all the possible multi-step explanation candidates and can
return the smallest one that we find. This process is described
in Alg. 3.

Finding a minimum explanation in this manner is superior
to using Method 1, for the same reasons noted before. In
addition, the exponential blowup here is in the number of
explanations in each step, and not in the entire number of
features in each step — which is substantially smaller in many
cases. Nevertheless, as the method advances through steps, it
is expected to be significantly harder to iterate over all the
candidate explanations. We discuss more efficient ways for
finding global minimum explanations in Method 4.

Algorithm 3 Incremental-Minimum-Explanation-
Enumeration
Input N (DNN), F (N ’s features), E (execution to explain)
▷ Global Variables

1: AllExplanations ← ALL-EXPLANATION-
2: RECURSIVE-SEARCH(∅, 1)
3: return E ∈ AllExplanations such that E is with minimum

cardinality

Algorithm 4 All-Explanation-Recursive-Search

Input E (explanation), i (step number)
1: if i = k then
2: return E
3: AllExplanations ← ∅
4: for each subset F ′ of F do
5: if verify (E ⋅ (F ′)=ES[i] ,N,Q¬ai) is UNSAT then
6: Explanations ← All-Explanation-
7: Recursive-Search (E ⋅ (F ′), i+1)
8: AllExplanations ← AllExplanations ∪ Explana-

tions
9: return AllExplanations

Method 4: Multi-Step Contrastive Example Enumeration.
As mentioned earlier, a common approach for finding min-
imum explanations is to find all contrastive examples, and
then calculate their minimum hitting set (MHS). Because
DNNs tend to be sensitive to small input perturbations [87],
small contrastive examples are often easy to find, and this
can expedite the process significantly [17]. When performing
this procedure on a multi-step execution E , we show that it
is possible to enumerate contrastive example candidates in a
more efficient manner than simply using the encoding from
Method 1.

Lemma 2. Let E be a k-step execution, and let C =
(C1, . . . ,Ck) be a minimal contrastive example for E; i.e.,
altering the features in C can cause at least one action in EA
to change. Let 1 ≤ i ≤ k denote the index of the first action ai
that can be changed by features in C. It holds that: Ci ≠ ∅;
Cj = ∅ for all j > i; and if there exists some l < i such that
Cl ≠ ∅, then all sets {Cl,Cl+1, . . . ,Ci} are not empty.

The lemma gives rise to the following scheme. We examine
some contrastive example C ′ of a set of subsequent steps of E .
For simplicity, we discuss the case where C ′ = (C ′

i) involves
only a single step i; but the technique generalizes to subsets
of steps, as well. Such a C ′

i can be found using a “one-shot”
verification query on step i, without encoding the transition
relation or unrolling the network. Our goal is to use C ′ to find
many contrastive examples for E , and use them in computing
the MHS. We observe that there are three possible cases:

1) C = (∅, . . . ,∅,C ′
i,∅, . . . ,∅) already constitutes a con-

trastive example for E . In this case, we say that C ′ = (C ′
i)

is an independent contrastive example.
2) The features in C ′

i can cause a skew from E only

15

when features from preceding steps l, . . . , i − 1 (for
some l < i) are also altered. In this case, we say
that C ′ is a dependent contrastive example, and that it
depends on steps l, . . . , i − 1; and together, the features
from all these steps form the contrastive example C =
(∅, . . . ,∅,Cl, . . . ,Ci−1,C

′
i,∅, . . . ,∅) for E .

3) C ′ is a spurious contrastive example: the first i−1 steps in
E , and the constraints that the transition relation imposes,
prevent the features freed by C ′

i from causing any action
besides ai to be selected in step i.

Fig. 9 illustrates the three cases. The first case is identical to
the one from Fig. 5, where ({s3}) is a dependent contrastive
example of the second step, which depends on the previous
step and is part of a larger contrastive example: ({s3},{s3}).
In the second case, assume that T requires that s13 + s23 ≠ 1
for any feasible transition. Thus, the assignment for s32 which
may cause the second action in the sequence to change is
not reachable from the previous step, and hence ({s3}) is a
spurious contrastive example of the second step. In the third
case, assume that T allows all transitions, and hence ({s3}) is
an independent contrastive example for the second step; and
so (∅,{s3}) is a contrastive example of the entire execution.

It follows from Lemma 2 that one of these three cases must
always apply. We next explain how verification can be used to
classify each contrastive example of a subset of steps into one
of these three categories. If C ′ is independent, it can be used
as-is in computing the MHS; and if it is spurious, it should
be ignored. In the case where C ′ is dependent, our goal is to
find all multi-step contrastive examples that contain it, for the
purpose of computing the MHS. We next describe a recursive
algorithm, termed reverse incremental enumeration (RIE), that
achieves this.

Reverse Incremental Enumeration. Given a contrastive ex-
ample C ′ containing features from a set of subsequent steps
of E , we propose to classify it into one of the three categories
by iteratively dispatching queries that check the reachability
of C ′ from the previous steps of the sequence. We execute this
procedure by recursively enumerating contrastive examples in
previous steps. For simplicity, we assume again that C ′ = (C ′

i)
is a single-step contrastive example of step i.

1) For checking whether C ′ is an independent contrastive
example of E , we set Ci−1 = ∅ and Ci = C ′

i , and check
whether C = (Ci−1,Ci) is a contrastive example for steps
i−1 and i. This is achieved by dispatching the following
query: ∃xi−1, xi ∈ F such that:

T (xi−1,N(xi−1), xi)∧

(
i

⋀
l=i−1

⋀
j∈F∖Cl

(xj
l = s

j
l)) ∧ (N(xi) ≠ ai)

(7)

If the verifier returns SAT, C ′
i is independent of step i−1,

and hence independent of all steps 1, . . . , i−1. Hence, C ′

is an independent contrastive example of E .
2) If the query from Eq. 7 returns UNSAT, we now attempt to

decide whether C ′ is dependent. We achieve this through
additional verification queries, again setting Ci = C ′

i , but

now setting Ci−1 to a non empty set of features — once
for every possible set of features, separately. We again
generate a query using the encoding from Eq. 7, and if
the verifier returns SAT it follows that C ′ is dependent
on step i − 1, and that C ′′ = (Ci−1,Ci) is a contrastive
example for steps i − 1 and i. We recursively continue
with this enumeration process, to determine whether C ′′

is independent, dependent of step i − 2, or a spurious
contrastive example.

3) In case the previous phases determine that C ′ is neither
independent nor part of a larger contrastive example, we
conclude that it is spurious.

An example of a single reverse incremental enumeration
step on a contrastive example C ′ in our running example is
depicted in Fig. 10, and its recursive call is shown in Alg. 5
(Cxps denotes the set of all multi-step contrastive examples
containing the initial C ′).

Algorithm 5 Reverse Incremental Enumeration
(RIE)
Input i (starting index), j (reversed index), C ′ = (C ′

j , . . . ,C
′
i)

1: if j=1 then
2: return C’ ▷ C’ is trivially independent of steps j < 1
3: if (∅,C ′

j , . . . ,C
′
i) is a contrastive example of steps j −

1 . . . i then
4: return (Cl ∣ ∀1 ≤ l ≤ j − 1, Cl = ∅) ⋅C ′ ▷ C’ is

independent of step j − 1
5: Cxps ← ∅
6: for each subset Cf of F do
7: if (Cf ,C

′
j , . . . ,C

′
i) is a contrastive example of steps

j − 1 . . . i then
8: Cxps ← Cxps ∪ RIE(i, j − 1,Cf) ▷ C’ is

dependent of step j − 1
9: return Cxps ▷ if Cxps is empty, C’ is spurious

Using reverse incremental enumeration, we can find all
multi-step contrastive examples of E :

1) First, we find all contrastive examples for the first step
of E . This is again the same as finding contrastive
examples of a “one-shot” classification problem, and can
be performed efficiently [17], via Alg. 7. We first enu-
merate all contrastive examples of size 1 (i.e., contrastive
singletons); then all contrastive examples of size 2 that do
not contain contrastive singletons within them; and then
continue this process for all 1 ≤ i ≤ ∣F ∣ (“skipping” all
non-minimal cases).

2) Next, we search for all contrastive examples for the
second step of E , in the same manner. We perform
a reverse incremental enumeration on each contrastive
example found, obtaining all contrastive examples for
steps 1 and 2.

3) We continue iteratively, each time visiting a new step i
and reversely enumerating all contrastive examples that
affect steps 1, . . . , i. We stop when we reach the final
step, i = k.

16

(a) Dependent (b) Spurious (c) Independent

Fig. 9: ({s3}) as a dependent, spurious and independent contrastive example.

(a) First iteration (b) Second iteration

(c) Third iteration

Fig. 10: An illustration of reverse incremental enumeration. We start with a single-step contrastive example, C ′
3 = {s3} for the

third step of the execution. In the second iteration, we find that (C ′
3) is dependent on the previous step, and that ({s3},{s3})

constitutes a contrastive example for steps 2 and 3. In the third iteration, ({s3},{s3}) is found to be independent of the first
step, and hence (∅,{s3},{s3}) is a contrastive example for E .

The full enumeration process for finding all contrastive exam-
ples of E is described fully in Alg. 6, which invokes Alg. 7.

Algorithm 6 Enumerate-All-Cxps

Input N (DNN), F (N ’s features), E (execution to explain)
▷ Global Variables

1: Cxps ← ∅
2: for each i ∈ {1, ..., k} do
3: CxpCandidates ← ENUMERATE-ALL-CXPS-IN-
4: SINGLE-STEP(i)
5: for each Cxp ∈ CxpCandidates do
6: Cxps ← Cxps ∪ RIE((Cxp), i, i)
7: return Cxps

We also make the following observation: we can further
expedite the enumeration process by discarding sets that con-
tain contrastive examples within them since we are specifically
searching for minimal contrastive examples. For instance, in
the given example in Fig. 10, if we find (∅, s1,∅) as a
contrastive example for the entire multi-step instance, we no
longer need to consider sets in step 2 that contain s1 when

Algorithm 7 Enumerate-All-Cxps-In-Single-Step
Input N (DNN), F (N ’s features), E (execution to explain),
i (step number)

1: Cxps ← ∅ ▷ denotes the set of all contrastive examples
2: for each 1 ≤ i ≤ ∣F ∣ do
3: for each subset c of F of length i not containing sets

from Cxps do
4: if verify (F ∖ c = si,N ,Q¬ai) is SAT then
5: Cxps ← Cxps ∪ c
6: return Cxps

iterating in reverse from step 3 to step 2. Our evaluation shows
that this approach can significantly improve performance as the
increasing number of contrastive examples found in previous
steps greatly reduces the search space.

Of course, our approach’s worst-case complexity is still
exponential in the number of steps, k, because each dependent
contrastive example requires a recursive call that potentially
enumerates all contrastive examples for the previous step.
However, the number of recursive iterations is limited by

17

the dependency between steps. For instance, if contrastive
examples in step i are only dependent on step i − 1 and
not on step i − 2, the recursive iterations will be limited
to 2. Additionally, skipping the verification of candidates
containing contrastive examples found in previous steps can
also significantly reduce runtime.

V. EVALUATION

Implementation and Setup. We created a proof-of-concept
implementation of all aforementioned approaches and bench-
marks [16]. To search for explanations, our tool [16] dispatches
verification queries using a backend DNN verifier (we use
Marabou [52], previously employed in additional studies [2]–
[7], [21], [75], although other engines may also be used). The
queries encode the architecture of the DNN in question, the
transition constraints between consecutive steps of the reactive
system, and the candidate explanation or contrastive example
being checked. Calculating the MHS, when relevant, was done
using RC-2, a MaxSAT-based tool of the PySat toolkit [42].

Benchmarks. We trained DRL agents for two well-known re-
active system benchmarks: GridWorld [88] and TurtleBot [89]
(see Fig. 11). GridWorld involves an agent moving in a
2D grid, while TurtleBot is a real-world robotic navigation
platform. These benchmarks have been extensively studied
in the DRL literature. GridWorld has 8 input features per
state, including agent coordinates, target coordinates, and
sensor readings for obstacle detection. The agent can take
4 possible actions: UP, DOWN, LEFT, or RIGHT. TurtleBot
has 9 input features per state, including lidar sensor readings,
target distance, and target angle. The agent has 3 possible
actions: LEFT, RIGHT, or FORWARD. We trained our DRL
agents with the state-of-the-art PPO algorithm [79]. Additional
details appear in the extended version of this paper [15].

Fig. 11: Benchmarks: (A) GridWorld; and (B) TurtleBot.

Generating Executions. We generated 200 unique multi-step
executions of our two benchmarks: 100 GridWorld executions
(using 10 agents, each producing 10 unique executions of
lengths 6 ≤ k ≤ 14), and 100 TurtleBot executions (using 100
agents, each producing a single execution of length 6 ≤ k ≤ 8).
Next, from each k-step execution, we generated k unique sub-
executions, each representing the first i steps of the original
execution (1 ≤ i ≤ k). This resulted in a total of 931
GridWorld executions and 647 Turtlebot executions. We used

TABLE I: GridWorld: columns from left to right: experiment
type, method name (and number), time and size of returned ex-
planation (out of experiments that terminated), and the percent
of solved instances (the rest timed out). The bold highlighting
indicates the method that generated the explanation with the
optimal size.

setting experiment time (s) size solved
(%)avg. min avg. max

minimal
(local)

one-shot (1) 304 5 33 112 98
independent (2) 1 5 34 97 99.9
incremental (3) 1 5 18 78 99.7

minimum
(global)

one-shot (1) 405 5 14 32 29.8
independent (2) 4 5 35 98 98.3
incremental (3) 1,396 5 7 9 17.9

reversed (4) 39 5 7 16 99.7

these executions to assess the different methods for finding
minimal and minimum explanations. Each experiment ran with
a timeout value of 3 ⋅i hours, where i is the execution’s length.

Experiments. We begin by comparing the performance of the
four methods discussed in Sec. IV: (i) encoding the entire
network as a “one-shot” query; (ii) computing individual
explanations for each step; (iii) incrementally enumerating
explanations; and (iv) reversely enumerating contrastive exam-
ples and calculating their MHS. We note that we use Methods
1–3 to generate both minimal and minimum explanations,
whereas Method 4 is only used to generate minimum explana-
tions. To generate minimum explanations using the “one-shot”
encodings of Methods 1 and 2, we use the state-of-the-art
approach of Ignatiev et al. [44]. We use two common criteria
for comparison [17], [43], [44]: the size of the generated
explanations (small explanations tend to be more meaningful),
and the overall runtime and timeout ratios.

Results. Results for the GridWorld benchmark are presented
in Table I. These results clearly indicate that Method 2
(generating explanations in independent steps) was signifi-
cantly faster in all experiments, but generated drastically larger
explanations — about two times larger when searching for a
minimal explanation, and about five times larger for a minimum
explanation, on average. This is not surprising; as noted earlier,
the explanations produced by such an approach do not take the
transition constraints into account, and hence, may be quite
large. In addition, we note again that this approach does not
guarantee the minimality of the combined explanation, even
when combining minimal/minimum explanations for each
step. The corresponding results for TurtleBot appear in our
extended paper [15], and also demonstrate similar outcomes.

When comparing the three approaches that can guarantee
minimal explanations, the incremental enumeration approach
(Method 3) is clearly more efficient than the “one-shot”
scheme (running for about 1 second compared to above 5
minutes, on average, across all solved instances), as depicted in
Fig. 12. For the minimum explanation comparison, the results
show that the reversed-enumeration-based strategy (Method
4) ran significantly faster than all other methods that can

18

0 2 4 6 8 10 12 14
log. time (s)

0

20

40

60

80

100

in
st

an
ce

s s
ol

ve
d

(%
)

GridWorld
incremental
one-shot

0 2 4 6 8 10 12 14
log. time (s)

0

20

40

60

80

100
TurtleBot

incremental
one-shot

Fig. 12: Minimal explanation: number of solved instances
depending on (accumulative) time, for the methods that guar-
antee minimality.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
log. time (s)

0

20

40

60

80

100

in
st

an
ce

s s
ol

ve
d

(%
)

GridWorld
incremental
reversed
one-shot

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
log. time (s)

0

20

40

60

80

100
TurtleBot

incremental
reversed
one-shot

Fig. 13: Minimum explanation: number of solved instances
depending on (accumulative) time, for the methods that guar-
antee minimality.

find guaranteed minimum explanations: on average, it ran for
39 seconds, while the other methods ran for more than 6
and 23 minutes. In addition, out of all methods guaranteed
to produce a minimum explanation, experiments that ran
with the “reversed” strategy hit significantly fewer timeouts.
The “reversed” strategy outperforms the competing methods
significantly, on both benchmarks (see Fig. 13).

Next, we analyzed the strategies at a higher resolution —
focusing on a step-wise level comparison, i.e., on analyzing
how the length of the execution affected runtime. The results
(see Figs. 17-20 in the the extended version of this paper [15])
demonstrate the drastic performance gain of our “reversed”
strategy as k increases: this strategy can efficiently find expla-
nations for longer executions, while the competing “one-shot”
strategy fails. This again is not surprising: when dealing with
large numbers of steps, the transition function, the unrolling of
the network, and the underlying enumeration scheme become
more taxing on the underlying verifier. A full analysis of both
benchmarks, and all explanation types, appears in [15].

Explanation Example. We provide a visual example of an
instance from our GridWorld experiment identified as a min-
imum explanation. The results (depicted in Fig. 14) include a
minimum explanation for an execution of 8 steps. They show
the following meaningful insight: fixing part of the agent’s
location sensors at the initial step, and a single sensor in the
sixth step, is sufficient for forcing the agent to move along the
original path, regardless of any other sensor reading.

Comparison to Heuristic XAI Methods. We also compared
our results to popular, non-verification-based, heuristic XAI

2

3

1

4

56

agent position
target position
right sensor
left sensor

78

down sensor

Fig. 14: GridWorld: a 5-sized explanation for an 8-step exe-
cution. The steps are numbered (in blue circles), the target is
the yellow square, and the obstacles are depicted in red.

methods. Although these methods proved scalable, they often
returned unsound explanations when compared to our ap-
proach. For additional details, see [15].

VI. RELATED WORK

This work joins recent efforts on utilizing formal verification
to explain the decisions of ML models [17], [25], [44], [55],
[83], [84], [93]. Prior studies primarily focused on formally
explaining classification over various domains [17], [44], [44],
[45], [55], [93] or specific model types [35], [40], [46],
[48], [65]. while others explored alternative ways of defining
explanations over classification tasks [8], [34], [49], [55], [68],
[73], [90], [93].

Methods closer to our own have focused on formally ex-
plaining DNNs [17], [37], [44], [55], [93], where the problem
is known to be complex [44], [60]. This work relies on the
rapid development of DNN verification [1], [12], [13], [27],
[30], [51], [53], [94]. There has also been ample work on
heuristic XAI [31], [62], [77], [78], [80], including approaches
for explaining the decisions of reinforcement-learning-based
reactive systems (XRL) [32], [50], [64], [74]. However, these
methods do not provide formal guarantees.

VII. CONCLUSION

Although DNNs are used extensively within reactive sys-
tems, they remain “black-box” models, uninterpretable to
humans. We seek to mitigate this concern by producing
formal explanations for executions of reactive systems. As
far as we are aware, we are the first to provide a formal
basis of explanations in this context, and to suggest methods
for efficiently producing such explanations — significantly
outperforming the competing approaches. We also note that
our approach is agnostic to the type of reactive system, and
can be generalized beyond DRL systems, to any k-step reactive
DNN system (including RNNs, LSTMs, GRUs, etc.). Moving
forward, a main extension could be scaling our method,
beyond the simple DRLs evaluated here, to larger systems of
higher complexity. Another interesting extension could include
evaluating the attribution of the hidden-layer features, rather
than just the input features.

19

Acknowledgments. The work of Bassan, Amir, Refaeli, and
Katz was partially supported by the Israel Science Foundation
(grant number 683/18). The work of Amir was supported by
a scholarship from the Clore Israel Foundation. The work
of Corsi was partially supported by the “Dipartimenti di
Eccellenza 2018-2022” project, funded by the Italian Ministry
of Education, Universities, and Research (MIUR).

REFERENCES

[1] A. Albarghouthi. Introduction to Neural Network Verification. verified-
deeplearning.com, 2021.

[2] G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli,
and G. Katz. Verifying Learning-Based Robotic Navigation Systems. In
Proc. 29th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 607–627, 2023.

[3] G. Amir, Z. Freund, G. Katz, E. Mandelbaum, and I. Refaeli. veriFIRE:
Verifying an Industrial, Learning-Based Wildfire Detection System. In
Proc. 25th Int. Symposium on Formal Methods (FM), pages 648–656,
2023.

[4] G. Amir, O. Maayan, T. Zelazny, G. Katz, and M. Schapira. Verifying
Generalization in Deep Learning. In Proc. 35th Int. Conf. on Computer
Aided Verification (CAV), pages 438–455, 2023.

[5] G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification
of Deep Reinforcement Learning. In Proc. 21st Int. Conf. on Formal
Methods in Computer-Aided Design (FMCAD), pages 193–203, 2021.

[6] G. Amir, H. Wu, C. Barrett, and G. Katz. An SMT-Based Approach for
Verifying Binarized Neural Networks. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 203–222, 2021.

[7] G. Amir, T. Zelazny, G. Katz, and M. Schapira. Verification-Aided
Deep Ensemble Selection. In Proc. 22nd Int. Conf. on Formal Methods
in Computer-Aided Design (FMCAD), pages 27–37, 2022.

[8] G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri. Optimization
and Abstraction: a Synergistic Approach for Analyzing Neural Network
Robustness. In Proc. 40th ACM SIGPLAN Conf. on Programming
Languages Design and Implementations (PLDI), pages 731–744, 2019.

[9] C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle. Deep Learning
for Computational Biology. Molecular Systems Biology, 12(7):878,
2016.

[10] J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine Bias. Ethics
of Data and Analytics, pages 254–264, 2016.

[11] S. Aradi. Survey of Deep Reinforcement Learning for Motion Planning
of Autonomous Vehicles. IEEE Transactions on Intelligent Transporta-
tion Systems, 2020.

[12] G. Avni, R. Bloem, K. Chatterjee, T. Henzinger, B. Könighofer, and
S. Pranger. Run-Time Optimization for Learned Controllers through
Quantitative Games. In Proc. 31st Int. Conf. on Computer Aided
Verification (CAV), pages 630–649, 2019.

[13] T. Baluta, S. Shen, S. Shinde, K. Meel, and P. Saxena. Quantitative
Verification of Neural Networks and its Security Applications. In Proc.
ACM SIGSAC Conf. on Computer and Communications Security (CCS),
pages 1249–1264, 2019.

[14] P. Barceló, M. Monet, J. Pérez, and B. Subercaseaux. Model Inter-
pretability through the Lens of Computational Complexity. In Proc.
33rd Conf. on Neural Information Processing Systems (NeurIPS), 2020.

[15] S. Bassan, G. Amir, D. Corsi, I. Refaeli, and G. Katz. Formally
Explaining Neural Networks within Reactive Systems, 2023. Technical
Report. https://arxiv.org/abs/2308.00143.

[16] S. Bassan, G. Amir, D. Corsi, I. Refaeli, and G. Katz. Formally
Explaining Neural Networks within Reactive Systems: Artifact, 2023.
https://zenodo.org/record/8197762.

[17] S. Bassan and G. Katz. Towards Formal Approximated Minimal
Explanations of Neural Networks. In Proc. 29th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 187–207, 2023.

[18] L. Brunke, M. Greeff, A. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. Schoellig. Safe Learning in Robotics: From Learning-Based Control
to Safe Reinforcement Learning. Annual Review of Control, Robotics,
and Autonomous Systems, 5:411–444, 2022.

[19] CACM Staff. A Case Against Mission-Critical Applications of Machine
Learning. Communications of the ACM, 62(8):9–9, 2019.

[20] O. Camburu, E. Giunchiglia, J. Foerster, T. Lukasiewicz, and P. Blun-
som. Can I Trust the Explainer? Verifying Post-Hoc Explanatory
Methods, 2019. Technical Report. http://arxiv.org/abs/1910.02065.

[21] M. Casadio, E. Komendantskaya, M. Daggitt, W. Kokke, G. Katz,
G. Amir, and I. Refaeli. Neural Network Robustness as a Verification
Property: A Principled Case Study. In Proc. 34th Int. Conf. on Computer
Aided Verification (CAV), pages 219–231, 2022.

[22] D. Corsi, E. Marchesini, and A. Farinelli. Formal Verification of Neural
Networks for Safety-Critical Tasks in Deep Reinforcement Learning.
In Proc. 37th Int. Conf. on Uncertainty in Artificial Intelligence (UAI),
2021.

[23] D. Corsi, L. Marzari, A. Pore, A. Farinelli, A. Casals, P. Fiorini,
and D. Dall’Alba. Constrained Reinforcement Learning and Formal
Verification for Safe Colonoscopy Navigation. In Proc. IEEE Int. Conf.
on Intelligent Robots and Systems (IROS), 2023.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-Training
of Deep Bidirectional Transformers for Language Understanding, 2018.
Technical Report. https://arxiv.org/abs/1810.04805.

[25] T. Fel, M. Ducoffe, D. Vigouroux, R. Cadène, M. Capelle, C. Nicodème,
and T. Serre. Don’t Lie to Me! Robust and Efficient Explainability with
Verified Perturbation Analysis, 2022. Technical Report. https://arxiv.org/
abs/2202.07728.

[26] T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri,
and M. Vechev. AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P), 2018.

[27] C. Geng, N. Le, X. Xu, Z. Wang, A. Gurfinkel, and X. Si. Toward
Reliable Neural Specifications, 2022. Technical Report. https://arxiv.
org/abs/2210.16114.

[28] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples, 2014. Technical Report. http://arxiv.org/abs/1412.
6572.

[29] D. Gopinath, G. Katz, C. Pǎsǎreanu, and C. Barrett. DeepSafe: A
Data-Driven Approach for Checking Adversarial Robustness in Neural
Networks. In Proc. 16th. Int. Symp. on on Automated Technology for
Verification and Analysis (ATVA), pages 3–19, 2018.

[30] D. Guidotti, L. Pulina, and A. Tacchella. pyNeVer: A Framework
for Learning and Verification of Neural Networks. In Proc. 19th.
Int. Symposium on Automated Technology for Verification and Analysis
(ATVA), pages 357–363, 2021.

[31] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, and G.-Z.
Yang. XAI—Explainable Artificial Intelligence. Science Robotics,
4(37):eaay7120, 2019.

[32] A. Heuillet, F. Couthouis, and N. Dı́az-Rodrı́guez. Explainability in
Deep Reinforcement Learning. Knowledge-Based Systems, 214:106685,
2021.

[33] R. Hoffman, S. Mueller, G. Klein, and J. Litman. Metrics for Explainable
AI: Challenges and Prospects, 2018. Technical Report. https://arxiv.org/
abs/1812.04608.

[34] X. Huang, M. Cooper, A. Morgado, J. Planes, and J. Marques-Silva.
Feature Necessity & Relevancy in ML Classifier Explanations. In
Proc. 29th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 167–186, 2023.

[35] X. Huang, Y. Izza, A. Ignatiev, and J. Marques-Silva. On Efficiently
Explaining Graph-Based Classifiers, 2021. Technical Report. https://
arxiv.org/abs/2106.01350.

[36] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification
of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 3–29, 2017.

[37] X. Huang and J. Marques-Silva. From Robustness to Explainability and
Back Again, 2023. Technical Report. https://arxiv.org/abs/2306.03048.

[38] IBM. The CPLEX optimizer, 2018.
[39] A. Ignatiev. Towards Trustable Explainable AI. In Proc. 29th Int. Joint

Conf. on Artificial Intelligence (IJCAI), pages 5154–5158, 2020.
[40] A. Ignatiev and J. Marques-Silva. SAT-Based Rigorous Explanations for

Decision Lists. In Proc. 24th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT), pages 251–269, 2021.

[41] A. Ignatiev, A. Morgado, and J. Marques-Silva. Propositional Abduction
with Implicit Hitting Sets, 2016. Technical Report. http://arxiv.org/abs/
1604.08229.

[42] A. Ignatiev, A. Morgado, and J. Marques-Silva. PySAT: A Python
Toolkit for Prototyping with SAT Oracles. In Proc. 21st Int. Conf. on
Theory and Applications of Satisfiability Testing (SAT), pages 428–437,
2018.

20

https://arxiv.org/abs/2308.00143
https://zenodo.org/record/8197762
http://arxiv.org/abs/1910.02065
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2202.07728
https://arxiv.org/abs/2202.07728
https://arxiv.org/abs/2210.16114
https://arxiv.org/abs/2210.16114
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1812.04608
https://arxiv.org/abs/1812.04608
https://arxiv.org/abs/2106.01350
https://arxiv.org/abs/2106.01350
https://arxiv.org/abs/2306.03048
http://arxiv.org/abs/1604.08229
http://arxiv.org/abs/1604.08229

[43] A. Ignatiev, N. Narodytska, N. Asher, and J. Marques-Silva. From
Contrastive to Abductive Explanations and Back Again. In Proc. 19th
Int. Conf. of the Italian Association for Artificial Intelligence (AIxIA),
pages 335–355, 2020.

[44] A. Ignatiev, N. Narodytska, and J. Marques-Silva. Abduction-Based
Explanations for Machine Learning Models. In Proc. 33rd AAAI Conf.
on Artificial Intelligence (AAAI), pages 1511–1519, 2019.

[45] A. Ignatiev, N. Narodytska, and J. Marques-Silva. On Validating,
Repairing and Refining Heuristic ML Explanations, 2019. Technical
Report. http://arxiv.org/abs/1907.02509.

[46] A. Ignatiev, F. Pereira, N. Narodytska, and J. Marques-Silva. A SAT-
Based Approach to Learn Explainable Decision Sets. In Proc. 9th Int.
Joint Conf. on Automated Reasoning (IJCAR), pages 627–645, 2018.

[47] A. Ignatiev, A. Previti, M. Liffiton, and J. Marques-Silva. Smallest
MUS Extraction with Minimal Hitting Set Dualization. In Proc. 21st
Int. Conf. on Principles and Practice of Constraint Programming (CP),
pages 173–182, 2015.

[48] Y. Izza, A. Ignatiev, and J. Marques-Silva. On Explaining Decision
Trees, 2020. Technical Report. http://arxiv.org/abs/2010.11034.

[49] Y. Izza, A. Ignatiev, N. Narodytska, M. Cooper, and J. Marques-Silva.
Efficient Explanations with Relevant Sets, 2021. Technical Report. http:
//arxiv.org/abs/2106.00546.

[50] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez. Ex-
plainable Reinforcement Learning via Reward Decomposition. In Proc.
IJCAI/ECAI Workshop on Explainable Artificial Intelligence, 2019.

[51] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proc.
29th Int. Conf. on Computer Aided Verification (CAV), pages 97–117,
2017.

[52] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443–452, 2019.

[53] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. Shield Synthesis
for Reinforcement Learning. In Proc. Int. Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA),
pages 290–306, 2020.

[54] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with
Deep Convolutional Neural Networks. In Proc. 30rd Conf. on Neural
Information Processing Systems (NeurIPS), 2017.

[55] E. La Malfa, A. Zbrzezny, R. Michelmore, N. Paoletti, and
M. Kwiatkowska. On Guaranteed Optimal Robust Explanations for NLP
Models, 2021. Technical Report. https://arxiv.org/abs/2105.03640.

[56] Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. Nature,
521(7553):436–444, 2015.

[57] A. Lekharu, K. Moulii, A. Sur, and A. Sarkar. Deep Learning Based
Prediction Model for Adaptive Video Streaming. In Proc. Int. Conf. on
Communication Systems & NETworkS (COMSNETS), pages 152–159,
2020.

[58] C. Li and F. Manya. MaxSAT, Hard and Soft Constraints. In Handbook
of Satisfiability, pages 903–927. IOS Press, 2021.

[59] Y. Li. Deep Reinforcement Learning: An Overview, 2017. Technical
Report. http://arxiv.org/abs/1701.07274.

[60] P. Liberatore. Redundancy in Logic I: CNF Propositional Formulae.
Artificial Intelligence, 163(2):203–232, 2005.

[61] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. Kochenderfer. Algo-
rithms for Verifying Deep Neural Networks, 2020. Technical Report.
http://arxiv.org/abs/1903.06758.

[62] S. Lundberg and S.-I. Lee. A Unified Approach to Interpreting Model
Predictions. In Proc. 31st Conf. on Neural Information Processing
Systems (NeurIPS), 2017.

[63] N. Luong, D. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and
D. Kim. Applications of Deep Reinforcement Learning in Communi-
cations and Networking: A Survey. IEEE Communications Surveys &
Tutorials, 21(4):3133–3174, 2019.

[64] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere. Explainable
Reinforcement Learning through a Causal Lens. In Proc. 34th AAAI
Conf. on Artificial Intelligence (AAAI), pages 2493–2500, 2020.

[65] J. Marques-Silva, T. Gerspacher, M. Cooper, A. Ignatiev, and N. Nar-
odytska. Explaining Naive Bayes and Other Linear Classifiers with
Polynomial Time and Delay. In Proc. 33rd Conf. on Neural Information
Processing Systems (NeurIPS), pages 20590–20600, 2020.

[66] J. Marques-Silva and A. Ignatiev. Delivering Trustworthy AI through
formal XAI. In Proc. 36th AAAI Conf. on Artificial Intelligence (AAAI),
pages 3806–3814, 2022.

[67] L. Marzari, D. Corsi, F. Cicalese, and A. Farinelli. The #DNN-
Verification Problem: Counting Unsafe Inputs for Deep Neural Net-
works. In Proc. 32nd Int. Joint Conf. on Artificial Intelligence (IJCAI),
2023.

[68] K. McMillan. Bayesian Interpolants as Explanations for Neural Infer-
ences, 2020. Technical Report. https://arxiv.org/abs/2004.04198.

[69] M. Müller, G. Makarchuk, G. Singh, M. Püschel, and M. Vechev.
PRIMA: General and Precise Neural Network Certification via Scalable
Convex Hull Approximations, 2021. Technical Report. https://arxiv.org/
abs/2103.03638.

[70] T. Okudono, M. Waga, T. Sekiyama, and I. Hasuo. Weighted Automata
Extraction from Recurrent Neural Networks via Regression on State
Spaces. In Proc. 34th AAAI Conf. on Artificial Intelligence (AAAI),
pages 5037–5044, 2020.

[71] E. Polgreen, R. Abboud, and D. Kroening. Counterexample Guided
Neural Synthesis, 2020. Technical Report. https://arxiv.org/abs/2001.
09245.

[72] A. Pore, D. Corsi, E. Marchesini, D. Dall’Alba, A. Casals, A. Farinelli,
and P. Fiorini. Safe Reinforcement Learning using Formal Verification
for Tissue Retraction in Autonomous Robotic-Sssisted Surgery. In Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2021.

[73] P. Prabhakar and Z. Afzal. Abstraction Based Output Range Analysis
for Neural Networks, 2020. Technical Report. https://arxiv.org/abs/2007.
09527.

[74] E. Puiutta and E. Veith. Explainable Reinforcement Learning: A Survey.
In Proc. Int. Cross-Domain Conf. for Machine Learning and Knowledge
Extraction (CD-MAKE), pages 77–95, 2020.

[75] I. Refaeli and G. Katz. Minimal Multi-Layer Modifications of Deep
Neural Networks. In Proc. 5th Workshop on Formal Methods for ML-
Enabled Autonomous Systems (FoMLAS), 2022.

[76] R. Reiter. A Theory of Diagnosis from First Principles. Artificial
Intelligence, 32(1):57–95, 1987.

[77] M. Ribeiro, S. Singh, and C. Guestrin. “Why should I Trust You?”
Explaining the Predictions of any Classifier. In Proc. 22nd Int. Conf.
on Knowledge Discovery and Data Mining (KDD), pages 1135–1144,
2016.

[78] M. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-Precision
Model-Agnostic Explanations. In Proc. 32nd AAAI Conf. on Artificial
Intelligence (AAAI), 2018.

[79] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov.
Proximal Policy Optimization Algorithms, 2017. Technical Report.
http://arxiv.org/abs/1707.06347.

[80] R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra. Grad-Cam: Visual Explanations from Deep Networks via
Gradient-Based Localization. In Proc. 20th IEEE Int. Conf. on Computer
Vision (ICCV), pages 618–626, 2017.

[81] S. Seshia, A. Desai, T. Dreossi, D. Fremont, S. Ghosh, E. Kim,
S. Shivakumar, M. Vazquez-Chanlatte, and X. Yue. Formal Specification
for Deep Neural Networks. In Proc. 16th Int. Symposium on Automated
Technology for Verification and Analysis (ATVA), pages 20–34, 2018.

[82] M. Shahbaz and R. Groz. Inferring Mealy Machines. In Proc. Conf. on
Formal Methods (FM), pages 207–222, 2009.

[83] W. Shi, A. Shih, A. Darwiche, and A. Choi. On Tractable Rep-
resentations of Binary Neural Networks, 2020. Technical Report.
http://arxiv.org/abs/2004.02082.

[84] A. Shih, A. Choi, and A. Darwiche. A Symbolic Approach to Explaining
Bayesian Network Classifiers, 2018. Technical Report. http://arxiv.org/
abs/1805.03364.

[85] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al. Mastering the
Game of Go Without Human Knowledge. nature, 550(7676):354–359,
2017.

[86] M. Sotoudeh and A. Thakur. Correcting Deep Neural Networks
with Small, Generalizing Patches. In Proc. Workshop on Safety and
Robustness in Decision Making, 2019.

[87] J. Su, D. Vargas, and K. Sakurai. One Pixel Attack for Fooling Deep
Neural Networks. IEEE Transactions on Evolutionary Computation,
23(5):828–841, 2019.

[88] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT
press, 2018.

21

http://arxiv.org/abs/1907.02509
http://arxiv.org/abs/2010.11034
http://arxiv.org/abs/2106.00546
http://arxiv.org/abs/2106.00546
https://arxiv.org/abs/2105.03640
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1903.06758
https://arxiv.org/abs/2004.04198
https://arxiv.org/abs/2103.03638
https://arxiv.org/abs/2103.03638
https://arxiv.org/abs/2001.09245
https://arxiv.org/abs/2001.09245
https://arxiv.org/abs/2007.09527
https://arxiv.org/abs/2007.09527
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2004.02082
http://arxiv.org/abs/1805.03364
http://arxiv.org/abs/1805.03364

[89] L. Tai, G. Paolo, and M. Liu. Virtual-to-Real Deep Reinforcement
Learning: Continuous Control of Mobile Robots for Mapless Navigation.
In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2017.

[90] S. Waeldchen, J. Macdonald, S. Hauch, and G. Kutyniok. The Computa-
tional Complexity of Understanding Binary Classifier Decisions. Journal
of Artificial Intelligence Research, 70:351–387, 2021.

[91] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z.
Kolter. Beta-Crown: Efficient Bound Propagation with Per-Neuron Split
Constraints for Neural Network Robustness Verification. In Proc. 34th
Conf. on Neural Information Processing Systems (NeurIPS), volume 34,
pages 29909–29921, 2021.

[92] H. Wu, A. Ozdemir, A. Zeljić, A. Irfan, K. Julian, D. Gopinath,
S. Fouladi, G. Katz, C. Păsăreanu, and C. Barrett. Parallelization
Techniques for Verifying Neural Networks. In Proc. 20th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 128–137,
2020.

[93] M. Wu, H. Wu, and C. Barrett. VeriX: Towards Verified Explainability
of Deep Neural Networks, 2022. Technical Report. https://arxiv.org/abs/
2212.01051.

[94] H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska.
Verification of Recurrent Neural Networks for Cognitive Tasks via
Reachability Analysis. In Proc. 24th European Conf. on Artificial
Intelligence (ECAI), pages 1690–1697, 2020.

[95] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang,
T. Cheng, L. Liu, et al. An End-to-End Automatic Cloud Database
Tuning System using Deep Reinforcement Learning. In Proc. Int. Conf.
on Management of Data (SIGMOD), pages 415–432, 2019.

[96] Z. Zhou and L. Sun. Metamorphic Testing of Driverless Cars. Commu-
nications of the ACM, 62(3):61–67, 2019.

22

https://arxiv.org/abs/2212.01051
https://arxiv.org/abs/2212.01051

Formal Methods in Computer-Aided Design 2023

Lightweight Online Learning for Sets of Related
Problems in Automated Reasoning

Haoze Wu
Stanford University
Stanford, CA, USA

haozewu@stanford.edu

Christopher Hahn
Stanford University
Stanford, CA, USA

hahn@cs.stanford.edu

Florian Lonsing
Unaffiliated

Linz, Austria
fml@florianlonsing.com

Makai Mann
MIT Lincoln Laboratory
Lexington, MA, USA

makai.mann@ll.mit.edu

Raghuram Ramanujan
Davidson College

Davidson, NC, USA
raramanujan@davidson.edu

Clark Barrett
Stanford University
Stanford, CA, USA

barrett@cs.stanford.edu

Abstract—We present Self-Driven Strategy Learning (SDSL), a
lightweight online learning methodology for automated reasoning
tasks that involve solving a set of related problems. SDSL does
not require offline training, but instead automatically constructs
a dataset while solving earlier problems. It fits a machine learning
model to this data which is then used to adjust the solving strategy
for later problems. We formally define the approach as a set of
abstract transition rules. We describe a concrete instance of the
SDSL calculus which uses conditional sampling for generating
data and random forests as the underlying machine learning
model. We implement the approach on top of the KISSAT solver
and show that the combination of KISSAT+SDSL certifies larger
bounds and finds more counter-examples than other state-of-the-
art bounded model checking approaches on benchmarks obtained
from the latest Hardware Model Checking Competition.

I. INTRODUCTION

Many automated reasoning tasks involve solving a set of
related problems that share common structure. For example,
in Bounded Model Checking [1], [2], one repeatedly checks
deeper and deeper unrolls of a transition system for a property
violation. In iterative (e.g., counter-example-guided) abstrac-
tion refinement [3], one verifies a condition on an increasingly
precise model of a system. And in symbolic execution [4],
one analyzes the possible outcomes of a program on symbolic
inputs by incrementally adding path conditions. Often, a fixed,
predetermined high-level solving strategy (e.g., the choice of
a solver and its parameter settings) is used in this iterative
solving process. However, given the structural similarity within
the set of problems, a natural question is: can we leverage
information gathered while solving earlier problems to adjust
the solving strategy for later problems on the fly?

Adapting high-level solving strategies for particular prob-
lem distributions, a practice often termed meta-algorithmic
design [5], is already a well-established technique. Automated
configuration techniques [6], which optimize an algorithm’s
performance on a given set of problems, are widely used
among practitioners. Per-instance algorithm selection tech-
niques (e.g., SATzilla [7]) train machine learning models to
predict a suitable strategy for a given problem based on its

structural characteristics. More recently, attempts to improve
constraint solving using deep learning also generally follow
the paradigm of choosing a particular problem distribution
(which can be either broad, such as main-track benchmarks
from SAT competitions [8], or narrow, such as graph coloring
problems [9]), gathering training data using instances in that
distribution, and learning a strategy over the data.

A shared, and arguably undesirable,trait of the aforemen-
tioned approaches is that they all involve an offline phase, in
which significant time and (often manual) effort are required to
obtain an optimized solving strategy that can be used on new
unseen problems. While the cost of the offline phase might be
justified by the potential performance gain in the long run, the
very distinction between an offline phase and an online phase
already makes the reasoning less automated.

Our first observation is that for an automated reasoning
procedure whose execution involves solving a set S of related
problems, it is possible to move the meta-algorithmic design
online, as part of the solving, by narrowing the scope of
problem distribution all the way down to S itself. More
concretely, we propose to solve some of the problems in S
not just once, but multiple times, each time using a different
solving strategy from a space of candidates. The strategies
used for solving later problems are selected based on informa-
tion recorded during the multiple runs (e.g., using lightweight
machine learning techniques). We present this general method,
which we term Self-Driven Strategy Learning (SDSL), as a set
of transition rules, which can be used to model different ways
of carrying out on-the-fly meta-algorithmic design.

Though there are many possible ways to instantiate SDSL,
we focus on a strategy space consisting of one fixed solver
whose parameters are allowed to vary. One obvious method
for exploring this strategy space involves choosing the first
few problems, optimizing the parameter settings for them with
a standard tuning procedure, and then using the optimized
strategy for future problems. However, a drawback of this
approach is that it only operates on a fixed set of problems
and cannot explicitly take into account possible relationships

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 10 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_10
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_10
https://creativecommons.org/licenses/by/4.0/

Fig. 1. Executions of Bounded Model Checking with and without SDSL
on a hardware model checking benchmark (arb.n2.w128.d64). The
trajectories show the cumulative wall-clock time required to certify a bound.

between this set of problems and later problem instances.
To allow for such flexibility, our second observation is that

a tuning procedure can be viewed, not as a way to select a
specific solving strategy, but instead as a means of creating
a dataset, where each data point is a pair consisting of a
particular solving strategy and a particular problem in the
problem set. A machine learning model is trained on this
dataset to predict the effect of a given solving strategy on
a given problem. The model can then be used as an oracle to
select the solving strategy for future problems.

We apply our methodology to a case study of Bounded
Model Checking (BMC) problems. We study different SDSL
instantiations and compare against existing model checkers.
On satisfiable and unsolved bitvector benchmarks from the lat-
est Hardware Model Checking Competition [10], our approach
consistently boosts the performance of a BMC-procedure
built on top of the KISSAT SAT solver [11]. Additionally, it
compares favorably against state-of-the-art open-source model
checkers AVR [12] and PONO [13], contributing several unique
solutions and speeding up many more. A preview on a single
benchmark is shown in Fig. 1. We see that SDSL invests time
learning a good solving strategy in the beginning, which results
in better performance when solving later problems.

We summarize our main contributions as follows:
1) we propose to move meta-algorithmic design online as

part of solving a set of related problems;
2) we propose a general methodology called Self-Driven

Strategy Learning and present it formally as a set of
transition rules; and

3) we implement our approach and apply it to Bounded
Model Checking problems, where it shows significant
improvement over other state-of-the-art approaches.

The rest of the paper is organized as follows. After a
discussion of related work in Sec. II, we first define a basic
calculus for iteratively solving a set of related problems in
Sec. III. Next, SDSL is presented as an extension of this
calculus with additional rules for data collection, learning,
and strategy updates in Sec. IV. We explore the design space
of SDSL in Sec. V, discussing how to sample training data
and which machine learning models to use. In Sec. VI, we
describe in detail the instantiation of SDSL for Bounded Model

Checking. In Sec. VII we present experimental results on
Bounded Model Checking problems, and finally, we conclude
with an account of current limitations and future directions in
Sec. VIII.

II. RELATED WORK

Our approach is inspired and informed by several existing
lines of work.
Incremental solving: A well-established paradigm for exploit-
ing structural similarity is incremental solving [14] in which
each new query to a solver can be made by modifying the
most recent formulas asserted in the previous query without
resetting the solver. SDSL is an orthogonal approach for
leveraging structural similarity and may be preferable in cases
where incremental solving is not beneficial or not supported.

In principle, the two can be combined. A straightforward
way would be to switch to incremental solving mode af-
ter fixing a solving strategy. A tighter combination would
require updating strategies between incremental invocations,
something that current solvers typically do not allow. In case
one wants to both switch solvers on the fly and leverage
incrementality, proof-transfer techniques such as solver state
migration [15] are likely needed. For our particular BMC case
study, we found that the direct use of an incremental SAT/SMT
solver has mixed effects on performance (see the extended
version [16] of the paper). This suggests that it might be
worth revisiting BMC-specific incremental solving techniques
such as conflict clause shifting [17] before investigating the
interplay between SDSL and incremental solving in BMC,
which we leave for future work.
Automated Configuration: Our work is motivated by the
success of offline meta-algorithmic design approaches such
as automated configuration [6], [18], [19] and per-instance
algorithm selection [7], [20], [21]. Automated configuration
focuses on finding (near) optimal parameter settings of an
algorithm for a fixed set of problems, using either local search
or performance prediction techniques [22]–[24]. Per-instance
algorithm selection techniques were among the first to utilize
machine learning to improve constraint solving. The idea is
to train an oracle to predict the performance (e.g., runtime)
of a set of candidate algorithms on a formula based on its
structural characteristics. SDSL differs from both approaches
primarily in that it moves meta-algorithmic design online.
ML for AR: Machine Learning has been applied in multiple
ways to expedite a variety of automated reasoning tasks,
including satisfiability checking [8], [9], [25]–[31], Mixed-
Integer Convex Programming [32], [33], program/function
synthesis [34]–[36], and symbolic execution [37], [38].

While most existing techniques require an offline training
phase, the general idea of using online learning also appears in
previous work. The Conflict-Driven Clause Learning paradigm
itself can be viewed as online learning. In the MapleSAT
solver [27], [28], branching is formulated as a multi-armed
bandit problem where the estimated reward of each arm
(i.e., variable) is maintained and updated throughout the solv-
ing. This reinforcement learning interpretation of a dynamic

24

i < K check(fi, v) = UNSAT
(Next)

i, v =⇒ i+ 1, v

i = K check(fi, v) = UNSAT
(Failure)

i, v =⇒ FAIL

check(fi, v) = SAT
(Success)

i, v =⇒ SUCCESS

Fig. 2. Transition rules for solving a set of related problems. The starting
configuration is ⟨1, v⟩.

branching heuristic is perhaps inspired by the study [39]
of the popular VSIDS [40] branching heuristic and its later
variants [41], which also track a score for each variable during
the solving. In contrast to this direction of online learning,
SDSL operates on a set of related problems rather than on a
single instance. Moreover, SDSL focuses on selecting from a
set of existing strategies rather than inventing new ones.

To conclude this section, we remark that in practice, offline
learning, “in-solver” online learning, and SDSL could be
combined to solve a set of related problems. For example,
one could choose to use SAT/SMT solvers with built-in learn-
ing components, set the initial solving strategy using offline
learning, and then use SDSL to further customize the strategy
online. The exploration of such combinations is beyond the
scope of this paper, but is a promising future direction.

III. SOLVING SETS OF RELATED PROBLEMS

In this section, we present a simple calculus, SR, for itera-
tively solving a set of related problems. Let F = {f1, . . . , fK}
be a set of K related formulas. Assume we have a function
check : F × V → {SAT, UNSAT}, which takes as input
a formula f ∈ F and a solving strategy v (from a set V
called the strategy space) and returns either SAT (satisfiable)
or UNSAT (unsatisfiable). Additionally, assume that we can
stop once any formula is SAT.

The rules of the basic SR calculus are shown in Fig. 2.
The rules operate over a configuration, which is either one of
the distinguished symbols {SUCCESS, FAIL} or a tuple ⟨i, v⟩,
where i ∈ [1,K] is the current formula index and v ∈ V is
the current solving strategy. The rules describe the conditions
under which a certain configuration can transform into another
configuration. The Next rule says that if the current formula is
unsatisfiable and the maximal index K has not been reached
yet, then the current index will be increased. On the other
hand, if the current formula is unsatisfiable and it is the last
formula, the Failure rule transitions the system to the FAIL
configuration. The Success rule states that SUCCESS can be
reached when the current formula is satisfiable.1

An SR-execution is a sequence of configurations that respect
the rules in SR. Note that no rule updates the solving strategy
v. We augment the calculus with strategy updates next.

1The conditions for progress and termination are inspired by BMC but are
applicable in other settings when solving related problems.

vs ∈ V j ≤ i c = cost(fj , vs)
(Collect)

i, v,D, T =⇒ i, v,D ∪ {⟨vs, j, c⟩}, T

T ′ = fit(D)
(Train)

i, v,D, T =⇒ i, v,D, T ′

Vs ⊆ V v′ = argminvs∈Vs
T (vs, i)

(Strategize)
i, v,D, T =⇒ i, v′, D, T

Fig. 3. Additional transition rules for Self-Driven Strategy Learning.

Given two configurations C,C ′, we use C ⊢ C ′ to denote
C can transition (in one or more steps) to C ′. We state the
following two propositions which are straightforward to verify.

Proposition 1 (Soundness and Completeness): F contains a
satisfiable formula if and only if ⟨1, v⟩ ⊢ SUCCESS.

Proposition 2 (Termination): There exist no infinite SR-
executions.

IV. SELF-DRIVEN STRATEGY LEARNING

A. Informal Presentation

Self-Driven Strategy Learning (SDSL) attempts to learn, on
the fly, which solving strategy among a set of candidates V to
use for each formula in F . Learning is based on data gathered
during solving. To obtain the data, we occasionally solve a
formula multiple times, each time with a different strategy in
V . For a strategy vs, we record its effect, c ∈ R, when solving
fi by creating a data point ⟨vs, i, c⟩, where c is a measure of
the cost of the strategy. For example, c could be the total run
time required to solve fi.

Given such a dataset, an oracle T : V × [1,K] ↦→ R is
trained to predict the cost of a given strategy when run on
a given formula. When solving a new formula, we select the
one that T predicts will be most effective, and as more data
is collected with each call to check, T is updated.

An essential characteristic of SDSL is that the training data is
gathered for a specific, and a priori unknown, set of formulas
in an online and automatic manner, as part of the solving
process. This approach has two challenging implications. The
learning process must not incur a large overhead; otherwise,
insufficient time is left for actual solving. Additionally, the
choice of V is crucial as it must be large enough to contain
good candidate strategies but also not too large to explore. We
address these challenges in Sections V and VI, respectively.

B. Formal presentation

Formally, we present SDSL as an extension of SR. Configu-
rations are as in SR except that tuple configurations ⟨i, v,D, T ⟩
have two additional components (assumed to be left unchanged
by rules in SR): D ∈ P(V × [1,K]×R) is a dataset, each of
whose members records the result of running a single strategy
on a single formula; and T : V× [1,K] ↦→ R is an oracle (e.g.,
a machine learning model) that predicts the cost of a strategy
on a formula. Initially, D is empty, and T is arbitrary (e.g.,
always return 0). The additional transition rules of SDSL are
described in Fig. 3.

25

The Collect rule samples a strategy vs ∈ V , evaluates its cost
when solving fj , and augments D with this new data. The rule
is parameterized by a function cost : F ×V ↦→ R. The Train
rule updates the oracle T with a new one trained on the current
dataset D. It is parameterized by a machine learning algorithm
fit (e.g., k-NN, tree ensemble, deep learning, etc.). Finally, the
Strategize rule updates the current strategy by sampling a set
of strategies Vs from V and choosing the one with the best
predicted cost for the current index i. The extended calculus
is still sound and complete (i.e., Proposition 1 still holds).
Since the added rules can effectively be applied at any time,
Proposition 2 only holds if we allow only a finite number of
applications of the new rules.

Note that in the Collect rule, the results of solving the
formula fj are discarded, as fj must have been solved already
in some previous application of the Next rule. It is possible
to extend the SR calculus to allow UNKNOWN results from
check, but the completeness property would be lost.

A reasonable strategy for applying SDSL rules is as follows:

1) After every application of Next, issue one learning epoch;
that is, apply Collect m times on the current problem,
then apply Train;

2) If Train has been applied at least once, apply Strategize
whenever i is updated;

3) If the estimated learning time exceeds some threshold
n, override the first policy and do not issue any more
learning epochs;

4) Terminate whenever Success or Failure applies.

The estimated learning time is calculated as the time spent
on learning so far plus m · t, where t is the runtime of solving
the current problem using the current strategy. If |V| is small, it
may be reasonable to use m = |V| and try each strategy from
V . In the more general scenario where m ≪ |V|, the choice
of which samples to use impacts the quality of the dataset.
We discuss this choice and present a conditional sampling
procedure in Sec. V-A. The purpose of restricting the training
time in step three is to ensure that training does not dominate
the total time taken. This simple criterion for when to stop
learning already works reasonably well in practice. We leave
the exploration of more sophisticated heuristics to future work.

V. DESIGN SPACE IN SDSL

This section discusses the design space in the implementa-
tion of SDSL and proposes solutions to the following questions:
1) How should training data be sampled? 2) Which machine
learning model and training algorithm should be used? The
solutions we propose focus on the case where a strategy is
simply a set of values for a specific set of solver parameters.
In this case, the strategy space is the cartesian product of
p sub-strategy spaces, each representing a single parameter:
V = V1 × . . . × Vp. The set of possible values for each
parameter can vary (e.g., parameter values could be Booleans,
strings, or numbers), but for now we assume each Vi is finite.

A. Gathering Informative Training Data

To make the most informed decision, we could try all
candidate strategies on all previously considered problems,
but this is infeasible when |V| is large. In the following, we
consider the scenario where m samples are drawn from a
strategy space V , where m ≪ |V|.

In this restrictive setting, we need to ensure our dataset
contains a sufficient number of low-cost strategies (if there
are any). Sampling uniformly is unlikely to achieve this goal
because in practice, many or most candidate strategies could
have high cost. For this reason, we propose to explicitly favor
low-cost strategies in the sampling process. One way to do this
is by using Markov-Chain Monte-Carlo (MCMC) sampling,
which in our setting can be used to generate a sequence of
solving strategies with the desirable property that in the limit,
strategies with the lowest cost are most frequently drawn.
A popular MCMC method is the Metropolis-Hastings (M-H)
Algorithm [42], instantiated in the context of SDSL as follows:

1) Choose a current strategy v;
2) Propose to replace the current strategy with a new one

v′, which comes from a proposal distribution q(v′|v);
3) If cost(f, v′) ≤ cost(f, v), accept v′ as the current

strategy;
4) Otherwise, accept v′ as the current strategy with some

probability a(v→v′) (e.g., a probability inversely propor-
tional to the increase in cost);

5) Go to step 2.
This process is repeated until m samples are drawn. Impor-
tantly, under this scheme, a proposal that results in lower cost
is always accepted, while a proposal that does not may still
be accepted. This means that the algorithm greedily moves
to a better strategy whenever possible, but also has a means
for escaping local minima. In our implementation, the accep-
tance probability is computed using a common method [43]
described as follows. We first transform cost(f, v) into a
probability distribution p(v):

p(v) ∝ exp(−β · cost(f, v)) ,

where β > 0 is a configurable parameter. The acceptance
probability is then computed as:

a(v→v′) = min

(︃
1,

p (v′)

p (v)

)︃
= min (1, exp (β · (c− c′))) ,

where c = cost(f, v) and c′ = cost(f, v′). Under this
acceptance probability, the larger that c′ is compared to c, the
lower the probability to accept. On the other hand, the larger
β is, the more reluctant we are to move to a worse proposal.

To ensure the aforementioned convergence property of
MCMC in the limit, the proposal distribution must be both
symmetric and ergodic.2 For discrete search spaces, a common
proposal distribution is the symmetric random walk, which

2A proposal distribution q is symmetric if q(v′|v) = q(v|v′) for any
v, v′ ∈ V and is ergodic if there is a non-zero probability of reaching a
strategy v ∈ V from any other strategy v′ ∈ V in a finite number of steps.

26

moves to one of the neighbors of the current sample with equal
probability. For our strategy space, we define the neighbors of
a strategy as all strategies for which exactly k parameter values
are different. We use k = 1 in our implementation.

Note that MCMC sampling can be used not only in the
data collection process, but also in the Strategize rule (i.e.,
to choose Vs ⊆ V). Since in this case we use the machine
learning model as an oracle of cost (which is much cheaper
than calling a solver), a larger sample size is affordable.

The sampling scheme presented above largely coincides
with many local search approaches used in the automated
configuration literature [5]. Borrowing more insights from that
literature and devising more sophisticated sampling schemes
are interesting directions for future work.

B. Lightweight Online Learning

In the online setting, the machine learning model must
generalize from sparse data in limited time. This means the
model needs to be both robust against outliers and efficient
to train. Training a neural network from scratch, for example,
is likely unsuitable, because it requires large amounts of data
and, depending on the architecture, could be costly to train. On
the other hand, lightweight ensemble models, which consist of
a set of sub-models with different strengths and weaknesses,
are well-suited for SDSL.

Our data is what is often called tabular data, that is, it can
be represented as a table with rows and columns, where each
row corresponds to a sample, and each column corresponds
to a feature. When the strategy space consists of parameter
settings, each sample has p+2 features: the p parameters, the
problem index, and the cost. Tree-based ensemble methods
such as random forests are generally considered to be a good
match for such data [44].

A random forest consists of a set of B regression trees
{f1, . . . , fB}. Each tree is trained independently by sampling
data from the data set D. A regression tree makes a prediction
by following a path from the root node to a leaf node, based
on the values of the input features, and returning the cost
associated with the leaf node (which generally is the average of
the costs of the training points that map to that leaf node). The
predictions of a random forest f are computed by averaging
the predictions of the individual trees in f .

A random forest is both efficient to train and efficient for
prediction [45]. The time complexity of training a random
forest with B trees is O(B · m · n · logm), where m is the
number of data points and n is the number of input features.
The inference time complexity for a random forest is O(B ·n).

Many machine learning algorithms are themselves parame-
terized and the performance of the model depends on a good
choice of the hyperparameters. For a tree-based algorithm like
random forest, an important hyperparameter is the maximal
depth allowed for each individual regression tree: too shallow,
and the model’s prediction will be inaccurate; too deep, and

the model might overfit to outliers.3 The standard way to find
suitable values of the hyperparameters is via (cross-)validation:
split the data into a training set and a validation set, train
models with different hyperparameters on the training set,
evaluate them on the validation set, and pick the best one.
However, in the SDSL setting where data is already sparse,
validation is less feasible because it is hard to make sure that
both the training set and the validation set are representative of
the input space. Instead, we propose the following pragmatic
heuristic: start by training a random forest with shallow trees
and then retrain with incrementally deeper trees as needed
until the training score is high enough.

VI. CASE STUDY: BOUNDED MODEL CHECKING

Bounded Model Checking (BMC) [1], [2], [17] is a well-
known technique for checking whether a property P holds
along bounded executions of a given system M . The algorithm
starts by checking all executions of length k; if no counter-
example is found, k is increased and the system checked
until either a counter-example is found, the problem becomes
intractable, or some upper bound on k is exceeded.

BMC is useful in practice for at least two reasons. First,
it is often the most efficient way to find counter-examples (if
they exist) when trying to prove that a system has a particular
property. Second, when techniques capable of providing a full
(i.e. unbounded) proof fail (which is often the case in practice),
BMC still establishes a certain confidence in the system
by providing formal guarantees for bounded executions. The
larger the certified bound, the stronger the guarantee.

A basic BMC formula for checking whether a property P
holds for a system M along executions of length k is:

I0 ∧
k−1⋀︂
i=0

ρ(i, i+ 1) ∧ (

k⋁︂
i=0

¬Pi) ,

where I0 represents the initial state of M , ρ(i, i+1) represents
how the system evolves in a single step, and Pi represents the
property at step i in the execution. This formula is satisfiable
iff there is an execution of length less than or equal to k such
that the property P does not hold at the end of the execution.

In practice, when the bound is increased, additional con-
straints are added stating that previously checked states are
safe (in order to prune the search space). For example, suppose
the check for bound k′ is unsatisfiable. To check bound k > k′,
we use the following formula:

bmc(k′, k) := I0 ∧
k−1⋀︂
i=0

ρ(i, i+ 1) ∧
k′⋀︂
i=0

Pi ∧ (

k⋁︂
i=k′+1

¬Pi) .

We use BMC as a case study for our approach. For a given
system and property, we solve the following set of problems:

F = {bmc(k − s, k) | k = i · s, 1 ≤ i ≤ K} ,

3Instead of tuning the tree depth while fixing the number of trees, one
could alternatively grow deep trees and tune the number of trees (to be large
enough). However, this makes training and prediction much more costly.

27

where s is the step size. We focus on hardware model
checking problems where the set of formulas to solve is in
the theory of bitvectors [46]. We use standard techniques to
encode the bitvector problems as Boolean satisfiability (SAT)
problems [47]. Thus, F is a set of Boolean formulas, and we
can implement check using an off-the-shelf SAT solver. We
use the state-of-the-art KISSAT SAT solver [11].

In the following, we discuss the choice of the cost function
cost and the strategy space V for this case study.

A. Choosing the Cost Function

One plausible cost function for a strategy v and a formula
fi is the ratio of the runtime to that of some default strategy
v0, i.e., if the runtime is t with strategy v and t0 with v0,
then cost(fi, v) =

t
t0

. While this definition works in practice,
the use of runtime makes SDSL’s behavior non-deterministic
across different runs. This is undesirable for many reasons,
including experimental reproducibility. Therefore, we instead
use the number of conflicts generated by the SAT solver,
which is accepted as a good proxy for runtime [48]. Given the
same parameter settings, the number of conflicts generated by
KISSAT on the same problem is deterministic.

B. Choosing the strategy space

As discussed in Sec. IV-B, the choice of the strategy space is
crucial to the effectiveness of SDSL. KISSAT has over 90 con-
figurable parameters, so considering all of them is impractical.
One plausible approach is to rely on expert/domain knowledge
and empirical studies to identify a reasonable set of parameters
to consider. We follow this approach to define two strategy
spaces for KISSAT.

The first one, Vexp (Table I), is based on a study by
Dutertre [49] on the effect of SAT solver parameters on
bitvector problems.4 We allow two possible values for each
parameter, the default one and an alternative one. For op-
tions that were found to be beneficial in [49], we include
the corresponding parameter in KISSAT and for non-Boolean
parameters, we set the alternative value to be more aggressive;5

for Boolean parameters, we simply set the alternative value to
be the opposite of the default. In total, Vexp contains 8192
(213) possible parameter settings.

The second strategy space, Vdev (Tab. II), is based on
suggestions made by the developer of KISSAT.6 It contains
significantly fewer possible parameter settings (216).

4We consider all options considered in Table 2 of [49], except four: “lucky”
and “walk” control procedures that find satisfying assignments independent of
the main search; “scan-index” is not available in KISSAT; and “compacting”
is a data-structure optimization that we do not believe has strong correlations
with the number of conflicts. Noting that [49] does not consider any options
related to branching, we additionally consider the bumpreasonsrate param-
eter, which controls the eagerness of reason-side literal bumping [27] and
reportedly [11], [50] has significant impact on SAT Competition benchmarks.

5The alternative values are selected as follows: *int parameters are divided
by 10; *lim parameters are divided by 100; and *effort parameters are doubled.
This works well in practice, and in further testing, setting the parameters to
other reasonable values did not significantly alter the overall results. In the
future, it might be advisable to obtain expert knowledge also on the specific
values of the parameters.

6See https://github.com/arminbiere/kissat/issues/25

TABLE I
THE STRATEGY SPACE Vexp BASED ON [49].

KISSAT option default alternative

and 1 0
bumpreasonsrate 10 1

chrono 1 0
eliminateint 500 50

eliminateocclim 2000 20
forwardeffort 100 200

ifthenelse 1 0
probeint 100 10

rephaseint 1000 100
stable 1 0

substituteeffort 10 20
subsumeocclim 1000 10

vivifyeffort 100 200

TABLE II
THE STRATEGY SPACE Vdev .

KISSAT option default alternative(s)

chrono 1 0
phase 1 0
stable 1 0, 2
target 1 0, 2
tier1 2 1
tier2 6 3, 9

Designing principled ways to automatically construct the
strategy space (e.g., using techniques for assessing parameter
importance [51]) is an important direction for future work.

C. Implementation

We implemented an SDSL-based BMC procedure in
PYTHON3.7 Our prototype takes as input a model checking
problem in the BTOR/BTOR2 format [52], [53] and can run
BMC on that input with or without SDSL. We implemented
SDSL following the strategy described in Sec. IV-B. The
BMC step size and the maximal bound are also command-
line arguments. Additional input arguments include:

1) V: path to a CSV file representation of the strategy space
(e.g., Tabs. I and II);

2) n: the time budget for the learning epochs (see Sec. IV-B),
by default 15% of the total time limit;

3) m: the number of samples to draw per learning epoch,
by default 100;

4) The number of samples to draw in the Strategize rule,
by default 500;

5) The number of trees in the random forest, by default 50;
6) The initial tree depth, by default a third of the number of

parameters in V;
7) The random seed, by default 0.

The default values are used in all experiments unless otherwise
specified.

The formula bmc(k′, k) is generated online by first creating
a bitvector formula using the PONO Model Checker [13],

7Available at https://github.com/anwu1219/sdsl/

28

https://github.com/arminbiere/kissat/issues/25
https://github.com/anwu1219/sdsl/

then bit-blasting it into a SAT formula using the BOOLECTOR
solver [54]. The versions of the solvers are reported in the
extended version [16] of the paper. Our prototype does not
leverage incrementality for reasons discussed in Sec. II. We
use the Scikit-Learn machine learning library [55] for training
the Random Forest. Apart from the number of trees and the
depth of the trees, we use the default hyperparameters of
Scikit-Learn’s Random Forest module. The prototype runs on
one thread, though the sampling, training, and inference are
in principle parallelizable.

VII. EXPERIMENTAL EVALUATION

We consider the bitvector track benchmarks from the lat-
est Hardware Model Checking Competition (HWMCC) [10].
We omit all unsatisfiable benchmarks, since these are not
solvable using BMC. What remain are 65 benchmarks that
were reported to be satisfiable during the competition and 24
benchmarks that were unsolved during the competition. All
experiments are performed on a cluster equipped with Intel(R)
Xeon(R) CPU E5-2637 v4 @ 3.50GHz running Ubuntu 20.04.
Each job is given one physical core and 8 GB memory.

A. Unrolling the unsolved benchmarks

In the first experiment, we focus on the 24 unsolved
benchmarks. For each benchmark, the goal is to either find
a property violation or to prove that the property holds for as
large a bound as possible. A CPU time limit of 2 hours is
given for each benchmark. We consider two BMC step sizes:
1 and 10.8 For each step size, we run as baselines our KISSAT-
based BMC implementation without SDSL (denoted KISSAT)
and the BMC engine of PONO (denoted PONO), which makes
incremental calls to BOOLECTOR to solve bitvector queries.

1) Performance of SDSL using the strategy space in Tab. I:
We first evaluate KISSAT + SDSLexp, the SDSL-extended BMC
procedure using Vexp (Tab. I) as the strategy space. The
results are shown in Tab. III. We report the largest solved
(i.e., certified or falsified) bound k for each configuration. For
KISSAT + SDSLexp and KISSAT, we also show the total time to
solve all formulas up until the largest commonly solved bound
(tc.s.). For KISSAT + SDSLexp, this includes the time spent on
learning. We further report the number of learning epochs (ep)
and the time spent on learning (tlearn) for KISSAT + SDSLexp.
Graphic illustrations in the style of Fig. 1 and the duration of
each training epoch are presented in the extended version [16]
of the paper.

When the BMC step size is 1, KISSAT + SDSLexp is able
to certify larger bounds compared with the baseline config-
urations on 22 out of the 24 benchmarks, with an average
bound increase of 3.9 (52.6 − 48.7). This improvement is
highly non-trivial, considering that to reach a larger bound,
KISSAT + SDSLexp needs to 1) certify all the formulas up to the
baseline bound; 2) spend time (on average 975 seconds) learn-
ing a solving strategy; and 3) solve an additional set of harder
formulas with the remaining time, one for each increase in the

8The value of 10 is chosen based on a study by Lonsing [56].

bound size. Comparing tc.s. sheds further light on the perfor-
mance gain enabled by SDSL: on average, KISSAT + SDSLexp is
1.3× faster (63544811) on the set of commonly solved problems.
The fraction of tc.s. that KISSAT + SDSLexp spends on actual
solving (not including learning) is 3836 seconds (4811−975).
Thus, on average a 1.7× speedup (63543836) is achieved in the
sheer performance of the SAT solver. Upon closer examina-
tion, the learning time is dominated by the data collection,
with actual training and inference only taking 2.1% of tlearn

on average.
When using BMC step size 10, both the KISSAT-based base-

line and KISSAT + SDSLexp find counter-examples on 8 bench-
marks (highlighted in red). In all but one of those benchmarks,
KISSAT + SDSLexp finds counter-examples faster. Additionally,
KISSAT + SDSLexp certifies a larger bound than KISSAT on
4 benchmarks. For the remaining 12 benchmarks, the two
configurations certify the same bounds, but KISSAT + SDSLexp

reduces the runtime on only 3 of them. One explanation for
this is that the number of affordable learning epochs is signif-
icantly smaller when the step size is 10 due to the increased
hardness of individual formulas. As a result, fewer strategies
are considered. For example, on arb.n2.w128.d64, a total
of 871 unique solving strategies are evaluated when the step
size is 1, whereas only 175 strategies are evaluated when the
step size is 10. Nonetheless, overall, KISSAT + SDSLexp is still
1.3× faster (37122927) at certifying the same bounds.

It is important to note that using step size 10 does
not necessarily lead to a larger certified bound. Take
circ.w128.d128 for example: KISSAT + SDSLexp can un-
roll to an execution length of 46 with step size 1 while only
unrolling to 30 with step size 10. This also applies to an
incremental solver like PONO, which certifies an execution
length of 39 with step size 1 versus 20 with step size 10.
This suggests that the optimal step size varies in practice.

2) Performance of SDSL using the strategy space in Tab. II:
We repeat the same experiment for the other SDSL config-
uration KISSAT + SDSLdev, which uses the smaller strategy
space Vdev (Tab. II). The result is shown in Tab. IV. To
summarize, KISSAT + SDSLdev still boosts the performance of
KISSAT though the overall gain is less. For step size 1, the
average solved bound by KISSAT + SDSLdev is 49.4 compared
to 48.7 by KISSAT. The overall reduction in tc.s. is not sig-
nificant (2.8%) though the reduction in the pure solving time
(computed by subtracting tlearn from tc.s.) is still clear (16.5%).
For step size 10, KISSAT + SDSLexp and KISSAT unroll to the
same bound on each instance, but it takes KISSAT + SDSLexp

12.7% less time to get there. It is not too surprising that the
performance gain resulting from KISSAT + SDSLdev is smaller
than from KISSAT + SDSLexp. The smaller strategy space has
far fewer strategy options and might simply not contain a better
strategy than the default one.

In the extended version [16] of the paper, we also consider
two additional SDSL configurations. One includes all boolean
flags in the strategy space; the other uses local-search-based
tuning instead of machine learning to pick the solving strategy.
Both configurations perform worse than the KISSAT-based

29

TABLE III
EVALUATION OF KISSAT + SDSLexp ON BV BENCHMARKS OF HARDWARE MODEL CHECKING COMPETITION 2020 THAT WERE NOT SOLVED DURING THE

COMPETITION. ep IS THE NUMBER OF TRAINING EPOCHS. tlearn IS THE TIME SPENT ON DATA COLLECTION, TRAINING, AND INFERENCE. tc.s. IS THE
CUMULATIVE TIME (tlearn INCLUDED) TO SOLVE ALL THE FORMULAS UP UNTIL THE LARGEST BOUND COMMONLY SOLVED BY KISSAT + SDSLexp AND

KISSAT. k IS THE LARGEST SOLVED BOUND WITHIN 2 HOURS AND IS highlighted IF A VIOLATION IS FOUND (I.E., THE BENCHMARK IS SOLVED).

step size = 1 step size = 10

KISSAT + SDSLexp KISSAT PONO KISSAT + SDSLexp KISSAT PONO

Benchmark ep tlearn tc.s. k tc.s. k k ep tlearn tc.s. k tc.s. k k
arb.n2.w128.d64 10 1040 4816 59 7198 54 45 2 751 3676 70 4940 70 50
arb.n2.w64.d64 9 936 4431 59 6515 53 48 2 638 3985 70 4224 70 50
arb.n2.w8.d128 10 1031 5599 54 6795 52 45 2 1127 3932 60 5528 60 50
arb.n3.w16.d128 9 937 4898 58 7118 53 48 2 807 3653 70 5792 60 60
arb.n3.w64.d128 10 1062 4856 58 7132 53 44 1 84 3427 60 5120 60 50
arb.n3.w64.d64 10 985 4809 58 7055 53 46 2 919 3736 70 5018 70 50
arb.n3.w8.d128 9 983 4760 58 6996 53 46 2 906 3227 60 6017 60 50
arb.n4.w128.d64 9 963 6143 54 6107 53 46 2 1086 3704 70 5627 70 50
arb.n4.w16.d64 10 984 4768 57 6599 53 49 2 580 3349 70 5231 70 70
arb.n4.w8.d64 10 1081 5863 54 6659 52 48 2 617 3177 70 4563 70 50
arb.n5.w128.d64 9 1105 5095 57 6731 53 47 1 139 4204 70 5587 70 50
circ.w128.d128 7 845 5746 46 6549 44 39 1 536 2348 30 1743 30 20
circ.w128.d64 8 887 6071 47 6452 46 39 1 747 2688 30 1962 30 20
circ.w16.d128 11 967 4997 58 7179 54 47 2 876 5778 50 4978 50 40
circ.w64.d128 9 870 5409 51 6895 48 44 1 232 4575 40 4294 40 30
dspf.p22 4 1078 3741 31 5654 28 27 1 285 289 20 90 20 20
pgm.3.prop5 10 1019 7128 128 5663 133 131 2 618 6844 190 6052 190 170
picor.AX.nom.p2 2 929 3307 16 3636 15 14 1 117 279 20 151 20 20
picor.pcregs-p0 5 992 4020 32 6402 30 30 0 0 83 20 85 20 20
picor.pcregs-p2 5 840 6149 30 5003 31 31 0 0 89 20 91 20 20
shift.w128.d64 7 858 4098 27 5393 25 21 1 582 678 30 353 20 20
shift.w16.d128 9 1084 3020 45 5817 39 28 2 864 1731 50 2606 40 20
shift.w32.d128 8 821 2778 43 6273 35 27 1 216 2656 30 2424 30 20
zipversa.p03 5 1110 2961 82 6683 59 45 2 1182 2138 110 6622 90 330

Mean 8.1 975 4811 52.6 6354 48.7 43.1 1.5 580 2927 57.5 3712 55.4 55.4

BMC baseline. It is worth noting that local-search-based
tuning does also result in speedup in tc.s. and improves upon
KISSAT on 16 of the 24 instances. However, the performance
gain is less significant compared to KISSAT + SDSLdev and,
on certain benchmarks, tuning landed on parameter settings
that drastically harm the performance. This suggests that using
empirical performance models can be more robust than direct
tuning in our setting.

B. Mini Hardware Model Checking Competition

We evaluate KISSAT + SDSLexp with step size 10 on all the
satisfiable and unsolved bitvector benchmarks from HWMCC.
As in the competition, we use a time limit of 1 hour for
this experiment. We consider the basic KISSAT-based BMC
procedure (also using step size 10) as a baseline. In addition,
we perform an apples-to-oranges comparison to two algorithm
portfolios, one of PONO and the other of the AVR model
checker [12], which was the winner of the most recent compe-
tition.9 We use the competition portfolio of AVR, which con-
sists of 16 single-threaded solving modes. The PONO portfolio
contains 13 single-threaded modes selected by the developers

9We hope to also compare with the bit-level solver ABC [57] but have no
information about the commands and version used for the competition. We
have contacted the ABC team and will include such results after hearing back.

of PONO. Each mode can construct counter-examples. The AVR
portfolio contains two BMC modes, both with step size 5. The
PONO portfolio contains 1 BMC mode, with step size 11.

The number of solved instances and the total time on solved
instances are shown in Tab. V. To study the complementarity
of the configurations, we also report the number of unique
solutions and the performance of a virtual best configuration.
Results on individual benchmarks are reported in the extended
version [16] of the paper.

KISSAT + SDSLexp solves all the instances solved by KISSAT
plus 7 more, suggesting that while SDSL might create overhead
for easy instances, this overhead is overcome by benefits in the
long run. Impressively, those 7 problems are also not solved by
the AVR and PONO portfolios. This suggests that including an
SDSL-driven BMC procedure in a model checking algorithm
portfolio can be beneficial.

C. Ablation studies of training budget and model architecture

To study the effect of dataset size and model ac-
curacy, we select one benchmark picor.pcregs-p0,
and vary the learning budget (in seconds) in the set
{180, 360, 720, 1080, 1440} and the decision tree depth from

30

TABLE IV
EVALUATION OF KISSAT + SDSLdev . THE SETUP IS THE SAME AS TAB. III

.

step size = 1 step size = 10

KISSAT + SDSLdev KISSAT KISSAT + SDSLdev KISSAT

Benchmark ep tlearn tc.s. k tc.s. k ep tlearn tc.s. k tc.s. k
arb.n2.w128.d64 11 861 6714 54 7198 54 2 631 3720 70 4940 70
arb.n2.w64.d64 10 896 6158 54 6515 53 2 575 4981 70 4224 70
arb.n2.w8.d128 11 1006 6291 53 6795 52 2 684 3674 60 5528 60
arb.n3.w16.d128 9 824 6061 54 7118 53 2 635 3905 60 5792 60
arb.n3.w64.d128 10 966 6417 54 7132 53 2 735 3937 60 5120 60
arb.n3.w64.d64 11 1053 5452 55 7055 53 2 598 5619 70 5018 70
arb.n3.w8.d128 9 857 5780 55 6996 53 2 635 3703 60 6017 60
arb.n4.w128.d64 10 901 5859 55 6107 53 2 702 6712 70 5627 70
arb.n4.w16.d64 10 898 5626 55 6599 53 2 462 3266 70 5231 70
arb.n4.w8.d64 11 973 4749 57 6659 52 2 532 3774 70 4563 70
arb.n5.w128.d64 10 869 5672 55 6731 53 1 92 5283 70 5587 70
circ.w128.d128 8 694 6948 43 5879 44 1 400 2158 30 1743 30
circ.w128.d64 8 829 6650 45 5803 46 1 788 2663 30 1962 30
circ.w16.d128 12 969 6961 54 7179 54 2 433 4927 50 4978 50
circ.w64.d128 10 713 6759 48 6895 48 1 179 4361 40 4294 40
dspf.p22 4 959 4148 31 5654 28 1 185 177 20 90 20
pgm.3.prop5 16 920 6933 133 6996 133 3 557 5664 190 6052 190
picor.AX.nom.p2 2 590 3540 15 3636 15 1 59 191 20 151 20
picor.pcregs-p0 6 873 6573 28 3337 30 0 0 86 20 85 20
picor.pcregs-p2 5 646 6045 28 2786 31 0 0 86 20 91 20
shift.w128.d64 8 666 5965 25 5393 25 1 1392 601 20 353 20
shift.w16.d128 9 940 5209 40 5817 39 1 139 2058 40 2606 40
shift.w32.d128 8 796 5551 36 6273 35 1 217 2615 30 2424 30
zipversa.p03 2 460 7037 59 6683 59 1 268 3650 90 6622 90

Mean 8.8 840 5962 49.4 6134 48.7 1.5 454 3242 55.4 3712 55.4

TABLE V
COMPARISON WITH TWO ALGORITHM PORTFOLIOS ON SATISFIABLE AND

UNSOLVED BV HWMCC BENCHMARKS (89 IN TOTAL).

Config. Threads Slv. Time Unique

KISSAT + SDSLexp 1 68 27362 7
KISSAT 1 61 6358 0
AVR PORTFOLIO 16 48 12113 2
PONO PORTFOLIO 13 63 10723 0

VIRTUAL BEST 31 72 24700 –

1 to 10.10 We consider all 50 combinations of the two. For
each combination, we run KISSAT + SDSLexp (step size 1, time
limit 2 hours) 12 times, each time with a different random seed
(0 . . . 11); we show the median certified bound in the top half
of Fig. 4 and the average training score (R2 score, the larger
the better) in the last learning epoch in the bottom half. The
largest bound certified by KISSAT without SDSL is 30.

Noticeably, on this instance, improvements in the certified
bound are achieved when the depth of the tree is at least 4 and
the learning budget is at least 1080 seconds. This suggests that
both a sufficient amount of training data and an accurate model
are necessary for SDSL to work in practice. If not enough data

10For this experiment we use a fixed tree depth instead of the dynamic one
described in Sec. V-B.

Fig. 4. Varying the learning budget and tree depth on picor.pcregs-p0.

is collected (bottom right), the machine learning model cannot
extrapolate well to new problem instances. On the other hand,
if the machine learning model is not accurate enough (top left),
the strategy it suggests can also be misleading. Determining
the optimal learning budget on a per-benchmark basis is a
topic worth studying in the future.

31

VIII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We introduced Self-Driven Strategy Learning, a conceptu-
ally simple, easy-to-implement online learning approach for
solving sets of related problems in automated reasoning. We
presented the methodology formally as a set of transition rules
and instantiated it in the context of Bounded Model Checking.
Our experiments show that equipping a BMC-procedure with
SDSL results in a significant performance boost, both in terms
of certified bounds and solved instances, when comparing
against state-of-the-art open-source model checkers.

One thing to consider when applying SDSL is that a good
return on investment in learning depends on a sensible a
priori choice of the strategy space. Another limitation is that
when the problem set is small, gathering sufficient training
data can be challenging. An intriguing question is whether a
problem can be decomposed into sub-problems automatically
in order to obtain sufficient data. Other future directions
include alternative orders of applying the SDSL rules, applying
SDSL to other automated reasoning tasks (e.g., symbolic
execution, max-satisfiability, iterative abstraction refinement),
and combining SDSL with offline learning and incremental
solving.
Acknowledgments: We thank the anonymous reviewers for
their careful reviews and constructive feedback. This work
was supported in part by the National Science Foundation
(grant 1269248) and by the Stanford Center for Automated
Reasoning. Additionally, the NASA University Leadership
initiative (grant #80NSSC20M0163) provided funds to assist
the authors with their research, but this article solely reflects
the opinions and conclusions of its authors and not any NASA
entity.

REFERENCES

[1] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” Formal methods in system design, vol. 19,
pp. 7–34, 2001.

[2] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking.” Handbook of satisfiability, vol. 185, no. 99, pp. 457–
481, 2009.

[3] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Computer Aided Verification: 12th
International Conference, CAV 2000, Chicago, IL, USA, July 15-19,
2000. Proceedings 12. Springer, 2000, pp. 154–169.

[4] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[5] H. H. Hoos, F. Hutter, and K. Leyton-Brown, “Automated configuration
and selection of sat solvers,” in Handbook of Satisfiability. IOS Press,
2021, pp. 481–507.

[6] F. Hutter, D. Babic, H. H. Hoos, and A. J. Hu, “Boosting verification
by automatic tuning of decision procedures,” in Formal Methods in
Computer Aided Design (FMCAD’07). IEEE, 2007, pp. 27–34.

[7] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla: portfolio-
based algorithm selection for sat,” Journal of artificial intelligence
research, vol. 32, pp. 565–606, 2008.

[8] D. Selsam and N. Bjørner, “Guiding high-performance sat solvers with
unsat-core predictions,” in Theory and Applications of Satisfiability
Testing–SAT 2019: 22nd International Conference, SAT 2019, Lisbon,
Portugal, July 9–12, 2019, Proceedings 22. Springer, 2019, pp. 336–
353.

[9] E. Yolcu and B. Póczos, “Learning local search heuristics for boolean
satisfiability,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[10] M. Preiner, A. Biere, and N. Froleyks, “Hardware model checking
competition 2020,” 2020.

[11] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[12] A. Goel and K. Sakallah, “Avr: abstractly verifying reachability,” in
Tools and Algorithms for the Construction and Analysis of Systems: 26th
International Conference, TACAS 2020, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25–30, 2020, Proceedings, Part I 26. Springer,
2020, pp. 413–422.

[13] M. Mann, A. Irfan, F. Lonsing, Y. Yang, H. Zhang, K. Brown,
A. Gupta, and C. Barrett, “Pono: a flexible and extensible smt-based
model checker,” in Computer Aided Verification: 33rd International
Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings,
Part II 33. Springer, 2021, pp. 461–474.

[14] J. N. Hooker, “Solving the incremental satisfiability problem,” The
Journal of Logic Programming, vol. 15, no. 1-2, pp. 177–186, 1993.

[15] A. Biere, M. S. Chowdhury, M. J. Heule, B. Kiesl, and M. W. Whalen,
“Migrating solver state,” in 25th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2022). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022.

[16] H. Wu, C. Hahn, F. Lonsing, M. Mann, R. Ramanujan, and C. Barrett,
“Lightweight online learning for sets of related problems in automated
reasoning [extended version],” arXiv preprint arXiv:2305.11087, 2023.

[17] O. Strichman, “Accelerating bounded model checking of safety proper-
ties,” Formal Methods in System Design, vol. 24, pp. 5–24, 2004.

[18] F. Hutter, H. H. Hoos, and T. Stützle, “Automatic algorithm configuration
based on local search,” in Aaai, vol. 7, 2007, pp. 1152–1157.

[19] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Saten-
stein: Automatically building local search sat solvers from components,”
Artificial Intelligence, vol. 232, pp. 20–42, 2016.

[20] J. Scott, A. Niemetz, M. Preiner, S. Nejati, and V. Ganesh,
“Algorithm selection for SMT,” Int. J. Softw. Tools Technol.
Transf., vol. 25, no. 2, pp. 219–239, 2023. [Online]. Available:
https://doi.org/10.1007/s10009-023-00696-0

[21] L. Xu, H. Hoos, and K. Leyton-Brown, “Hydra: Automatically configur-
ing algorithms for portfolio-based selection,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 24, no. 1, 2010, pp. 210–216.

[22] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm runtime
prediction: Methods & evaluation,” Artificial Intelligence, vol. 206, pp.
79–111, 2014.

[23] C. Ansótegui, Y. Malitsky, H. Samulowitz, M. Sellmann, K. Tierney
et al., “Model-based genetic algorithms for algorithm configuration.” in
IJCAI, 2015, pp. 733–739.

[24] K. Leyton-Brown, E. Nudelman, and Y. Shoham, “Empirical hardness
models: Methodology and a case study on combinatorial auctions,”
Journal of the ACM (JACM), vol. 56, no. 4, pp. 1–52, 2009.

[25] M. Balunovic, P. Bielik, and M. Vechev, “Learning to solve smt
formulas,” Advances in Neural Information Processing Systems, vol. 31,
2018.

[26] C. Hahn, F. Schmitt, J. U. Kreber, M. N. Rabe, and B. Finkbeiner,
“Teaching temporal logics to neural networks,” in 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. [Online]. Available:
https://openreview.net/forum?id=dOcQK-f4byz

[27] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning
rate based branching heuristic for SAT solvers,” in Theory and
Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, ser.
Lecture Notes in Computer Science, N. Creignou and D. L. Berre,
Eds., vol. 9710. Springer, 2016, pp. 123–140. [Online]. Available:
https://doi.org/10.1007/978-3-319-40970-2 9

[28] J. H. Liang, C. Oh, M. Mathew, C. Thomas, C. Li, and V. Ganesh,
“Machine learning-based restart policy for cdcl sat solvers,” in Theory
and Applications of Satisfiability Testing–SAT 2018: 21st International
Conference, SAT 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 9–12, 2018, Proceedings 21. Springer,
2018, pp. 94–110.

32

https://doi.org/10.1007/s10009-023-00696-0
https://openreview.net/forum?id=dOcQK-f4byz
https://doi.org/10.1007/978-3-319-40970-2_9

[29] H. Wu, “Improving sat-solving with machine learning,” in Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, 2017, pp. 787–788.

[30] H. Wu and R. Ramanujan, “Learning to generate industrial sat in-
stances,” in Proceedings of the International Symposium on Combina-
torial Search, vol. 10, no. 1, 2019, pp. 206–207.

[31] J. You, H. Wu, C. Barrett, R. Ramanujan, and J. Leskovec, “G2sat:
learning to generate sat formulas,” Advances in neural information
processing systems, vol. 32, 2019.

[32] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki,
I. Lobov, B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang,
R. Addanki, T. Hapuarachchi, T. Keck, J. Keeling, P. Kohli, I. Ktena,
Y. Li, O. Vinyals, and Y. Zwols, “Solving mixed integer programs
using neural networks,” CoRR, vol. abs/2012.13349, 2020. [Online].
Available: https://arxiv.org/abs/2012.13349

[33] D. Bertsimas and B. Stellato, “The voice of optimization,” Machine
Learning, vol. 110, no. 2, pp. 249–277, Feb 2021. [Online]. Available:
https://doi.org/10.1007/s10994-020-05893-5

[34] P. Golia, S. Roy, and K. S. Meel, “Manthan: A data-driven approach
for boolean function synthesis,” in Computer Aided Verification: 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21–24,
2020, Proceedings, Part II. Springer, 2020, pp. 611–633.

[35] P. Golia, F. Slivovsky, S. Roy, and K. S. Meel, “Engineering an efficient
boolean functional synthesis engine,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE, 2021, pp.
1–9.

[36] E. Parisotto, A.-r. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli,
“Neuro-symbolic program synthesis,” arXiv preprint arXiv:1611.01855,
2016.

[37] J. Chen, W. Hu, L. Zhang, D. Hao, S. Khurshid, and L. Zhang, “Learning
to accelerate symbolic execution via code transformation,” in 32nd
European Conference on Object-Oriented Programming (ECOOP 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[38] J. He, G. Sivanrupan, P. Tsankov, and M. Vechev, “Learning
to explore paths for symbolic execution,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 2526–2540. [Online]. Available:
https://doi.org/10.1145/3460120.3484813

[39] J. H. Liang, V. Ganesh, E. Zulkoski, A. Zaman, and K. Czarnecki, “Un-
derstanding vsids branching heuristics in conflict-driven clause-learning
sat solvers,” in Hardware and Software: Verification and Testing: 11th
International Haifa Verification Conference, HVC 2015, Haifa, Israel,
November 17-19, 2015, Proceedings 11. Springer, 2015, pp. 225–241.

[40] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” in Proceedings of the 38th
annual Design Automation Conference, 2001, pp. 530–535.

[41] A. Biere and A. Fröhlich, “Evaluating cdcl variable scoring schemes,”
in Theory and Applications of Satisfiability Testing–SAT 2015: 18th
International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings 18. Springer, 2015, pp. 405–422.

[42] S. Chib and E. Greenberg, “Understanding the metropolis-hastings
algorithm,” The american statistician, vol. 49, no. 4, pp. 327–335, 1995.

[43] R. E. Kass, B. P. Carlin, A. Gelman, and R. M. Neal, “Markov
chain monte carlo in practice: a roundtable discussion,” The American
Statistician, vol. 52, no. 2, pp. 93–100, 1998.

[44] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,
2001.

[45] G. Louppe, “Understanding random forests: From theory to practice,”
arXiv preprint arXiv:1407.7502, 2014.

[46] C. Barrett, A. Stump, and C. Tinelli, “The satisfiability modulo theories
library (smt-lib). www,” SMT-LIB. org, vol. 15, pp. 18–52, 2010.

[47] D. Kroening and O. Strichman, Decision procedures. Springer, 2016.
[48] F. Beskyd and P. Surynek, “Domain dependent parameter setting in sat

solver using machine learning techniques,” in Agents and Artificial In-
telligence: 14th International Conference, ICAART 2022, Virtual Event,
February 3–5, 2022, Revised Selected Papers. Springer, 2023, pp. 169–
200.

[49] B. Dutertre, “An empirical evaluation of sat solvers on bit-vector
problems.” in SMT, 2020, pp. 15–25.

[50] A. Biere, “Cadical, lingeling, plingeling, treengeling and yalsat entering
the sat competition 2018,” Proceedings of SAT Competition, vol. 14, pp.
316–336, 2017.

[51] F. Hutter, H. Hoos, and K. Leyton-Brown, “An efficient approach for
assessing hyperparameter importance,” in International conference on
machine learning. PMLR, 2014, pp. 754–762.

[52] R. Brummayer, A. Biere, and F. Lonsing, “Btor: bit-precise modelling
of word-level problems for model checking,” in Proceedings of the joint
workshops of the 6th international workshop on satisfiability modulo
theories and 1st international workshop on bit-precise reasoning, 2008,
pp. 33–38.

[53] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2, btormc and
boolector 3.0,” in Computer Aided Verification: 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Confer-
ence, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I.
Springer, 2018, pp. 587–595.

[54] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0,” J. Satisf.
Boolean Model. Comput., vol. 9, no. 1, pp. 53–58, 2014. [Online].
Available: https://doi.org/10.3233/sat190101

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[56] F. Lonsing, “Pono: An smt-based model checker,” in
Center for Automated Reasoning Workshop. Stanford, CA,
2022. [Online]. Available: http://www.florianlonsing.com/talks/
Lonsing-CentaurRetreat-2022-talk.pdf

[57] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22. Springer, 2010, pp. 24–40.

33

https://arxiv.org/abs/2012.13349
https://doi.org/10.1007/s10994-020-05893-5
https://doi.org/10.1145/3460120.3484813
https://doi.org/10.3233/sat190101
http://www.florianlonsing.com/talks/Lonsing-CentaurRetreat-2022-talk.pdf
http://www.florianlonsing.com/talks/Lonsing-CentaurRetreat-2022-talk.pdf

Formal Methods in Computer-Aided Design 2023

DelBugV: Delta-Debugging Neural
Network Verifiers

Raya Elsaleh and Guy Katz
The Hebrew University of Jerusalem, Jerusalem, Israel

Email: {rayae,guykatz}@cs.huji.ac.il

Abstract—Deep neural networks (DNNs) are becoming a key
component in diverse systems across the board. However, despite
their success, they often err miserably; and this has triggered
significant interest in formally verifying them. Unfortunately,
DNN verifiers are intricate tools, and are themselves susceptible
to soundness bugs. Due to the complexity of DNN verifiers, as
well as the sizes of the DNNs being verified, debugging such
errors is a daunting task. Here, we present a novel tool, named
DELBUGV, that uses automated delta debugging techniques on
DNN verifiers. Given a malfunctioning DNN verifier and a correct
verifier as a point of reference (or, in some cases, just a single,
malfunctioning verifier), DELBUGV can produce much simpler
DNN verification instances that still trigger undesired behavior —
greatly facilitating the task of debugging the faulty verifier. Our
tool is modular and extensible, and can easily be enhanced with
additional network simplification methods and strategies. For
evaluation purposes, we ran DELBUGV on 4 DNN verification
engines, which were observed to produce incorrect results at the
2021 neural network verification competition (VNN-COMP’21).
We were able to simplify many of the verification queries that
trigger these faulty behaviors, by as much as 99%. We regard our
work as a step towards the ultimate goal of producing reliable
and trustworthy DNN-based software.

I. INTRODUCTION

Deep neural networks (DNNs) [21] are software artifacts
that are generated automatically, through the generalization of
a finite set of examples. These artifacts have been shown to
outdo manually crafted software in a variety of key domains,
such as natural language processing [19], [25], [37], image
recognition [25], [59], protein folding [26], [41], and many
others. However, this impressive success comes at a price:
unlike traditional software, DNNs are opaque artifacts, and are
incomprehensible to humans. This poses a serious challenge
when it comes to certifying, modifying, extending, repairing
or reasoning about them [22], [27], [32].

In an effort to address these issues, the formal methods
community has taken up an interest in DNN verification [27],
[30], [45]: automated techniques that can determine whether
a DNN satisfies a prescribed specification, and provide a
counter-example if it does not. DNN verification technology
has been making great strides, and its applicability has been
demonstrated in various domains [2], [3], [18], [30], [33].
In fact, this technology has progressed to a point where
DNN verifiers themselves have become quite complex, and
consequently error-prone; especially as they often perform
delicate arithmetic operations that can introduce bugs into the
verification process [30]. Thus, it is not surprising that various
bugs have been observed in these tools [29]. For example,

in the VNN-COMP’21 competition [9], various verifiers have
been shown to disagree on the result of multiple verification
queries (each query is comprised of a neural network and
a property to be checked), or produce incorrect counter-
examples — indicating bugs in those verifiers. Moreover,
many verifiers are still under development, with new and
experimental features being introduced, possibly allowing the
introduction of new bugs, as well. An inability to trust the
results of DNN verifiers could undermine the benefits of DNN
verification technology, and clearly needs to be addressed.

Here, we propose to mitigate this issue by adopting known
techniques from related fields (e.g., SMT solving [12]) —
specifically, that of delta debugging. The idea is to leverage
the fact that DNN verification is at a point where many
verification tools are available, and to allow engineers to
readily compare the results produced by their verification tool
to those produced by others, in order to identify and correct
bugs. When a verification query that triggers some bug in a
verifier is detected, we can initiate an automated process that
repeatedly and incrementally simplifies the verification query.
After each simplification step, we can check that the verifier
in question still disagrees with the remaining, oracle verifiers,
until reaching the simplest verification query that we can find.
If this final query is much simpler than the original, it will be
that much easier for engineers to debug their tools, eventually
improving their overall soundness.

We present a new tool, DELBUGV (Delta deBugging Neural
Network Verifiers), that takes as input a verification query, a
malfunctioning DNN verifier that errs on the given verification
query, and an oracle DNN verifier. Within DELBUGV, we
implement a set of operations for simplifying the neural net-
work of the given verification query into a network with fewer
layers and fewer neurons. We empirically design a strategy
that applies these operations sequentially in an order that pro-
duces much simpler verification queries. In some cases, when
the malfunctioning DNN verifier produces a faulty counter-
example, DELBUGV can run in single solver mode – without
an oracle verifier, where the query is repeatedly simplified as
long as the malfunctioning DNN verifier continues to produce
incorrect counter-examples.

For evaluation, we tested DELBUGV on 4 DNN ver-
ifiers “suspected” of errors, per the results of VNN-
COMP’21 [9]: Marabou [32], NNV [50]–[53], [60], Neu-
ralVerification.jl(NV.jl) [36], and nnenum [7], [8], [50], [51].
We ran DELBUGV on queries where pairs of these verifiers

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 11 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_11
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_11
https://creativecommons.org/licenses/by/4.0/

disagreed. Our evaluation demonstrates that DELBUGV could
reduce the size of the error-triggering queries by an average
of 96.8%, and by as much as 99% in some cases, resulting
in very simple neural networks. We believe that these results
highlight the significant potential of our tool and approach.

The rest of the paper is organized as follows. In Sec. II
we provide the necessary background on DNNs and their
verification. Next, in Sec. III we describe the design of DEL-
BUGV, focusing on its algorithm and network simplification
methods and the strategy we use to apply those methods. The
implementation and evaluation of DELBUGV are discussed in
Sec. IV. This is followed by a discussion of related work in
Sec. V, and we conclude in Sec. VI.

II. BACKGROUND

Neural Networks. A neural network is a directed acyclic
graph in which the nodes, called neurons, are organized in
layers l0, l1, . . . , ln. l0 is called the input layer, ln the output
layer, and layers l1, . . . , ln−1 are called hidden layers. Each
hidden layer has an associated non-linear activation function.
In feed-forward networks, which are our subject matter here,
neurons in layer li have edges connecting them only to neurons
in the next layer, layer li+1.

Each neuron in the network (except the ones in the input
layer) has a bias value, and each edge has a weight. The biases
and weights belonging to neurons in layer li are organized into
a vector Bi and a matrix W i, respectively. The j, j′-th entry
of W i is the weight assigned to the edge out-going from the
j′-th neuron in layer li−1 and entering the j-th neuron in layer
li. For a fully connected layer, W i is a full matrix; whereas
for a convolutional layer, W i is very sparse, and has a specific
structure (discussed later).

An input to neural network N is a vector I of values of the
neurons in the input layer, and it produces an output vector
N (I) which is the values of the neurons in the output layer. We
denote the values of neurons in layer li, prior to applying the
activation function, by N li(I); and the values after applying
the activation function by N ai

(I). The values of the neurons
are evaluated according to the rules:

N l0(I) = I, N li(I) = W iN ai−1

(I) +Bi,

N ai

(I) = Acti(N li(I))

where Acti is the activation function associated with layer li.
We define the size of a neural network to be the total number

of neurons in the graph (including the neurons in the input and
output layers) and denote it by |N |. The automated training
(i.e., selection of weights and biases) of neural networks is
beyond our scope here; see, e.g., [21].

Fig. 1 depicts a neural network, Ne, with a single input,
a single output, and 2 hidden layers with 3 neurons in each.
It uses the ReLU activation function, ReLU(x) = max(0, x).
The bias of each neuron is listed above it, and weights are

listed over the edges (zero values are omitted). In matrix
representation, the weights and biases are:

W 1 =

⎡⎣ −5−0.5
−1

⎤⎦, B1 =

⎡⎣ 10
−2.5
7

⎤⎦ ,W 2 =

⎡⎣0.8 −1 −2
0 0.5 0
2 0.5 −1

⎤⎦ ,

B2 =

⎡⎣82
0

⎤⎦ ,W 3 =

⎡⎣0.252
0.5

⎤⎦T

, B3 =
[︁
0
]︁

Ne is of size 8 (every lij and rij pair in the figure are counted
as one neuron; we split them only for visualization purposes),
and has 4 layers. The figure also demonstrates an evaluation of
the network, for the input x = 5. The assignment of each node
is listed below it; and we can see that the produced output in
this case is y = 5.

Input layer l0

First hidden layer l1 Second hidden layer l2

Output layer l3

x

5

l10

l11

l12

+10

−2.5

+7

−15

−5

2

r10

r11

r12

0

0

2

l20

l21

l22

+8

+2

4

2

−2

r20

r21

r22

4

2

0

y

5

−5

−0.5

−1

ReLU

ReLU

ReLU

0.8

2

−1

0.5

0.5

−2

−1

ReLU

ReLU

ReLU

0.25

2

0.5

Fig. 1: An example of a neural network, Ne, with ReLU
activation functions.

Convolutional Neural Networks. A convolutional neural
network is a neural network with one or more convolutional
layers (typically, these are the first layers of the network).
The parameters of a convolutional layer include the height h
and width w of images in the input; the kernel size k; the
stride size s; the padding size p; the input channels ci; the
output channels co; the kernel weights W , given as a tensor
of dimensions (co× ci× k× k); and the biases, B, organized
in an array of length co. We assume for simplicity that the
kernel size, padding size, and stride size are equal along all
axes, although this is not a limitation of our approach.

The convolutional layer filters its input, which is a (ci ×
k × k)-dimensional matrix, using the above parameters and
outputs a multidimensional matrix which represents feature
maps. For additional information on how a convolutional layer
computes its output, see [21]. Note that convolutional layers
are comprised strictly of linear operations.

Neural Network Verification. A property P is a set of
constraints on the inputs and outputs of the neural network.
These constraints give rise to an input region I(P) and an
output region O(P). Verifying P , with respect to some neural

35

network, entails determining whether there exists an input in
I(P) that the neural network maps to an output in O(P)
(the SAT case), or not (the UNSAT case). Typically, P is
specified so that O(P) represents undesirable behavior, and
so an UNSAT result indicates that the system is correct.
Pe = (5 ≤ x ≤ 10) ∧ (5 ≤ y ≤ 10) is an example of a
property of Ne in Fig. 1.

A neural network verifier takes in a verification query (a
neural network and a property) and attempts to automatically
verify it. When successful, it returns a SAT or UNSAT answer;
otherwise, it can return ERROR, or TIMEOUT. When a neural
network verifier returns SAT, it also returns an input that
proves the satisfiability of the query. Given a verifier V and
a verification query Q = (N ,P), we denote by V(Q) ∈
{SAT,UNSAT,ERROR,TIMEOUT} the answer of V on Q. If
V(Q) = SAT, we denote by Vw(Q) ∈ I(P) the satisfying
assignment (the witness) returned by the verifier.

Continuing with our running example, given a sound neural
network verifier Ve and the verification query Qe = (Ne,Pe),
Ve(Qe) = SAT and a valid witness is (Ve)w(Qe) = (5), since
Ne((5)) = (5) ∈ O(Pe).

Neural network verification is complex, both theoretically
and practically [30]; and modern tools apply sophisticated
techniques to verify large networks [1]. These techniques are
typically theoretically sound, but implementation bugs can
cause verifiers to produce incorrect results. These bugs are
easier to track and correct if the problem manifests for queries
with small networks.

In a situation where two verifiers disagree on the satisfi-
ability of a given query, at least one of them must answer
SAT and provide a satisfying assignment. We evaluate the
neural network on that assignment, and determine whether it
indeed satisfies the property at hand. If so, we conclude that
the other verifier, which returned UNSAT, is faulty; otherwise,
if the satisfying assignment is incorrect, we determine that the
verifier that answered SAT is faulty. The remaining verifier
then takes the role of the oracle verifier.

III. DELBUGV: DELTA-DEBUGGING VERIFICATION
QUERIES

A. General Flow

Applying delta-debugging techniques means automatically
simplifying an input x that triggers a bug in the system into
a simpler input, x′, that also triggers a bug [40]. x′ can often
trigger the bug faster, thus reducing overall debugging time;
and also trigger fewer code lines that are unrelated to the
bug, allowing engineers to more easily identify its root cause.
In our setting, given a verification query Q = (N ,P) that
triggers a bug in a neural network verifier, we seek to generate
another query Q′ = (N ′,P), with a much smaller (simplified)
neural network: |N ′| < |N |. The motivation for focusing on
the neural network, and not on the verification conditions, is
that common verification conditions are typically already quite
simple [56], whereas neural network sizes have a crucial effect
on verifier performance [30].

The general delta debugging framework that our tool follows
appears as Alg. 1. The inputs to the process are a faulty
verifier V , an oracle verifier VO, and a verification query
Q = (N ,P). The algorithm maintains a candidate result
neural networkNr that triggers a bug in V and make it produce
an incorrect answer, and whose size is iteratively decreased.
In each iteration, the algorithm invokes Alg. 2 to attempt
simplifying Nr. The process terminates when Alg. 2 states
that it cannot simplify Nr any further, or when a timeout limit
is exceeded. Finally, it returns the verification query with the
smallest Nr it achieved.

Algorithm 1 Reduce Verification Query

Input: V , VO, Q = (N ,P)
// Faulty Verifier, Oracle Verifier, Verification query

Output: Qr // A simplified query
1: Nr ← N
2: progressMade ← True
3: while noTimeout() ∧ progressMade do
4: Nr ← N
5: progressMade, N ← Simplify(V,VO, Q)
6: return (Nr,P)

Alg. 2 takes in the same arguments as Alg. 1, and its goal
is to perform one successful simplification step on N , from
a pool of potential steps. The algorithm heuristically chooses
a sequence of simplification steps to attempt (Line 1), and
then performs them, one by one, until one is successful. We
propose several simplification steps in Sec. III-B. Specifying
the order according to which these simplification steps are
attempted (Line 1) is key, and different strategies may result in
different simplified networks — we propose one such strategy
in Sec. III-B.

Algorithm 2 Simplify

Input: V , VO, Q = (N ,P)
// Faulty Verifier, Oracle Verifier, Verification query

Output: True/False, Qr // Whether the query was simplified,
and the simplified query

1: Attempts = (M0,M1, . . .)←
attemptsBySimplificationStrategy(N)

2: while Attempts ̸= ∅ do
3: Mi ←Attempts.pop()
4: Nr ←Mi(N)
5: if successSimplification(V,VO, (Nr,P)) then
6: return True, Nr

7: return False, N

Line 5 of Alg. 2 invokes Alg. 3 to check whether the
simplification step attempted succeeded or not. To do so,
Alg. 3 first checks whether V answers SAT, but returns an
incorrect counter-example. If so, this candidate should clearly
be kept. Otherwise, the algorithm checks whether V and VO
disagree in their verdicts; if so, it returns True. In all other

36

cases, i.e. where one of the verifiers times out, or when there is
no basis for comparison (one of the verifiers returned an error),
the algorithm returns False, and an alternative simplification
step in Alg. 2 is attempted.

Algorithm 3 successSimplification

Input: V , VO, Q = (N ,P)
// Faulty Verifier, Oracle Verifier, Verification query

Output: True/False // Was the query successfully simplified?
1: if V(N ,P) = SAT ∧ VW (Q) /∈ I(P) then
2: return True
3: if V(N ,P) = SAT ∧N (VW (Q)) /∈ O(P) then
4: return True
5: if V(N ,P),VO(N ,P) ∈ {SAT,UNSAT}

∧ V(N ,P) ̸= VO(N ,P) then
6: return True
7: return False

One possible risk when using Alg. 1 is a “flip” between the
two verifiers. This can happen when initially, VO produces
a correct answer and V does not; but after a simplification
step, V starts producing the correct answer and VO starts
producing an incorrect answer. This situation is unlikely: the
simplification steps we propose later make local modifications
to the network, and are consequently far more likely to
continue to trigger the same bug in V than to trigger a new
one in VO. Still, this concern can be mitigated even further
by using multiple oracle verifiers, and ensuring that they all
agree amongst themselves while V dissents. Even though this
design does not completely prevent a “flip” scenario, it makes
it highly unlikely.

Single Verifier Mode. Our approach could also be applied
to delta-debug a single verifier that returns incorrect satis-
fying assignments, without using an oracle. As we explain
in Sec. III-B, the simplification methods we apply require
the returned satisfying assignment from either the faulty or
the oracle verifier; and thus, if the faulty verifier returns an
incorrect satisfying assignment for the query at hand, we can
drop the oracle verifier. This is achieved by removing the last
“if” condition from Alg. 3 and removing the oracle verifier
VO from the inputs. Note, however, that if the faulty verifier
returns an UNSAT answer, an oracle verifier is always needed.

B. Simplification Methods

A core component of Alg. 1 is the selection of simplification
strategy to apply (Line 1 in Alg. 2). We now describe our pool
of neural network simplification methods, and the strategy
that we suggest for selecting among them. The goal of all
the simplification methods we propose here is to reduce
neural network sizes, while keeping the network’s behavior
(i.e., its outputs) similar to that of the original; especially on
the counter-example provided by either the faulty verifier or
the oracle verifier. Note that a single simplification method
can often be applied multiple times, in different ways, using
different input parameters.

Method 1: linearizing piecewise-linear activation functions
between fully-connected layers. In general, the presence of
activation functions is a major source of complexity in the
verification process of neural networks: they render the prob-
lem NP-complete, require complex mechanisms for linearly
approximating them, and often entail case-splitting that slows
down the verifiers [30], [39], [57]. Thus, in order to simplify
the neural network, we propose to eliminate such activation
functions, by fixing them to a single linear segment, effectively
replacing them with linear constraints. This procedure is
performed on an entire layer at a time; which, in turn, creates
a sequence of consecutive purely linear layers that can then be
merged into a single linear layer, reducing the overall number
of layers and neurons in the network.

In choosing the linear segment to which each function is
fixed, we propose to use the counter-example I provided by
either the faulty verifier or the oracle verifier. The output of the
new linear segment we choose, with respect to I , will match
the output of the activation function on I .

For simplicity, we focus here on the ReLU activation
function (ReLU(x) = max (x, 0)), although the technique
is applicable to any piecewise-linear function. Intuitively, in
such cases we propose to replace active ReLUs (x ≥ 0) by
the identify function, and inactive ReLUs (x < 0) by zero.
More formally, observe two consecutive layers, lt and lt+1, in
the neural network N , where layer lt has a ReLU activation
function. We construct an alternative layer, la, to replace both
lt and lt+1. la inherits the activation function of lt+1. The
weights W a and the biases Ba of la are calculated as:

W a = W t+1W ′W t

Ba = W t+1W ′Bt +Bt+1

where

W ′
i,j =

{︄
1 i = j ∧

(︂
N lt

Q (I)
)︂
i
≥ 0

0 otherwise

Here W ′ is the new linear segment replacing the activation
function ReLU. Finally, the obtained simplified network Nr

is the network N where layers lt and lt+1 are deleted and
replaced with la.

Fig. 2 depicts the result of applying this method on layers
l2 and l3 from Fig. 1, using the assignment Ie = (5). Fig. 2a
depicts the layers selected for merging; and Fig. 2b depicts the
resulting neural network. Notice that N l2

e (Ie) = (4, 2,−2),
meaning that only the ReLUs in neurons l20 and l21 are active.
Thus, these ReLUs are replaced by the identity function,
whereas the inactive ReLU of l22 is replaced by 0. After this
step, layers l2 and l3 perform only linear operations, and are
merged into a single layer.

Method 2: linearizing piecewise-linear activation functions
between convolutional layers. In this method, a convolutional
layer is combined with the layer following it (either a fully
connected layer or a convolutional one), and replaced by a
single, fully connected layer.

37

x

l10

l11

l12

+10

−2.5

+7

r10

r11

r12

l20

l21

l22

+8

+2

r20

r21

r22

y

−5

−0.5

−1

ReLU

ReLU

ReLU

0.8

2

−1

0.5

0.5

−2

−1

ReLU

ReLU

ReLU

0.25

2

0.5

(a)

x

l10

l11

l12

+10

−2.5

+7

r10

r11

r12

+6

y

−5

−0.5

−1

ReLU

ReLU

ReLU

0.2

0.75

−0.5

(b)

Fig. 2: Ne with layers l2 and l3 selected in orange (a), and
then merged (b).

For simplicity, we focus here on the case where the second
layer is fully connected. More formally, observe two consecu-
tive layers, lt and lt+1 in N , where lt is a convolutional layer
and lt+1 is a fully connected layer. Our goal is to construct
an alternative layer, la, that will replace lt and lt+1. Since a
convolutional layer is a particular case of fully connected layer,
we construct la by first converting the convolutional layer lt

into a fully connected one, denoted lc; then linearizing the
activation functions, as in Method 1; and finally, combining
the two layers into one. This method may add edges to
the network, and could potentially cause the network size to
temporarily increase. However, when this method is used in
conjunction with the remaining methods, it sets the network
up for additional simplification, which ultimately results in a
much smaller network.

Denote by W t and W t+1 the matrices representing the
weights of layer lt and lt+1 respectively, and by Bt and
Bt+1 the vectors representing their respective biases. To
transform a convolutional layer into a fully connecting one,
we calculate the weights, W c, and the biases, Bc, of the fully
connected layer replacing the convolutional one, according to
the conventional layer parameters. First, we turn its input and
output from a multidimensional tensors into 1-dimensional
vectors. The height and width (dimensions) of the feature maps

in the convolutional layer’s output are: ho, wo where

ho =

⌊︃
h+ 2p− k

s

⌋︃
+ 1, wo =

⌊︃
w + 2p− k

s

⌋︃
+ 1.

The convolutional layer’s output contains co feature maps, i.e.,
the dimensions of the output are (co × ho × wo). Thus, the
dimensions of W c are (cohowo×cihw). W c is a sparse matrix.
To calculate the value of the i, j-th entry in W c, we first
compute the following values:

c′i =

⌊︃
j

hw

⌋︃
, c′o =

⌊︃
i

howo

⌋︃
,

i′ =

⌊︃
i− cihw

w

⌋︃
−
(︃⌊︃

j − cohowo

wo

⌋︃
· s− p

)︃
j′ = ((i− cihw) mod w)− (((j − cohowo) mod wo) · s− p)

c′i and c′o are the input and output channels that the i, j-th
entry should be associated with. i′ and j′ are the indices in
the kernel that should match to the i, j-th entry. The weight
matrix W c is given by:

W c
i,j =

{︄
W t

c′i,c
′
o,i

′,j′ 0 ≤ i′ ∧ j′ < k

W c
i,j = 0 otherwise

Finally,
Bc

i = Bt

⌊ i
howo
⌋

According to this construction of W c and Bc, they will
have the same functionality as the convolutional operation
they replace (assuming no floating-point or numerical errors).
This step may temporarily increase the number of edges in
the network (the number of neurons remains fixed); but this
is required to prepare for the minimization step.

The next step is to linearize the ReLU. This is done in a
similar manner to the linearization in the previous method,
from which we get W ′. Next, we construct the weights W a

and the biases Ba of the alternative layer la:

W a =W t+1W ′W c

Ba =W t+1W ′Bc +Bt+1

And the activation function assigned to the new layer la is the
same as the one assigned to layer lt+1. Finally, the simplified
neural network Nr is the network N , where layers lt and lt+1

are deleted and replaced with la.
In case lt+1 is also a convolutional layer, we convert it to

a fully connected layer, as we did with lt; and the remainder
of the process is unchanged.

Method 3: merging neurons. In this method, we seek to
merge a pair of neurons in the same layer into a single neuron,
thus decreasing the neural network size by one. Of course, this
entails selecting the weights of this new neuron’s incoming and
outgoing edges, as well as its bias. Our motivation is to cause
the merged neuron to produce values close to those of the
original neurons, and consequently cause little changes in the
neural network’s eventual output. We present first the technical

38

process of merging neurons, and later discuss which pairs of
neurons should be merged.

We focus again on the case where the activation function is
ReLU. We first use the counter-example I (returned by either
the faulty verifier or the oracle verifier) to check whether the
activation functions of the neurons being merged have the
same phase — i.e., if they are both active, or both inactive. If
they have the same phase, we compute the merged neuron’s
weights and biases using the original neurons’ weights and
biases. Specifically, the weight of each edge incoming to the
merged neuron is the mean of the original incoming edge
weights, and the neuron’s bias is the mean of the original
neurons’ biases; whereas the weights of its outgoing edges
are the weighted sum, according to I , of the original outgoing
edge weights. We choose a weighted sum, instead of a simple
sum, to ensure that the neurons in the following layer obtain
values similar to their original ones with respect to I; and
also to preserve the network’s behavior. In case one of the
neurons is active and the other is inactive, we simply delete
the inactive one, since it does not contribute to the following
layer’s neuron values (with respect to I).

Formally, given a neural network, N , two successive layers
in it, lt and lt+1, and two neurons indices b < c, we construct
two alternative layers la and la+1 that will replace lt and lt+1

respectively. la and la+1 inherit the activation functions of lt

and lt+1 respectively. If the ReLUs of the neurons b and c

in layer lt have the same phases:
(︂
N lt(I)

)︂
b
,
(︂
N lt(I)

)︂
c
> 0

or
(︂
N lt(I)

)︂
b
,
(︂
N lt(I)

)︂
c
< 0, the weights and the biases

W a,W a+1, Ba, Ba+1 of the alternative layers are calculated
as follows:

Ba
i =

⎧⎪⎨⎪⎩
Bt

i i < b ∨ b < i < c
Bt

b+Bt
c

2 i = b

Bt
i+1 c ≤ i

Ba+1 = Bt+1

W a
i,j =

⎧⎪⎨⎪⎩
W t

i,j i < b ∨ b < i < c
W t

b,j+W t
c,j

2 i = b

W t
i+1,j c ≤ i

W a+1
i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W t+1

i,j j < b ∨ b < j < c

2·
(︂
W t+1

i,b

(︂
N lt+1

(I)
)︂
b
+W t+1

i,c

(︂
N lt+1

(I)
)︂
c

)︂
(N lt+1 (I))

b
+(N lt+1 (I))

c

j = b

W t+1
i,j+1 c ≤ j

Otherwise, if the ReLUs of the neurons b and c in layer
lt have different phases:

(︂
N lt(I)

)︂
b
> 0 ∧

(︂
N lt(I)

)︂
c
< 0

(assume w.l.o.g. that the c-th neuron is the inactive one), the
weights and biases W a,W a+1, Ba, Ba+1 of the alternative

layers are calculated as follows:

Ba
i =

{︄
Bt

i i < c

Bt
i+1 c ≤ i

, Ba+1 = Bt+1

W a
i,j =

{︄
W t

i,j i < c

W t
i+1,j c ≤ i

, W a+1
i,j =

{︄
W t+1

i,j j < c

W t+1
i,j+1 c ≤ j

Finally, the obtained simplified neural network Nr, is the
network N where layers lt and lt+1 are replaced with la and
la+1 respectively. This method can be applied repeatedly, to
reduce the network size even further.

An example of applying this method on the pair of neurons
l20 and l21 in Ne from Fig. 1 using the assignment Ie = (5)
appears in Fig. 3. Fig. 3a shows the neurons selected for
merging, and Fig. 3b shows the result of the merge.

x

l10

l11

l12

+10

−2.5

+7

r10

r11

r12

l20

l21

l22

+8

+2

r20

r21

r22

y

−5

−0.5

−1

ReLU

ReLU

ReLU

0.8

2

−1

0.5

0.5

−2

−1

ReLU

ReLU

ReLU

0.25

2

0.5

(a)

x

l10

l11

l12

+10

−2.5

+7

r10

r11

r12

l20

l2l

+5

r20

r21

y

−5

−0.5

−1

ReLU

ReLU

ReLU

0.4

2

−0.25

0.5

−1

−1

ReLU

ReLU

5/3

0.5

(b)

Fig. 3: Ne with neurons l20 and l21 selected in orange (a), and
then merged (b).

Choosing which pair of neurons to merge is crucial for
the success of this method. Every two neurons in the same
layer are valid candidates; however, some pairs are more
likely to succeed than others by resulting in a simplified
neural network that behaves similarly to the original. We
consider the following possible approaches for prioritizing
between the pairs: (1) an arbitrary ordering; (2) prioritizing
pairs with neurons that are assigned similar values (prior to
the activation function), when the network is evaluated on
assignment I . The motivation is that merging such pairs is
expected to have smaller effect on the overall functionality
of the neural network; (3) prioritizing pairs of neurons whose

39

ReLUs are inactive when evaluated on I . The motivation is
that inactive neurons may have little effect on the bug at hand.
This approach can be combined with Approach 2 to prioritize
pairs with similar values after categorizing them by the status
of the ReLUs; (4) prioritizing pairs of neurons with positive
values with respect to I . This approach, too, can be combined
with Approach 2; and (5) prioritizing pairs of neurons with
negative values, and then pairs with positive values, with
respect to I . This approach is a combination of Approaches
3 and 4, and again uses Approach 2 for internal prioritization
within each category.

Strategy for applying the simplification rules. Within Alg. 1,
the simplification steps mentioned above can be invoked in any
order. We propose to attempt methods that significantly reduce
the neural network size first, in order to reduce verification
times. We empirically observed that this is achieved by the
following strategy: first, attempt to linearize and merge con-
volutional layers (Method 2). Second, attempt to linearize and
merge fully connected layers (Method 1) — starting with the
output layer, and working backwards towards the input layer.
Finally, merge neurons (Method 3) according to Approach 5.
However, our implementation is highly customizable, and
users can configure it to use any other strategy, according to
the task at hand.

To illustrate, applying our proposed strategy to Ne from
Fig. 1, with respect to the assignment Ie = (5) in which
N l1

e (Ie) = (−15,−5, 2) and N l2

e (Ie) = (4, 2,−2), would
result in attempting the simplification methods in the following
order: (1) merge the layers l2 and l3; (2) merge the layers l1

and l2; (3) merge the pair of neurons l10, l
1
1; (4) merge the pair

of neurons l21, l
2
2; (5) merge the pair of neurons l20, l

2
2; (6) merge

the pair of neurons l11, l
1
2; and then, (7) merge the pair of

neurons l10, l
1
2. These steps are attempted, in order, until one

succeeds; after which the strategy is reapplied to the simplified
network, and so on.

IV. IMPLEMENTATION AND EVALUATION

We designed our tool, DELBUGV, to be compatible with
the standard input format used in the VNN-COMP competi-
tion [9], in which verification queries are encoded using the
VNN-LIB format [11]; and which, in turn, relies on the Open
Neural Network Exchange (ONNX) format. This facilitated
integrating DELBUGV with the various verifiers. DELBUGV
is implemented in Python, and contains classes that wrap
objects of these formats. The tool has a modular design
that allows applying our proposed minimization methods in
any order desired. The source code can be found at https:
//github.com/Raya5/DelBugV.

VNN-COMP’21 included 12 participating neural network
verifiers, and these were tested on a set of verification queries.
We began by extracting from the VNN-COMP’21 results pairs
of dissenting verifiers, and the verification queries that trig-
gered these discrepancies. Each such triple (two verifiers and
a query) constitutes an input to DELBUGV. This extraction
led us to target the following verifiers: (1) Marabou [32];

(2) NNV [50]–[53], [60]; (3) NeuralVerification.jl (NV.jl) [36];
and (4) nnenum [7], [8], [50], [51]. In the experiments
described next, we used the same versions of these verifiers
that were used in VNN-COMP’21.

Neuron Merging and Prioritization Approaches. For our
first experiment, we set out to determine which of the neuron-
pair prioritization schemes described as part of Method 3
in Sec. III-B is the most successful. We measured success
along two parameters: the size of the simplified network
obtained, and by the percentage of successful merging steps
along the way. We tested our algorithm on 5 input triples,
involving networks of size 310 each. Using only Method 3,
we ran DELBUGV with each of the prioritization schemes,
and counted for each scheme the number of merging steps
performed and the number of the steps that succeeded on
all of the 5 input triples. Table. I shows the results of this
comparison: the second column indicates, for every approach,
the percentage of the successful steps out of all the steps tried,
aggregated for all 5 benchmarks.

TABLE I: Comparing neurons merging approaches (Method
3) by size reduction and successful merges.

Successful merges (%) Average Reduction (%)
Approach 1 37.2% 96.0%
Approach 2 68.4% 95.9%
Approach 3 71.6% 96.0%
Approach 4 62.9% 95.8%
Approach 5 75.9% 96.0%

Looking at the average reduction sizes, the results indicate
that all 5 approaches were able to achieve a similar reduction
in size, with a slight advantage to approaches 1, 3 and 5.
However, the number of successful merges varied significantly
— from Approach 1, in which only 37.2% of the merge steps
were successful, and up to 75.9% for Approach 5 (in bold).
These results thus indicate that Approach 5 is the most efficient
among the considered approaches, and so we used it as our
default strategy for Method 3 in the subsequent experiments.

Linearizing ReLU Activations. In Method 1 and Method 2 in
Sec. III-B, we proposed to linearize activation functions, and
then merge them with the previous and following layers. These
methods can be applied to any piecewise-linear activation
function in the network. The order in which they are applied
is customizable. In this experiment, we set out to compare lin-
earizing ReLUs in ascending order (from input layer towards
output layer), and in descending order (from output towards
input). Table II shows the results of this experiment.

Every row in the table corresponds to an input triple to
DELBUGV (two disagreeing verifiers and a verification query
that they disagreed on), and the two simplification approaches
that were attempted.

For each such experiment, the second column indicates the
number of simplification steps tried, until DELBUGV reached
saturation (there were no additional steps to try). The third
column indicates the number of the successful steps out of all

40

https://github.com/Raya5/DelBugV
https://github.com/Raya5/DelBugV

TABLE II: Comparing linearizing layers approaches by suc-
cessful steps. * indicates the existence of a convolutional layer.

Linearizing
approach

No. of
steps

No. of
successful

steps

Successful
steps %

Neuron
reduction %

1. Ascending 6 6 100.0% 96.7%
Descending 6 6 100.0% 96.7%

2. Ascending 6 6 100.0% 96.7%
Descending 6 6 100.0% 96.7%

3. Ascending 6 6 100.0% 96.7%
Descending 6 6 100.0% 96.7%

4. Ascending 6 0 0.0% 0.0%
Descending 6 0 0.0% 0.0%

5. Ascending 12 5 41.6% 80.6%
Descending 9 6 66.6% 96.7%

6. Ascending 3 2 66.6% 39.2%
Descending 2 2 100.0% 39.2%

7. Ascending 3* 2* 66.6% 65.8%
Descending 2* 1 50.0% 0.0%

the steps. In column four, the percentage of successful steps
out of all steps is shown; we use this column to compare the
approaches. We mark in bold the leading approach for every
triple. The final column shows the reduction percentage in the
neural network size. When one of the approaches was clearly
superior, the entry appears in bold.

To analyze the results, observe, e.g., the 5th experiment
in Table II. The results imply that when using the ascending
approach, 12 linearizing and merging steps were made, until
the network could not be simplified further with either Method
1 or Method 2. Of these 12 steps, 5 were successful —
and consequently, the simplified network has 5 fewer layers
than the original. In contrast, with the descending approach
only 9 steps were made until the network could not be
simplified further, 6 of which were successful. Consequently,
the simplified network in this case has 6 fewer layers compared
to the original.

The results indicate that linearizing in descending order
slightly outperforms linearizing in ascending order, although
the gap is not very significant. We believe that the results
depend also on both the functionality of the verifier and the
values of the network as well. Meaning, they can vary between
the benchmarks. The neural network in the last row included
a convolutional layer, and, according to the results, linearizing
it in ascending order performed better. After investigating this
query further, we noticed that in the ascending order approach,
the convolutional layer was merged into a fully connected one;
whereas the descending approach did not succeed in removing
or merging any convolutional layers. We thus conclude that,
for a convolutional network, it is advisable to apply Method
2 before applying Method 1.

An interesting phenomenon in both our methods is that
they have an overall high reduction percentage for most of
the strategies. The strategies mainly differ in the number
of steps taken to reach this reduction. This phenomenon
implies that the simplification methods are overall effective,
but may be time-consuming. Thus, using strategies that entail
dispatching fewer verification queries using the verifiers is
more productive.

Delta Debugging Discrepancies from VNN-COMP’21. For
our final experiment, we considered 13 triples of verifiers,
oracle verifiers, and verification queries. Of these triples, 11
contained DNNs from the ACAS-Xu family [30], 1 was a
DNN from the MNIST DNNs [35], and 1 was a DNN from
the Oval21 benchmark [9]. The DNNs from the ACAS-Xu
family had 8 layers: 6 inner fully-connected layers with 50
neurons in each and 5 neurons in both the input and output
layer — 310 neurons in total in each network. The MNIST
DNN contained 4 fully-connected layers with 784 neurons
in the input layer, 256 neurons in each of the hidden layers
and 10 neurons in the output layer — 1306 neurons in total.
The Oval21 DNN is a convolutional neural network with 5
layers. Its input layer contains 3072 neurons (which represent
3 × 32 × 32 images). Those neurons are processed by the
first two convolutional hidden layers to 4096 neurons and
then to 2048 neurons. The following hidden layer is a fully-
connected one with 100 neurons followed by the output layer
which contains 10 neurons — in total, the Oval21 DNN
has 9326 neurons. It is worth mentioning that the properties
we used (taken from VNN-COMP) separately state the input
specifications and output specifications; however, our methods
do not require such a distinction. Further, although the VNN-
COMP specifications contains primarily linear constraints, our
method can also handle relational properties.

Using the optimal configuration of our tool as previously
discussed, we applied the full-blown delta-debugging algo-
rithm to all of our 13 benchmarks. The results appear in
Table. III. Every row in the table represents a triple, and
the first two columns indicate the number of neurons in the
original network, and the number of remaining neurons after
delta debugging was applied. The next two columns indicate
the number of layers in the original and reduced networks;
and the final column indicates the percentage of neurons that
were removed.

TABLE III: Delta-debugging using our algorithm. * indicates
the existence of a convolutional layer.

Neurons Layers Reduction
percentageIn Original In reduced In original In reduced

310 6 8 2 98%
310 7 8 2 97%
310 6 8 2 98%
310 12 8 8 96%
310 6 8 2 98%

9326 12 5* 3 99%
1306 11 4 2 99%
310 10 8 3 96%
310 6 8 2 98%
310 10 8 4 96%
310 10 8 4 96%
310 9 8 4 97%
310 13 8 6 95%

Overall, the algorithm performed exceedingly well, reducing
the network sizes by an average of 96.8% (!); and, in some
cases, causing a size decrease of 99%, from a neural network
with 1306 neurons and 4 layers to just 11 neurons and 2 layers
(an input layer and an output layer, without any activation

41

functions). The minimal decrease observed was 95%, from
310 neurons to 13. We regard these results as a very strong
indication of the usefulness of delta debugging in the context
of DNN verification. Further analyzing the results, we observe
that the ReLU linearization simplification rule was responsible
for an average of 66% of the size reduction, whereas the
remaining two rules were responsible for an average of 34% —
indicating that the ReLU linearization simplification rule is the
main workhorse of our approach at its current configuration.

V. RELATED WORK

With the increasing pervasiveness of DNNs, the verifica-
tion community has been devoting growing efforts to veri-
fying them. Numerous approaches have been proposed, in-
cluding SMT-based approaches [23], [30]–[32], [48], [58],
approaches based on LP or MILP solvers [14], [16], [49],
reachability-based approaches [38], [60], abstraction and
abstract-interpretation based approaches [5], [18], [24], [27],
[39], [44], [46], [57], synthesis-based approaches [33], [42],
run-time optimization [4], [6], quantitative verification [10],
verification of recurrent networks [28], [62], and many others.
These approaches, in turn, have been used in numerous appli-
cation domains [15], [17], [20], [47], [54], [55], [61]. Given
the scope of these efforts, and the number of available tools,
it is not surprising that bugs are abundant, and that engineers
are in need of efficient debugging tools.

To the best of our knowledge, no previous work has applied
delta debugging in the context of DNN verification, although
similar approaches have been shown successful in the related
domains of SMT [12], [40] and SAT [13] solving. Related
efforts have attempted to reduce DNN sizes, with the purpose
of producing smaller-but-equivalent networks, or networks
smaller with respect to a particular verification property of
interest [5], [34], [43], [44]. In the future, principles from these
approaches could be integrated as simplification strategies
within our delta-debugging approach.

VI. CONCLUSION

In this paper, we presented the DELBUGV tool for automat-
ically reducing the size of a verification query with respect to
an erroneous neural network verifier. We focused on delta-
debugging techniques, and proposed multiple minimization
methods for reducing neural network sizes. These techniques
attempt to simplify the neural network in question, while mod-
ifying it as little as possible. We also suggested a strategy for
the order in which to apply those methods. We demonstrated
the effectiveness of DELBUGV on actual benchmarks from the
VNN-COMP’21 competition, and were able to significantly
simplify them. We regard this work as another step towards
more sound tools for DNN verification.

Moving forward, we aim to continue this line of work
in several directions. One direction we plan to pursue is to
extend our evaluation, by considering more diverse sets of
benchmarks and comparing our approach also to existing,
general-purpose delta debuggers. Another direction is to ex-
tend our pool of neural network simplification methods, for

example by supporting also activation functions that are not
piecewise linear (e.g., Sigmoids). Additionally, we want to
theoretically analyze our simplification methods. Such analysis
will potentially benefit us in reducing the need for oracle
verifiers.

Acknowledgements. This work was partially supported by the
Binational Science Foundation (grant number 2021769).

REFERENCES

[1] A. Albarghouthi. Introduction to Neural Network Verification. verified-
deeplearning.com, 2021.

[2] G. Amir, Z. Freund, G. Katz, E. Mandelbaum, and I. Refaeli. veriFIRE:
Verifying an Industrial, Learning-Based Wildfire Detection System. In
Proc. 25th Int. Symposium on Formal Methods (FM), 2023.

[3] G. Amir, T. Zelazny, G. Katz, and M. Schapira. Verification-Aided
Deep Ensemble Selection. In Proc. 22nd Int. Conf. on Formal Methods
in Computer-Aided Design (FMCAD), pages 27–37, 2022.

[4] G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri. Optimization
and Abstraction: a Synergistic Approach for Analyzing Neural Network
Robustness. In Proc. 40th ACM SIGPLAN Conf. on Programming
Languages Design and Implementations (PLDI), pages 731–744, 2019.

[5] P. Ashok, V. Hashemi, J. Kretinsky, and S. Mohr. DeepAbstract: Neural
Network Abstraction for Accelerating Verification. In Proc. 18th Int.
Symp. on Automated Technology for Verification and Analysis (ATVA),
pages 92–107, 2020.

[6] G. Avni, R. Bloem, K. Chatterjee, T. Henzinger, B. Könighofer, and
S. Pranger. Run-Time Optimization for Learned Controllers through
Quantitative Games. In Proc. 31st Int. Conf. on Computer Aided
Verification (CAV), pages 630–649, 2019.

[7] B. Bak. nnenum: Verification of Relu Neural Networks with Optimized
Abstraction Refinement. In Proc. 13th NASA Formal Methods Sympo-
sium (NFM), pages 19–36, 2021.

[8] S. Bak. Execution-Guided Overapproximation (EGO) for Improving
Scalability of Neural Network Verification. In Proc. 3rd Int. Workshop
on Verification of Neural Networks (VNN), 2020.

[9] S. Bak, C. Liu, and T. Johnson. The Second International Verification
of Neural Networks Competition (VNN-COMP 2021): Summary and
Results, 2021. Technical Report. http://arxiv.org/abs/2109.00498.

[10] T. Baluta, S. Shen, S. Shinde, K. Meel, and P. Saxena. Quantitative
Verification of Neural Networks and its Security Applications. In Proc.
ACM SIGSAC Conf. on Computer and Communications Security (CCS),
pages 1249–1264, 2019.

[11] C. Barrett, G. Katz, D. Guidotti, L. Pulina, N. Narodytska, and A. Tac-
chella. The Verification of Neural Networks Library (VNN-LIB), 2019.
www.vnnlib.org.

[12] R. Brummayer and A. Biere. Fuzzing and Delta-Debugging SMT
Solvers. In Proc. 7th Int. Workshop on Satisfiability Modulo Theories
(SMT), 2009.

[13] R. Brummayer, F. Lonsing, and A. Biere. Automated Testing and
Debugging of SAT and QBF Solvers. In Proc. 13th Int. Conf. on Theory
and Applications of Satisfiability Testing (SAT), pages 44–57, 2010.

[14] R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. Mudigonda. A
Unified View of Piecewise Linear Neural Network Verification. In Proc.
32nd Conf. on Neural Information Processing Systems (NeurIPS), pages
4795–4804, 2018.

[15] G. Dong, J. Sun, J. Wang, X. Wang, and T. Dai. Towards Repairing
Neural Networks Correctly, 2020. Technical Report. http://arxiv.org/abs/
2012.01872.

[16] R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. In Proc. 15th Int. Symp. on Automated Technology
for Verification and Analysis (ATVA), pages 269–286, 2017.

[17] T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying Learning-
Augmented Systems. In Proc. Conf. of the ACM Special Interest Group
on Data Communication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM), pages
305–318, 2021.

[18] T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri,
and M. Vechev. AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P), 2018.

42

http://arxiv.org/abs/2109.00498
www.vnnlib.org
http://arxiv.org/abs/2012.01872
http://arxiv.org/abs/2012.01872

[19] Y. Goldberg. A Primer on Neural Network Models for Natural Language
Processing. Journal of Artificial Intelligence Research, 57:345–420,
2016.

[20] B. Goldberger, Y. Adi, J. Keshet, and G. Katz. Minimal Modifications
of Deep Neural Networks using Verification. In Proc. 23rd Int. Conf. on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR),
pages 260–278, 2020.

[21] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[22] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples, 2014. Technical Report. http://arxiv.org/abs/1412.
6572.

[23] D. Gopinath, G. Katz, C. Pǎsǎreanu, and C. Barrett. DeepSafe: A
Data-driven Approach for Checking Adversarial Robustness in Neural
Networks. In Proc. 16th. Int. Symp. on on Automated Technology for
Verification and Analysis (ATVA), pages 3–19, 2018.

[24] E. Goubault, S. Palumby, S. Putot, L. Rustenholz, and S. Sankara-
narayanan. Static Analysis of ReLU Neural Networks with Tropical
Polyhedra. In Proc. 28th Int. Symposium on Static Analysis (SAS), pages
166–190, 2021.

[25] J. Guo, H. He, T. He, L. Lausen, M. Li, H. Lin, X. Shi, C. Wang, J. Xie,
S. Zha, et al. GluonCV and GluonNLP: Deep Learning in Computer
Vision and Natural Language Processing. Journal of Machine Learning
Research, 21(23):1–7, 2020.

[26] J. Hou, B. Adhikari, and J. Cheng. DeepSF: Deep Convolutional Neural
Network for Mapping Protein Sequences to Folds. Bioinformatics,
34(8):1295–1303, 2018.

[27] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification
of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 3–29, 2017.

[28] Y. Jacoby, C. Barrett, and G. Katz. Verifying Recurrent Neural Networks
using Invariant Inference. In Proc. 18th Int. Symposium on Automated
Technology for Verification and Analysis (ATVA), pages 57–74, 2020.

[29] K. Jia and M. Rinard. Exploiting Verified Neural Networks via Floating
Point Numerical Error, 2020. Technical Report. http://arxiv.org/abs/
2003.03021.

[30] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proc.
29th Int. Conf. on Computer Aided Verification (CAV), pages 97–117,
2017.

[31] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
a Calculus for Reasoning about Deep Neural Networks, 2021.

[32] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443–452, 2019.

[33] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. Shield Synthesis
for Reinforcement Learning. In Proc. Int. Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA),
pages 290–306, 2020.

[34] O. Lahav and G. Katz. Pruning and Slicing Neural Networks using
Formal Verification. In Proc. 21st Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), pages 183–192, 2021.

[35] Y. LeCun. The MNIST Database of Handwritten Digits, 1998. http:
//yann.lecun.com/exdb/mnist/.

[36] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. Kochenderfer. Algo-
rithms for Verifying Deep Neural Networks, 2020. Technical Report.
http://arxiv.org/abs/1903.06758.

[37] X. Liu, P. He, W. Chen, and J. Gao. Multi-Task Deep Neural Networks
for Natural Language Understanding, 2019. Technical Report. http://
arxiv.org/abs/1901.11504.

[38] A. Lomuscio and L. Maganti. An Approach to Reachability Analysis
for Feed-Forward ReLU Neural Networks, 2017. Technical Report. http:
//arxiv.org/abs/1706.07351.

[39] M. Müller, G. Makarchuk, G. Singh, M. Püschel, and M. Vechev.
PRIMA: General and Precise Neural Network Certification via Scalable
Convex Hull Approximations. In Proc. 49th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2022.

[40] A. Niemetz, M. Preiner, and C. Barrett. Murxla: A Modular and Highly
Extensible API Fuzzer for SMT Solvers. In Proc. 34th Int. Conf. on
Computer Aided Verification (CAV), pages 92–106, 2022.

[41] F. Noé, G. De Fabritiis, and C. Clementi. Machine Learning for Protein
Folding and Dynamics. Current Opinion in Structural Biology, 60:77–
84, 2020.

[42] E. Polgreen, R. Abboud, and D. Kroening. Counterexample Guided
Neural Synthesis, 2020. Technical Report. https://arxiv.org/abs/2001.
09245.

[43] P. Prabhakar. Bisimulations for Neural Network Reduction. In Proc.
23rd Int. Conf. Verification on Model Checking, and Abstract Interpre-
tation (VMCAI), pages 285–300, 2022.

[44] P. Prabhakar and Z. Afzal. Abstraction Based Output Range Analysis
for Neural Networks, 2020. Technical Report. https://arxiv.org/abs/2007.
09527.

[45] L. Pulina and A. Tacchella. An Abstraction-Refinement Approach to
Verification of Artificial Neural Networks. In Proc. 22nd Int. Conf. on
Computer Aided Verification (CAV), pages 243–257, 2010.

[46] G. Singh, T. Gehr, M. Puschel, and M. Vechev. An Abstract Domain for
Certifying Neural Networks. In Proc. 46th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2019.

[47] M. Sotoudeh and A. Thakur. Correcting Deep Neural Networks with
Small, Generalizing Patches. In Workshop on Safety and Robustness in
Decision Making, 2019.

[48] C. Strong, H. Wu, A. Zeljić, K. Julian, G. Katz, C. Barrett, and
M. Kochenderfer. Global Optimization of Objective Functions Repre-
sented by ReLU Networks. Journal of Machine Learning, pages 1–28,
2021.

[49] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural
Networks with Mixed Integer Programming, 2017. Technical Report.
http://arxiv.org/abs/1711.07356.

[50] H.-D. Tran, S. Bak, W. Xiang, and T. Johnson. Verification of Deep
Convolutional Neural Networks Using ImageStars. In Proc. 32nd Int.
Conf. on Computer Aided Verification (CAV), pages 18–42, 2020.

[51] H.-D. Tran, D. Manzanas Lopez, P. Musau, X. Yang, L. Nguyen,
W. Xiang, and T. Johnson. Star-Based Reachability Analysis of Deep
Neural Networks. In Proc. Int. Symposium on Formal Methods (FM),
pages 670–686, 2019.

[52] H.-D. Tran, P. Musau, D. Lopez, X. Yang, L. Nguyen, W. Xiang,
and T. Johnson. Parallelizable Reachability Analysis Algorithms for
Feed-Forward Neural Networks. In Proc. 7th Int. Workshop on Formal
Methods in Software Engineering (FormaliSE), pages 31–40, 2019.

[53] H.-D. Tran, X. Yang, D. Lopez, P. Musau, L. Nguyen, W. Xiang, S. Bak,
and T. Johnson. NNV: The Neural Network Verification Tool for Deep
Neural Networks and Learning-Enabled Cyber-Physical Systems, 2020.
Technical Report. http://arxiv.org/abs/2004.05519.

[54] C. Urban, M. Christakis, V. Wüstholz, and F. Zhang. Perfectly Parallel
Fairness Certification of Neural Networks. In Proc. ACM Int. Conf.
on Object Oriented Programming Systems Languages and Applications
(OOPSLA), pages 1–30, 2020.

[55] M. Usman, D. Gopinath, Y. Sun, Y. Noller, and C. Pǎsǎreanu. NNrepair:
Constraint-based Repair of Neural Network Classifiers, 2021. Technical
Report. http://arxiv.org/abs/2103.12535.

[56] International Verification of Neural Networks Competition (VNN-
COMP), 2020. https://sites.google.com/view/vnn20/vnncomp.

[57] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and Z. Kolter.
Beta-CROWN: Efficient Bound Propagation with Per-Neuron Split Con-
straints for Complete and Incomplete Neural Network Verification. In
Proc. 35th Conf. on Neural Information Processing Systems (NeurIPS),
2021.

[58] H. Wu, A. Ozdemir, A. Zeljić, A. Irfan, K. Julian, D. Gopinath,
S. Fouladi, G. Katz, C. Păsăreanu, and C. Barrett. Parallelization
Techniques for Verifying Neural Networks. In Proc. 20th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 128–137,
2020.

[59] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun. Deep Image: Scaling up
Image Recognition. Technical Report. http://arxiv.org/abs/1501.02876.

[60] W. Xiang, H. Tran, and T. Johnson. Output Reachable Set Estimation
and Verification for Multi-Layer Neural Networks. IEEE Transactions
on Neural Networks and Learning Systems (TNNLS), 2018.

[61] X. Yang, T. Yamaguchi, H.-D. Tran, B. Hoxha, T. Johnson, and
D. Prokhorov. Neural Network Repair with Reachability Analysis, 2021.
Technical Report. https://arxiv.org/abs/2108.04214.

[62] H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska.
Verification of Recurrent Neural Networks for Cognitive Tasks via
Reachability Analysis. In Proc. 24th European Conf. on Artificial
Intelligence (ECAI), pages 1690–1697, 2020.

43

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/2003.03021
http://arxiv.org/abs/2003.03021
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1901.11504
http://arxiv.org/abs/1901.11504
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
https://arxiv.org/abs/2001.09245
https://arxiv.org/abs/2001.09245
https://arxiv.org/abs/2007.09527
https://arxiv.org/abs/2007.09527
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/2004.05519
http://arxiv.org/abs/2103.12535
https://sites.google.com/view/vnn20/vnncomp
http://arxiv.org/abs/1501.02876
https://arxiv.org/abs/2108.04214

Formal Methods in Computer-Aided Design 2023

Towards Compositional
Hardware Model Checking Certification

Emily Yu∗

emily.yu2019@gmail.com
Nils Froleyks∗

nils.froleyks@jku.at
Armin Biere†

biere@cs.uni-freiburg.de
Keijo Heljanko‡§

keijo.heljanko@helsinki.fi

∗Johannes Kepler University, Linz, Austria
†University of Freiburg, Freiburg, Germany

‡Helsinki Institute for Information Technology and
§University of Helsinki, Helsinki, Finland

Abstract—In this paper, we revisit and formalize temporal
decomposition, as one of the most basic, widely-used and effective
preprocessing techniques in hardware model checking. The main
contribution is a certification framework for hardware model
checking using temporal decomposition. Our approach enables
generation of a single inductive invariant in a compositional
way using inductive invariant certificates provided by existing
certifying model checkers on the result of preprocessing a model
through temporal decomposition. We implement and evaluate the
method on hardware model checking competition benchmarks.
The experiments confirm the effectiveness of temporal decompo-
sition. The proposed certification approach makes it feasible to
generate a generic proof for model checking and preprocessing.

I. INTRODUCTION

The study of compositional reasoning for safety-critical
systems can be traced back to a few decades ago [1]. Compo-
sitional model checking breaks the model checking procedure
down into several smaller problems, thus enabling faster
and more efficient verification. For example, preprocessing
techniques are widely used in current industry in combination
with standard model checking algorithms.

Among these, temporal decomposition [2] is considered
important in industrial hardware model checking [3], [4].
It computes an over-approximation of reachable states to
efficiently find a set of transient signals that stabilize to their
constant values during any possible execution. A sequence
of transformations is applied to the design under verification,
including time-shifting it from the reset states and elimination
of transient logic. The verification problem thus consists of
verifying that the property holds within the time frame the
design has been shifted, and that the transformed circuit is
safe. For the latter an existing model checker that can provide
certificates is employed, such as k-induction [5], symbolic
model checking using BDDs [6], and IC3/PDR [7].

While progress in verification using compositional reason-
ing continues, the number of certifiable approaches are lim-
ited [8], [9]. One central objective of verification is to develop
a standardised method to generate machine-checkable proofs
for certifying model checking [9]. This is especially crucial
in safety-critical industrial environments, as a faulty processor

Funded by FWF project W1255-N23, the LIT AI Lab funded by the State
of Upper Austria, and Academy of Finland project 336092.

design can be extremely costly for a hardware manufacturer.
Even though a number of single-engine model checkers are
able to generate proofs, a key difficulty in this area is to
produce a single generic certificate for complex verification
pipelines. Furthermore, as in SAT solving [10]–[12], proof
generation becomes rather involved when using preprocessing
techniques, as the proofs from the preprocessors need to be
lifted to proofs for the original model checking problem. This
problem is exacerbated by the fact that the certificate given by
a model checker can be more complex than a simple inductive
invariant [8], [9]. For these reasons there is currently no viable
industrial-strength model checker that provides certificates.

In this paper, we make a contribution toward this direction
by revisiting temporal decomposition and developing a novel,
practical, compositional framework for certifying the model
checking result of the base engine and the employed prepro-
cessing technique in a single proof. The distinguishing feature
of our approach is to generate a single witness circuit as a
certificate for the entire verification procedure, while related
work [13], [14] relies on conceptually more complex deductive
frameworks or has not been applied to industrial relevant
hardware model checking problems that we are targeting. The
approach in [15] also uses a deductive proof system for tem-
poral decomposition that requires multiple independent parts
to be checked, whereas our goal is to design a format such that
only one witness circuit is checked, instead of a multi-stage
proof. In theory, a single semantically simple proof format
can be much easier to check by both untrusted and formally
verified certificate checkers. Proof formats and checkers which
follow the actual reasoning more closely will require to be
adapted for every new technique used in the model checker. In
contrast to [15], [16] that the underlying certificate provided by
base model checkers is an inductive invariant, a witness circuit
is more general. Moreover, different from [13]–[15], [17] as
well as [18] which aims at handling more expressiveness,
our work focuses on certifying safety properties which is the
most prominent part in hardware model checking competitions
and arguably in an industrial setting too. Additionally others
have focused on either verifying model checkers themselves or
lifting it directly to theorem proving [19]–[21]. Fully verifying
model checkers can be a heavy task, as an update in the

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 12 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0002-4993-773X
https://orcid.org/0000-0003-3925-3438
https://orcid.org/0000-0001-7170-9242
https://orcid.org/0000-0002-4547-2701
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_12
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_12
https://creativecommons.org/licenses/by/4.0/

C model checker C′

simulation
checker

inductive
invariant checker

φtransφreset φprop φconsistφinit φconsec

strat.
check

certificate checker

Fig. 1: An outline of the certification flow where C ′ is the
certificate generated from the model checker (formally defined
in Def. 12) and C is the original circuit. The certificate checker
consists of three components and internally generates six SAT
formulas and calls an underlying SAT solver.

optimization techniques often requires the entire procedure
to be verified again. Lastly, similar problems have also been
addressed in the context of software verification [22], [23].

The resulting certificate in our framework can be checked
via six simple SAT checks and a polynomial check follow-
ing the certification flow established in [8] as illustrated in
Fig. 1, thus reducing trusting a PSPACE hard model check-
ing flow into verifying a simple certificate circuit in co-NP.
Our compositional approach breaks the formal proofs into
manageable parts while enabling more certifiable techniques.
For demonstration we focus on the k-induction algorithm as
the base engine for the transformed circuit that provides a
more complex certificate, as well as a BDD-based model
checker. The reason is that our proposed flow requires model
checkers to provide certificates for models with reset functions,
which is technically rather involved to add to existing complex
multi-engine model checkers, but this is a feature we want to
encourage to be implemented.

Based on this, we have implemented a prototype certify-
ing hardware model checker CHMC that performs temporal
decomposition and provides a certificate that can be verified
using a SAT solver. We also present two optimisations for
detecting transient logic in a circuit. The experiments show
our tool is able to solve 29 (out of 818) additional instances
enabling temporal decomposition with the k-induction base
engine, and an additional of 39 instances using the BDD
backend. Our method can produce certificates for all instances
solved by the model checker, and effectively verify them.

II. BACKGROUND

This paper extends the set of certifiable model checking
techniques thus adopts the certificate format from [8], [9].

We assume a set of Boolean variables V . A literal l is either
a variable l ∈ V or its negation. We denote B(V) as the
set of all Boolean functions over V conveniently represented
and with formulas (Boolean expressions). A cube is a non-
contradictory set of literals. For f ∈ B(V) we write f |l to
denote the formula after replacing all occurrences of l in
f with ⊤ and all occurrences of ¬l with ⊥. This naturally

extends to cubes (interpreted as conjunction of literals). We
also write vars(f) to denote the variables that occur in f .

In the following we use a symbolic representation of
hardware circuits matching the notation of [8] summarised
below. This definition has the advantage of being highly
compatible with the AIGER format [24] used for hardware
model checking in practice. Note that we use “⇒ ” for
semantic implication, “→ ” for syntactic implication and “≡ ”
for semantic equivalence cf. [9].

Definition 1 (Circuit [9]). A circuit is a tuple C =
(I, L,R, F, P) where I is a set of Boolean input variables, L is
a set of Boolean latch variables, R = {rl(L) ∈ B(L) | l ∈ L}
is a set of reset functions, F = {fl(I, L) ∈ B(I, L) | l ∈ L}
is a set of transition functions, and P (I, L) ∈ B(I, L) is the
property formula.

We write R(L′) =
∧

l∈L′
(l ≃ rl(L)) for some L′ ⊆ L, where

“≃ ” is used for syntactic equivalence [25]. Furthermore Li

denotes a copy of L in the temporal direction, thus Um =∧
i∈[0,m)

(Li+1 ≃ F (Ii, Li)) denotes an unrolling of length m.

Definition 2 (Stratified circuit [8]). Given a circuit C =
(I, L,R, F, P) with R = {rl | l ∈ L}. The dependency graph
GR has latch variables L as nodes and contains a directed
edge (a, b) from a to b iff a ∈ vars(rb) and rb ̸= b. The circuit
is stratified iff GR is acyclic.

Definition 3 (Stratified simulation [8]). Given two stratified
circuits C = (I, L,R, F, P) and C ′ = (I, L′, R′, F ′, P ′)
where L ⊆ L′. The circuit C is simulated by C ′ iff: (i)
rl(L) ≡ r′l(L

′) for l ∈ L; (ii) fl(I, L) ≡ f ′
l (I, L

′) for l ∈ L;
and (iii) P ′(I, L′) ⇒ P (I, L).

Intuitively, a circuit is stratified if its reset functions are
acyclic. The stratification assumption allows the designed
certificate in [8] to be checked by simple SAT checks instead
of having a one-alternation QBF check as in [9]. The stratified
simulation relation can be therefore verified via three SAT
checks as stated in the definition above and one polynomial
time check for stratification of reset functions of C ′.

Definition 4 (k-induction [9]). Given a circuit C, P is k-
inductive in C iff, (i) Uk−1 ∧ R(L0) ⇒

∧
i∈[0,k)

P (Ii, Li); and

(ii) Uk ∧
∧

i∈[0,k)

P (Ii, Li) ⇒ P (Ik, Lk).

We make use of k-induction [5] formulated as a combination
of BMC check and a consecution check. It generalizes the
concept of checking an inductive invariant which is equivalent
to 1-induction where the invariant is simply the property.

III. OVERVIEW

Temporal decomposition helps to simplify model checking
by removing parts of the circuit that are only needed for
initialisation. Using it as a preprocessing technique, the model
checking problem is decomposed into smaller sub-problems.

45

1110 1100 1000 0000 0100 0010 1010 0110

0001 0011 0101 0111 1001 1011 1101 1111

Fig. 2: State space of a 4-bit shift counter.

A series of transformation is applied to the circuit by time-
shifting it and removing transient signals found via an over-
approximation of the reachable states. We begin with an
example to show that it can be quite useful and complementary
to model checking techniques such as k-induction.

Example 1 (Shift Counter). Figure 2 shows the state transition
diagram of the considered circuit, i.e., a shift counter over 4
bits, with an initial state 1110, where the least significant bit
controls the operational mode and never changes. When this
bit is set to 0, a left shift is performed; if it is set to 1, the
other bits operate as a three-bit binary counter.

Consider the property that at least one bit is zero. As the
diagram shows, it is 8-inductive (as the single bad state with
all bits one is not reachable, but the longest path only having
it as last state has 8 states). In the more general case, with
an arbitrary large number of bits n, the inductive depth k is
exponentially large (2n−1) in n, for a k-induction-based model
checker. The size of the certificate for k-induction using only
the approach presented in [8] without temporal decomposition
would then be in O(k · n) and thus exponential too.

However, if we consider only the reachable part of the state
space, all bits are transient signals as they all eventually sta-
bilise to zero. Therefore we can use temporal decomposition to
simplify the design by time-shifting it and removing transient
logic. The time-shifting depth (later we call it the duration)
is linear in n as it grows linearly in the number of bits. In
this particular scenario, the model checking problem for the
terminal part becomes trivial. We only need a BMC check for
the initial n−1 time frames. This leaves us with the problem:
how to certify model checking with temporal decomposition?

The overall certification approach we propose is outlined in
Fig. 3. For this example suppose we have a set of transient
signals found that stabilise to constant values with duration 3.
In practice the time-shifting namely circuit-forwarding of a
design is implemented implicitly by computing the successor
states originating from reset, however, with the objective of
producing elegant and compositional proofs, we construct
intermediate circuits forwarded by one transition only.

At each forwarding, the circuit gets unrolled by one time
step from reset. For the sequence of circuits C0, ..., C3, a
bounded model checker is used to verify that all initial states
are good states. The last forwarded circuit along the pipeline
(C3) is simplified with transient elimination to obtain the factor
circuit C ′

3, which is given to a base model checker (e.g., k-

induction, BDD or IC3/PDR) that also produces a certificate
(i.e., a witness circuit [8]). We now construct a composite
witness circuit certifying both the preprocessing algorithm for
the transients and the safety property. We then build a sequence
of backward witness circuits while adding the BMC check for
the initial states each time. At each step Wi is a witness circuit
of Ci. In the end, we get W0 as the final witness circuit with
an inductive invariant for the entire procedure.

The final witness can be checked by an external proof
checker [8]. If the check passes, the original circuit is guaran-
teed to be safe. It is thus not necessary to trust the correctness
of the presented framework nor its implementation. The formal
proofs provided in the following sections serve to show that if
the original circuit is safe, a valid certificate can be produced.

IV. TEMPORAL DECOMPOSITION

As one of our contributions we revisit temporal decom-
position by defining a precise formalism and proving its
correctness, which is an improvement over the theory in [2].
We show that our method is complete and will provide a valid
certificate whenever temporal decomposition is employed.

In practice, temporal decomposition uses ternary simula-
tion [26] to find transient signals [2]. As generalization we
define cube semantics and the notion of cube simulation, that
subsumes ternary simulation as well as other optimisations.
We make use of this in our implementation (see Section VI).

Definition 5 (Cube simulation). Given a circuit C = (I, L,R,
F, P), then a cube simulation c0, · · · , cδ, · · · , cδ+ω for δ, ω ∈
N is a sequence of cubes over latch variables L such that,

• R(L) ⇒ c0.
• For i ∈ [0, δ + ω) we require validity of ci ∧ (L′ ≃

F (I, L)) ⇒ c′i+1 (L′ and c′i+1 denote primed copies).
• In addition, it is called a cube lasso iff cδ+ω ∧ (L′ ≃

F (I, L)) ⇒ c′δ.

Note that for δ = 0 and ω = 0, it would simply be a self-
loop. This symbolic definition of cube simulation could be
implemented directly by a symbolic engine. However, ternary
simulation is more appropriate for industrial benchmarks [2].

For brevity we omit (the natural) formal definitions here,
but remark that a “bounded version” of cube simulation
is subsumed by model checking and in particular ternary
simulation does not yield more transients than those produced
by Boolean constraint propagation in the SAT solver. As a
result, for SAT based bounded model checkers (and therefore

46

S0 S1 S2 S′
3
. . .S0 S1 S2 S3

. . .

W3 W ′

S0 S1 S2
. . .

W2

S0 S1
. . .

W1

S0
. . .

W0

S0 S1 S2 S′
3S0 S1 S2 S3

C3 C ′

S0 S1 S2

C2

S0 S1

C1

S0

C0

Forward
Circuit

Backward
Witness

Factor
Circuit

Composite
Witness

Witness
Circuit

S3S3S3 S2S2S1

Fig. 3: An outline of our certification framework (for duration of 3).

k-induction-based model checkers on satisfiable instances),
there is hardly any gain using temporal decomposition.

Proposition 1. Bounded model checking subsumes bounded
cube simulation.

Under cube simulation, transient signals can be found
by identifying those that stay constant from a certain point
onwards along a cube lasso.

Definition 6 (Transients via cube lasso). Given a circuit C and
a cube lasso c0, · · · , cδ, · · · , cδ+ω . A set of transient signals T
is a cube over latches that satisfies ci ⇒

∧
l∈T

l for i ∈ [δ, δ+ω].

For the purpose of temporal decomposition, we could al-
ways time-shift the circuit by δ, however, it can make model
checking of the final circuit easier to reduce this value as much
as possible. For a set of transients found via cube lasso, we
formally define the unstable duration of a circuit. It is the
smallest value for which the last transient becomes constant.

Definition 7 (Unstable duration). Given a cube lasso
c0, · · · , cδ, · · · , cδ+ω and a set of transients T , the unstable
duration d ≤ δ is the lowest index that satisfies ci ⇒

∧
l∈T

l for

i ∈ [d, δ + ω].

For the rest of the paper, we simply refer to it as duration.
By taking the disjunction of all cubes from the duration

onwards, we get an over-approximation of all the reachable
states in the time-shifted circuit.

Definition 8 (Cube loop invariant). Given a cube lasso
c0, · · · , cδ, · · · , cδ+ω , and a set of transients T with a duration
d. The cube loop invariant ϕT is defined as:

ϕT =
∨

i∈[d,δ+ω]

ci.

An immediate observation is that the cube loop invariant
is simply the inductive invariant that implies the stabilised
transients in the time-shifted circuit by the duration. We
formalise this in the following lemma.

Lemma 1. Given a circuit C, a cube lasso
c0, · · · , cd, · · · , cδ, · · · , cδ+ω , and a set of transients T
with a duration d. Let C ′ be the resulting circuit of applying
circuit forwarding to C iteratively d times. The cube loop
invariant is an inductive invariant of C ′ for

∧
l∈T

l.

To formalize “time shifting” we introduce the notion of
stable variables which have the same values throughout the
entire execution and do not appear in any other transition
function nor in the property.

Definition 9 (Stable variable). Given a circuit C =
(I, L,R, F, P), the set Λ ⊆ L is a set of stable variables
if for all l ∈ Λ, the following holds: (i) fl = l; (ii) for all
l′ ∈ L\{l}, l /∈ vars(fl′); and (iii) l /∈ vars(P).

This simple purely syntactic definition of stable variables
is the weakest condition that allows us to avoid a spurious
exponential blowup during circuit forwarding (Def. 10). Note
that here identifying stable variables is a simple polynomial
time check. Replacing it with stronger conditions, such as
cone-of-influence reduction [27], after every forward circuit
construction would potentially yield a smaller certificate,
which we leave to future work.

A forward circuit is constructed based on a given circuit
by copying the set of active variables (i.e., non-stable), and
updating the resets of the original active variables to one
transition ahead using oracles (uninitialised latches) instead
of inputs. The formal definition is given below.

Definition 10 (Forward circuit). Given a circuit C =
(I, L,R, F, P) with a set of stable variables Λ ⊆ L (we refer
to A = L\Λ as the set of active variables). The forward circuit
C ′ = (I, L′, R′, F ′, P) is defined as follows:

• L′ = L∪ I ′∪A′ where I ′ and A′ are copies of I and A.
• R′ = {r′l | l ∈ L′}:

– For l ∈ Λ ∪A′, r′l = rl(I,Λ ∪A′).
– For l ∈ I ′, r′l = l.
– For l ∈ A, r′l = fl(I

′, A′).

• F ′ = {f ′
l | l ∈ L′} :

– For l ∈ L, f ′
l = fl(I, L).

– For l ∈ I ′ ∪A′, f ′
l = l.

An alternative to Def. 10 is to simply copy all latches when
forwarding a circuit, however, the resulting circuit would be
exponential in the duration when doing so iteratively. In the
following we show that the forward circuit is stratified

Lemma 2. Given a stratified circuit C. Its forward circuit C ′

is also stratified.

Proof. Based on the reset function definition in Def. 10, the
reset functions of Λ ∪ A′ are the same as in R(L), which

47

are acyclic. The variables in I ′ are uninitialised, thus do not
depend on the rest of the variables. As R′(A) only uses
variables distinct from A, we conclude C ′ is stratified.

For the forward circuit, we proceed to simplify it by
removing the set of transients that have been found. The
resulting simplified circuit (namely factor circuit) is formally
defined in the following definition.

Definition 11 (Factor circuit). Given a circuit C =
(I, L,R, F, P) and a set of transients T from cube simulation.
Its factor circuit is a tuple C|T = (I, L′, R′, F ′, P ′) such that,

• L′ = L\vars(T).
• R′ = {rl|T | l ∈ L′}.
• F ′ = {fl|T | l ∈ L′}.
• P ′ = P |T .

In the following proposition, we state that the conjunction
of the factor property P |T and

∧
l∈T

l (i.e., the transients are

constant) implies the original property. The same follows for
reset and transition functions.

Proposition 2. (P |T ∧
∧
l∈T

l) ⇒ P , (R|T ∧
∧
l∈T

l) ⇒ R, and

(F |T ∧
∧
l∈T

l) ⇒ F.

An important observation we make is that the inductive
depth of the property does not increase after temporal de-
composition, which is later confirmed in our experimental
evaluation. However, we have already seen in Example II
an exponential reduction in the inductive depth. We formally
prove it and summarise it in the following theorem, which
follows directly from Lemmas 3, and 4.

Theorem 1. Given a circuit C where the property is k-
inductive. Let C|T be the circuit resulting from temporal
decomposition of C. Its property is k-inductive.

Lemma 3. Given a circuit C = (I, L,R, F, P) where the
property is k-inductive. Let C ′ = (I, L′, R′, F ′, P ′) be the
factor circuit. P ′ is k-inductive in C ′.

Proof. We do a proof by contradiction by assuming P ′ is not
k-inductive in C ′. First we consider the case where the BMC
check fails in C ′ (i.e., U ′

k−1 ∧ R′(L′
0) ∧ ¬

∧
i∈[i,k)

P ′(Ii, L
′
i)

has a satisfying assignment). By Lemma 1, the transients stay
constant in C, and by Propositions 2, we can construct a
satisfying assignment for Uk−1 ∧ R(L0) ∧ ¬

∧
i∈[i,k)

P (Ii, Li).

This contradicts our assumption. The second scenario where
the consecution check fails in C ′ follows the same logic.

Lemma 4. Given a circuit C = (I, L,R, F, P) where the
property is k-inductive. Let C ′ = (I, L′, R′, F ′, P) be the
forward circuit. P is k-inductive in C ′.

Proof. We provide a proof by contradiction assuming P is
not k-inductive in C ′. Similarly we assume R′(L′

0)∧U ′
k−1 ∧

¬
∧

i∈[0,k)

P (Ii, Li) has a satisfying assignment. By Def. 10 the

0
0 1

11
0 1

0 0
0 1

11
0 1

00
0

0
0

0
0

0
0 0 1

0
0

0
0

0 1
0
0

0
0

0
0 1

11
0 1

00
0

0
0

0
0

0
0

10 1 1

0
0 1

11
0 1

00
0

0
0

0
0

0
0

00

0
0

0
0

00

0 0

01

Forward
Circuit

Backward
Witness

Factor
Circuit

Composite
Witness

0
0

0

01
1
1

1

Fig. 4: An illustration of the overall certification flow for
the delayed clock example. Initial states are marked with an
additional arrow; bad states are marked gray. In the original
circuit (top left), the lower bit is oscillating, and the upper bit
is the enabler bit.

same satisfies R(L0) ∧ Uk ∧ ¬
∧

i∈[1,k]

P (Ii, Li). This implies

that a bad state is reachable from the initial states thus
contradiction. We then consider the consecution check fails in
C ′ such that U ′

k∧
∧

i∈[0,k)

P (Ii, Li)∧¬P (Ik, Lk) has a satisfying

assignment. By Def. 10 the transition function stays the same
for the common latches thus the same assignment satisfies the
formula Uk∧

∧
i∈[0,k)

P (Ii, Li)∧¬P (Ik, Lk). Therefore we have

reached a contradiction.

V. CERTIFICATION

In this section, we present a compositional certification
framework that is complete. Along the model checking pro-
cedure with temporal decomposition, a certificate can be
automatically generated by the model checker following the
format defined in this section.

Example 2. Consider the scenario of a delayed clock (Fig. 4).
The clock has one bit (the bottom bit in the diagram) that
oscillates between zero and one after the enabler bit (first bit)
is set to one. There is only one initial state where the clock is
set to zero and enabler bit not set. A state is bad if the clock
is high without being enabled.

After preprocessing, a base model checker is called for
verifying the factor circuit (In Fig. 4 the property of the factor
circuit is already an inductive invariant thus the factor circuit
is simply the certificate). It is required to provide a certificate
that is then used to build the final certificate. We give a formal
definition of the general certificate format below.

Definition 12 (Witness circuit). Given a circuit C, a witness
circuit W = (I,M, S,G,Q) of C satisfies the following:

• W simulates C under stratified simulation relation.
• Q is an inductive invariant in W .

Since the method is compositional, with the witness circuit
of the factor circuit produced from the model checker, we
combine it with the loop invariant for cube lasso to construct
a composite witness circuit that certifies both.

48

W ′W

C|TC

Factor
Circuit

Composite
Witness

L \ T
L′

I

L \ T
L′

I . . .
M ′

I

I . . .
M

L

I L

Fig. 5: Constructing composite witness circuit.

Definition 13 (Composite witness circuit). Given a strat-
ified circuit C = (I, L,R, F, P) with the cube loop in-
variant ϕT for the set of transients T , and its factor
circuit C|T = (I, L′, R′, F ′, P ′) with its witness circuit
W ′ = (I,M ′, S′, G′, Q′). The composite witness circuit
W = (I,M, S,G,Q) is constructed as follows:

• M = L ∪ (M ′\L′).
• S = {sl | l ∈ M}:

– For l ∈ L, sl = rl;
– For l ∈ M ′\L′, sl = s′l.

• G = {gl | l ∈ M} :

– For l ∈ L, gl = fl;
– For l ∈ M ′\L′, gl = g′l.

• Q = ϕT (L) ∧Q′(I,M ′).

Intuitively, in the composite witness circuit we add back
the previously eliminated transients. The new property simply
combines the cube loop invariant from cube simulation and
the property of the witness circuit of the factor circuit, which
is an inductive invariant in the composite witness circuit.

Theorem 2. Given a stratified circuit C, its factor circuit C|T
with an inductive invariant ϕT , a witness circuit W ′ of C|T ,
and the composite witness circuit W . Then W is a witness
circuit of C.

Proof. We show that W simulates C. The factor circuit C|T is
obviously stratified as C is stratified by Def. 11. The witness
circuit W ′ is also stratified. The reset functions of L remain
the same in W , and R(L) do not contain latches in M ′ \ L′.
Thus W is stratified. Based on Def. 13, the common latches
L ⊆ M and inputs are the same in both circuits. As the reset
functions and transition functions of L remain the same, this
satisfies the reset check and transition check. Since W ′ is a
witness of C|T , we have Q′ ⇒ P ′, where P ′ ≡ P |T by
Def. 11. Since ϕT is an inductive invariant for transients and
by Lemma 1, we have ϕT ⇒

∧
l∈T

l. By Proposition 2, we have

Q ⇒ P. Therefore W simulates C.
We then show the BMC check passes (S(M) ⇒ Q(I,M))

by assuming that S(M) and thereby R(L) ∧ S′(M ′ \ L′)
holds, and shall proceed to the conclusion ϕT (L)∧Q′(I,M ′),
by Def. 13. We begin with R(L) and may deduce ϕT (L)
immediately since Lemma 1 applies to C and the circuit is
in its reset state.

From this point on, our attention will be on the subset of
L that is free of transients, L′ by Def. 11. We have R(L′) =
R′(L′) again by Def. 11, and then R′(L′) = S′(L′) since
W ′ simulates C|T , which by Def. 3 implies the resets to be
the same. We combine this with the second half of our initial
assumption to arrive at S′(M ′). The witness circuit W ′ is
therefore at reset, and its inductive invariant Q′(I,M ′) holds.
We conclude with Q(I,M).

We make the observation that G(I, L) ≡ F (I, L), F (I, L \
T) ≡ F ′(I, L\T) ≡ G′(I, L\T) by Def. 12 and Def. 11. The
latter together with Def. 13 gives us G(I,M ′) ≡ G′(I,M ′).
Assume a fixed satisfying assignment for V1 ∧ Q(I0,M0),
where V1 is the unrolling of length 1 in W . By the observation
above, this also satisfies U1 and V ′

1 which are the unrollings
of C and W ′ respectively. By Def. 13 the assignment satisfies
ϕT (L0)∧Q′(I0,M

′
0) which are inductive invariants in C and

W ′ respectively. We thus have ϕT (L1) ∧ Q′(I ′1,M
′
1). As we

have shown the inductiveness of Q with the BMC check and
consecution check, together with the simulation relation, we
conclude W is a witness circuit of C.

We now introduce backward witness circuit built based on
a given witness circuit for one backward step, as illustrated
in Fig. 6. Intuitively, at each backward step, the backward
witness circuit certifies the BMC check for the initial states of
the corresponding circuit C while maintaining and delaying
the behaviours of the given witness circuit W ′ by one step.

This is achieved by using one bit b which becomes constant
true exactly one step after initialisation. At reset, W has the
same values as C, with the additional latches holding the
reset values from W ′; once b is set, it operates as W ′. Recall
that when constructing the forward circuit, an additional copy
of inputs and active latches is added for copying the initial
values of those in the given circuit. Since input values are non-
deterministic, this needs to be recovered when constructing W
such that the inputs are copied to ensure matching values.

Definition 14 (Backward witness circuit). Given a stratified
circuit C = (I, L,R, F, P), and its forward circuit C ′ =
(I, L′, R′, F ′, P). Let W ′ = (I,M ′, S′, G′, Q′) be the witness
circuit C ′. The backward witness circuit W = (I,M, S,G,Q)
is defined as follows:

1) M = M ′ ∪ {b}.
2) S = {sl | l ∈ M} such that:

• For l ∈ L, sl = rl.
• For l ∈ M ′\L, sl = s′l.
• sb = ⊥.

3) G = {gl | l ∈ M} such that:
• For l ∈ L, gl = fl.
• For l ∈ M ′\L′, gl = ite(b, g′l, s

′
l).

• For l′ ∈ L′\L, gl′ = ite(b, l′, l) where l is the literal
with the same index in I ∪ A as l′ in I ′ ∪ A′ (=
L′\L).

• gb = ⊤.

4) Q =
∧

i∈[0,3]

qi, where

49

• q0 = P (I, L).
• q1 = b → Q′(I,M ′).
• q2 = ¬b → R(L).
• q3 = ¬b → S′(M ′\L).

We can thus obtain a witness circuit that certifies (i)
the property holds at reset for forward circuits and (ii) the
transformed property holds in the factor circuit. In an iterative
manner eventually we can construct a witness circuit for the
entire pipeline illustrated in Fig. 3. Here the property consists
of four subproperties: q0 is the original property; q1 states that
the property from W ′ needs to hold when b is set; q2 states
that b is false only at initialisation; and q3 states that all latches
except those in L need to hold the reset values as in W ′.

W ′W

C ′C

Forward
Circuit

Backward
Witness

Λ, A
L

I ′, A′
L′ M ′

. . . bI

M
Λ, A

L
I ′, A′

L′ M ′

. . .I

Λ, A
L

I ′, A′
L′

IΛ, A
L

I

Fig. 6: An illustration of the latch contents of circuits. C is a
time-shifted circuit with latches of Λ (stable variables) and A
(active variables). We obtain C ′ by adding a copy of I ′ and A′

which are used for unrolling the initial states. W ′ is the witness
circuit simulating C ′. In addition to the common latches L′,
M ′ can also include a set of unknown latches (potentially
generated from the model checker). W is the backward witness
circuit, containing all latches from M ′ and an additional bit b
used for an initialisation step.

By Def. 12 the backward witness needs to pass the six SAT
checks for the stratified simulation relation and the witness
inductiveness, as well as the stratification check of its reset
functions. We summarise this in the following theorem.

Theorem 3. Given a stratified circuit C where the property
holds in all reset states, the forward circuit C ′ with its witness
circuit W ′, and the backward witness circuit W as defined in
Def. 14. Then W is a witness circuit of C.

Proof. First we show W is stratified. By Def. 14, S(L) ≡
R(L), therefore stratified and does not depend on latches
outside L, and S({b}) is independent of other variables.
Furthermore, for the rest of latches M ′\L, the reset functions
are the the same as in W ′ therefore stratified. We conclude
that W is stratified. By Def. 14, L ⊆ M and the inputs I stay
the same in W . Based on Def. 14, for the common latches L,
their reset function and transition function are the same as in
C, and q0 ≡ P. Therefore W simulates C.

We proceed to prove that the BMC check passes in W , i.e.,
S(M) ⇒ Q(I,M). Since b is false at reset, q1 is trivially
satisfied. The reset also directly implies R(L) and S′(M ′\L),
which gives us q2 and q3. We have q0 since the property holds

at reset in C. We then move on to prove the consecution check
passes (V1∧Q(I0,M0) ⇒ Q(I1,M1)). We consider two cases
based on the value of b0 and begin with the case b ≡ ⊤.
By Def. 14, since b always transitions to true, q2(I1, L1)
and q3(I1, L1) are trivial. Additionally, q1(I1,M1) implies
Q′(I1,M

′
1) which by Def. 12 implies P (I1, L1), as C and

C ′ share the same property. Thus we only need to show
Q′(I1,M

′
1) holds after one transition to satisfy q1(I1,M1).

Consider a fixed satisfying assignment for V1∧Q(I0,M0) and
b is true. We show that the same assignment satisfies V ′

1 (the
unrolling of W ′). For latches in M ′\L′ this follows directly
from the definition. By Def. 12 and Def. 10 L has the same
transition function in all 4 circuits (Fig. 6). The latches in L′\L
stay constant which matches Def. 10. The rest follows from
Def. 12. With this, q1(I0,M ′

0) gives us Q′(I0,M
′
0) which is

an inductive invariant in W ′. Q′(I1,M
′
1) follows.

Now consider a satisfying assignment where b is false
thereby R(L0) and S′(M ′

0\L0). By Def. 10, for the latches
in L the transition function matches the reset function in C ′,
thus we get R′(L1). The latches in L′\L copy the values of
I ∪ A. By Def. 10 R′(I ′1) holds trivially and R′(A′

1) follows
from R(L0). We get R′(L′

1\L1). Together with the previous
result we have R′(L′

1), which by Def. 3 yields S′(L′
1). The

reset for the rest of the latches M ′\L′ follows directly from
Def. 14 and we get S′(M ′

1). Since the inductive invariant of
W ′ holds in its reset we conclude with Q′(I1,M

′
1).

The above concludes the description and formal proof of our
certification framework. To perform temporal decomposition
on a given circuit under verification, we use cube simulation
to find a set of transient signals and determine the duration
d. The original circuit is then time-shifted by constructing
forward circuits iteratively d times. After eliminating transient
signals we obtain a simplified circuit that is then given to a
base model checker for verifying the simplified safety property
while producing a witness circuit. We construct a final witness
circuit by building backward witness circuit d times again in
an iterative manner. This final witness circuit serves as a single
certificate for both preprocessing and backend model checking.
It can be easily verified by an external certifier.

VI. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We implemented the method proposed in Section IV and V
in the certifying model checker CHMC [28]. Our model
checker CHMC supports two configurations for the backend
solver performing certification on simplified models (i.e.,
factor circuits) after preprocessing: k-induction and BDD.
As factor circuits use reset functions, we extended the k-
induction-based open-source model checker MCAIGER [29] to
support reset functions and also extended the tool presented by
the authors of [8] to generate witness circuits. For the BDD-
based configuration, we used the simple BDD-based model
checker AIGTRAV developed by one of the authors of this
paper at JKU Linz which already supports reset functions.
We reencoded the convergent BDD to an AIG encoding the
membership in the set of reachable states, which is sim-
ply the inductive invariant. The witness circuit is the factor

50

circuit having the inductive invariant as the new property.
Our model checker CHMC then performs witness composition
and backwarding to generate the final witness verified by
CERTIFAIGER++ [30].

0 1000 2000 3000 4000 5000 6000 7000
time [s]

0

100

200

300

400

500

600

In
st

an
ce

s s
ol

ve
d

(623) TDVBS

(609) VBS
(557) TDkind

(529) kind
(333) TDBDD

(294) BDD

Fig. 7: Comparison for temporal decomposition with k-
induction (TDkind) and BDDs (TDBDD) and the base engines
on HWMCC10 instances. We show the results of the best per-
forming solver for each instance with temporal decomposition
(TDVBS) as well as the best performing solver without it (VBS).

In principle our approach naturally works for any model
checker that produces a certificate (e.g., IC3/PDR, interpo-
lation), however, currently the available implementations for
these do not support reset functions nor do they follow the
pre-defined certificate format. It seems non-trivial to do so for
certain model checkers. Note that a simple constraint-based
construction to eliminate reset functions does not solve the
problem, as the produced certificate needs to be lifted for the
overall certification. It is however natural to modify symbolic
model checkers to support reset functions, which we strongly
encourage for extending the certification capability to a larger
set of model checking tools.

State-of-the-art model checkers such as ABC [3] use ad-
ditional preprocessing techniques and are multi-engines for
efficient verification, which are hard to separate from each
other thus making it difficult to certify a complete model
checker with a multitude of preprocessing algorithms. How-
ever, we have shown how the certification of an important
preprocessing technique, namely temporal decomposition, can
be certified in a compositional manner. We believe that similar
compositional certification techniques can be identified for
other preprocessing techniques. In particular the approach
used here can be used for any other preprocessing technique
subsumed by cube simulation.

To increase trust in our tool we generated 42 million random
circuits [24] and checked all produced certificates. We used the
HWMCC’10 benchmarks [31] and additionally scaled the shift
counter example for further evaluation. All experiments were
conducted in parallel on 32 nodes of a cluster. Each node has

10 2 10 1 100 101 102 103 104

Model Checking [s]

10 2

10 1

100

101

102

103

104

Ce
rti

fic
at

io
n

[s
]

TDkind: 11.54
TDBDD: 0.77

Fig. 8: Certification vs. model checking time.

access to two 8-core Intel Xeon E5-2620 v4 CPUs running at
2.10 GHz (turbo-mode disabled) and 128 GB main memory.
We allocate 8 instances to every node with a timeout of 2
hours and memory limit of 16 GB per instance.

We studied the impact of the preprocessing technique on
k-induction and BDD-based model checking. The preprocess-
ing (ternary simulation and circuit transformation) terminated
within 200ms on all instances. Fig. 7 displays the number
of instances solved over time by the four configurations. We
observe that CHMC with k-induction (TDkind) outperforms the
rest. It verified a total of 557 instances, among which 235
are UNSAT. In particular, compared with base MCAIGER
(kind), we gain 29 UNSAT instances. We further inspected the
inductive depths of the original circuits and their simplified
ones; the results match the claim of Theorem 1. In our
benchmark set k was reduced for 19 instances. As for the BDD
configuration (TDBDD), CHMC performed well on SAT cases,
solving an additional of 39 instances. These results clearly
demonstrate that simplifying transient logic in circuits can be
beneficial for model checking.

We now proceed to evaluate the certification framework on
both k-induction and BDD configurations. Table I summarises
the results obtained on certifying the HWMCC10 benchmarks,
where we display a subset of interesting instances (sorted by
witness size). CHMC was able to produce certificates for all
235 unsatisfiable instances that it was able to model-check.
For the k-induction variant, all certificates were successfully
verified, with a mean ratio of certification time and model
checking time of 11.54, which can be further inspected in
Fig. 8. This shows the practicality of our method.

On average, duration d tends to be small, which can be
partially explained as the starting sequence in designs playing
a role. On the BDD variant, the average ratio of certification
and model checking time is 0.77. However, 5 instances expe-
rienced time-outs when verifying the certificates produced by

51

TABLE I: Columns report cycle length (ω), stem length of cube lasso (δ), duration (d), no. transients found (τ), inductive
depth of factor circuits (k), original model size (#K

M), model checking time (tM (s)), certification time (tC(s)), and certificate
size (#K

M). All circuit sizes (#K
M) are measured in no. thousands of gates including latches and inputs. The certification time

is the total of generation time and SAT solving time. We report three mean values on different subsets of benchmarks. Mean
TDBDD and TDkind are computed over 223 and 235 instances respectively, where certification checks terminated. Mean TD∩
concerns the intersection of both sets, from which we display 20 instances that produced the biggest certificate sizes for TDkind.
Additionally, we list 5 instances at the bottom for which the BDD-based algorithm succeeded in model checking the simplified
circuit, but produced certificates that could not be checked within the time limit.

Decomposition Model TDkind TDBDD

ω δ d τ k #K
M tM tC #K

M tM tC #K
M

Mean TDBDD(223) 1.9 5.8 0.3 4.9 1.7 4 – – – 100.29 77.71 58
Mean TDkind(235) 2.1 8 0.9 46.3 4.1 7 10.40 120.06 93 – – –

Mean TD∩(157) 2.2 5.7 0.4 5.1 1.7 4 0.19 46.40 35 65.33 46.69 36

pj2002 1 4 2 2 9 37 4.13 3522.82 1757 33.09 25.56 129
pj2003 1 4 2 2 9 37 4.00 3203.89 1757 33.57 27.57 129
cmuperiodic 1 1 1 1 96 2 16.41 173.04 480 0.05 0.52 5
mentorbm1p09 1 39 1 122 2 36 0.45 92.00 331 0.18 22.17 123
mentorbm1or 1 39 1 122 1 36 0.32 21.24 123 0.10 21.56 123
nusmvreactorp4 1 1 1 1 13 1 0.20 12.59 85 7177.65 1.28 15
neclaftp5001 1 10 10 21 0 2 0.05 1.34 79 0.03 1.37 79
neclaftp5002 1 10 10 21 0 2 0.05 1.34 79 0.03 1.40 79
bobsynthand 1 38 1 1 0 19 0.12 7.85 73 0.02 7.79 73
139464p0 1 4 1 2 0 21 0.09 12.05 45 0.06 12.16 45
bj08amba4g5 1 6 0 0 3 14 0.13 69.07 42 219.68 11.06 14
139463p0 1 4 1 2 0 15 0.07 9.72 33 0.04 9.60 33
bj08amba3g62 1 4 0 0 3 10 0.10 22.99 31 1.85 4.92 10
139454p0 1 4 1 2 0 13 0.06 4.73 30 0.06 4.78 30
139462p0 1 4 1 2 0 10 0.06 4.82 23 0.03 4.81 23
139453p0 1 4 1 2 0 9 0.05 3.51 21 0.03 3.58 21
bj08amba5g82 1 5 0 3 0 20 0.07 16.49 20 1.98 16.85 20
139444p0 1 4 1 2 0 8 0.05 3.60 19 0.03 3.62 19
pdtvisvsa16a04 5 7 0 0 2 7 0.05 2.57 18 1.95 147.20 258
pdtvisvsa16a00 5 7 0 0 2 7 0.05 2.62 18 0.02 1.12 7

pdtswvtma6x4p3 1 7 0 0 44 2 77.00 138.26 138 71.75 to 13534
pdtswvtma6x4p2 1 7 0 0 37 2 37.69 76.23 116 86.86 to 13327
nusmvreactorp3 1 1 1 1 4 1 0.04 2.30 24 1100.38 to 6588
pdtvisvsar04 5 7 0 0 2 2 0.02 0.61 8 22.97 to 11074
pdtvisminmax2 1 3 0 0 2 1 0.02 0.14 2 49.29 to 2776

TABLE II: Comparison of kind and TDkind for the Shift Counter. The n column reports no. of bits. Circuits sizes (#M) measured
in number of gates. Compared with TDkind, as n increases the model checking quickly becomes hard for the k-induction only
engine and it experiences time-outs (to), while TDkind was still able to solve the instances within reasonable time.

Decomposition Model kind TDkind

n ω δ d τ k #M tM tC #M tM tC #M

2 1 1 1 2 2 4 0.003 0.051 66 0.011 0.053 23
3 1 2 2 3 4 13 0.003 0.053 250 0.010 0.057 79
4 1 3 3 4 8 22 0.004 0.066 739 0.010 0.057 159
5 1 4 4 5 16 31 0.005 0.093 1974 0.010 0.061 263
6 1 5 5 6 32 40 0.008 0.165 5045 0.013 0.069 391
7 1 6 6 7 64 49 0.031 0.361 12764 0.014 0.069 543
8 1 7 7 8 128 58 0.111 0.987 32883 0.010 0.080 719
9 1 8 8 9 256 67 0.461 3.460 88618 0.011 0.086 919

10 1 9 9 10 512 76 2.409 14.830 255649 0.011 0.084 1143
11 1 10 10 11 1024 85 13.711 59.410 799128 0.012 0.105 1391
12 1 11 11 12 2048 94 86.877 164.968 2698130 0.013 0.108 1663
13 1 12 12 13 4096 103 498.395 501.894 9693060 0.014 0.125 1959
14 1 13 13 14 8192 112 2686.540 2217.410 36368300 0.011 0.108 2279

1000 1 999 999 1000 2999 8986 to to to 5.902 1809 11996000

52

TABLE III: Optimised ternary simulation of three configurations: base version, counter stagnation, cube subsumption with
counter stagnation. The number of latches is denoted by #L (#M is the total number of gates including inputs and latches),
and t is time taken (seconds) by ternary simulation. Highlighted numbers indicate the best performing variant for each instance.

ternary simulation counter stagnation cube subsumption

#M #L ω δ τ t ω δ τ t ω δ τ t

bob12m04 269935 43950 2 9 199 0.06 2 9 199 0.07 2 6 153 0.05
6s376r 113207 4708 131072 262160 145 766.34 1 8198 116 16.30 1 2056 116 4.20
bob12m15 2855 448 12288 10379 133 1.62 12288 10379 133 1.60 3 4108 12 0.40
bobsmnut1 6301 644 1024 259 107 0.21 1024 259 107 0.19 1024 81 106 0.18
shift1add 174 27 1 262145 20 1.20 1 262145 20 1.25 1 2056 1 0.01
6s47 4950 815 to to to to 2 262167 8 35.63 2 2085 6 0.30
6s100 763775 97598 to to to to 1 2053 36 37.53 1 2053 36 41.48
6s107 25447 1568 to to to to 1 32799 746 16.93 1 2079 746 1.18
6s149 112623 12781 to to to to 1 20497 4 47.81 1 5137 4 12.88
6s342rb122 394016 56838 to to to to to to to to 192 46080 1894 354.60
6s202b41 604375 68881 to to to to 1 4136 8574 45.71 1 2088 8574 28.35
6s204b16 237048 28986 to to to to 1 4136 4034 19.33 1 2088 4034 13.51
6s205b20 603985 68842 to to to to 1 4136 8727 46.56 1 2088 8727 28.08
6s355rb8740 179445 15091 to to to to 1 8466 221 37.07 1 3346 221 15.51
6s400rb7819 180067 14665 to to to to 1 8466 221 36.96 1 2322 221 11.00
cucnt128 1272 128 to to to to to to to to 1 61440 0 1.82
cucnt32 312 32 to to to to to to to to 1 1054 0 0.01

the BDD backend. Indeed, the BDD algorithm can produce
large certificates due to the nature of using the exact set of
reachable states as the inductive invariant.

We further investigate the shift counter example by scaling
the number of bits (n). The results obtained are reported in
Table II. As expected, we found that temporal decomposition
significantly simplifies model checking, whereas MCAIGER
quickly experiences timeouts. Note that in this particular
example, the value of k simply decreases to 0 on the simplified
model which becomes trivial after temporal decomposition.

Optimised Ternary Simulation To find transient signals
we initially implemented a base version of ternary simulation.
We now present two optimisations, also subsumed by cube
simulation: (i) Counter stagnation: if the current cube size
does not decrease in a few thousand steps, we observe a
stagnation in the search. We thus remove a random latch that
has flipped sign between the last two cubes. In case we remove
a latch that is part of a large binary counter in the design,
all more significant bits will be removed in a linear number
of simulation steps. This technique can therefore achieve an
exponential reduction in simulation steps. (ii) Cube subsump-
tion: the cube lasso can terminate in a cube which implies a
previous cube under the transition relation (Def. 5). Ternary
simulation on the other hand utilises a hash map to terminate
when an exact match of a cube is visited a second time. With
cube subsumption it terminates when the current cube is a
(not necessarily proper) superset of a previously encountered
cube. For this we implement a forward-subsumption algorithm
utilising a one-watch-literal data structure [32].

We compare it to two configurations with different levels
of optimisation on 20,815 instances including all HWMCC
benchmarks (2007-2020) [33]. The optimised versions can
miss transients however it does not happen often. Table III
displays the instances where the number of transients differ
among three configurations. Worth mentioning is that cube

subsumption together with counter stagnation did not time out
on any instances of the entire benchmark set.

VII. CONCLUSION

While certification for model checking has been studied for
decades, the number of certifiable approaches are still limited.
In this paper we revisited the popular preprocessing technique
temporal decomposition by formally defining it and proving
its correctness. We further present a certification framework in
a compositional manner, that builds a single witness circuit.
The approach was evaluated on a wide range of benchmarks.
Note that our framework requires model checkers to allow
reset functions, that is a feature we would like to encourage
existing model checkers to implement. Experimental results
show that our approach is quite effective in practice.

In the future we plan to investigate other preprocessing
techniques such as retiming [34], phase abstraction [35], as
well as stabilizing constraints [15], [36]. Furthermore, our
simple generic model checking certificate makes it appealing
to work on verified proof checkers too.

53

REFERENCES

[1] E. M. Clarke, D. E. Long, and K. L. McMillan, “Compositional model
checking,” in LICS. IEEE Computer Society, 1989, pp. 353–362.

[2] M. L. Case, H. Mony, J. Baumgartner, and R. Kanzelman, “Enhanced
verification by temporal decomposition,” in FMCAD. IEEE, 2009, pp.
17–24.

[3] R. K. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” in CAV, ser. Lecture Notes in Computer
Science, vol. 6174. Springer, 2010, pp. 24–40.

[4] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuXmv symbolic model
checker,” in CAV, ser. Lecture Notes in Computer Science, vol. 8559.
Springer, 2014, pp. 334–342.

[5] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a SAT-solver,” in FMCAD, ser. Lecture Notes in
Computer Science, vol. 1954. Springer, 2000, pp. 108–125.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 10ˆ20 states and beyond,” in LICS. IEEE
Computer Society, 1990, pp. 428–439.

[7] A. R. Bradley, “SAT-based model checking without unrolling,” in
VMCAI, ser. Lecture Notes in Computer Science, vol. 6538. Springer,
2011, pp. 70–87.

[8] E. Yu, N. Froleyks, A. Biere, and K. Heljanko, “Stratified certification
for k-induction,” in FMCAD. IEEE, 2022, pp. 59–64.

[9] E. Yu, A. Biere, and K. Heljanko, “Progress in certifying hardware
model checking results,” in CAV (2), ser. Lecture Notes in Computer
Science, vol. 12760. Springer, 2021, pp. 363–386.

[10] M. J. H. Heule, “Proofs of unsatisfiability,” in Handbook of
Satisfiability - Second Edition, ser. Frontiers in Artificial Intelligence
and Applications, A. Biere, M. Heule, H. van Maaren, and T. Walsh,
Eds. IOS Press, 2021, vol. 336, pp. 635–668. [Online]. Available:
https://doi.org/10.3233/FAIA200998

[11] M. J. Heule and A. Biere, “Proofs for satisfiability problems,” in All
about Proofs, Proofs for all, B. W. Paleo and D. Delahaye, Eds. College
Publications, 2015, ch. 1.

[12] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing rules,” in
Automated Reasoning - 6th International Joint Conference, IJCAR
2012, Manchester, UK, June 26-29, 2012. Proceedings, ser. Lecture
Notes in Computer Science, B. Gramlich, D. Miller, and U. Sattler,
Eds., vol. 7364. Springer, 2012, pp. 355–370. [Online]. Available:
https://doi.org/10.1007/978-3-642-31365-3 28

[13] S. Eriksson, G. Röger, and M. Helmert, “Unsolvability certificates for
classical planning,” in Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling, ICAPS 2017, Pitts-
burgh, Pennsylvania, USA, June 18-23, 2017, L. Barbulescu, J. Frank,
Mausam, and S. F. Smith, Eds. AAAI Press, 2017, pp. 88–97.

[14] K. S. Namjoshi, “Certifying model checkers,” in CAV, ser. Lecture Notes
in Computer Science, vol. 2102. Springer, 2001, pp. 2–13.

[15] A. Griggio, M. Roveri, and S. Tonetta, “Certifying proofs for SAT-based
model checking,” Formal Methods Syst. Des., vol. 57, no. 2, pp. 178–
210, 2021.

[16] ——, “Certifying proofs for LTL model checking,” in FMCAD. IEEE,
2018, pp. 1–9.

[17] A. Abuin, A. Bolotov, U. Dı́az-de-Cerio, M. Hermo, and P. Lucio,
“Towards certified model checking for PLTL using one-pass tableaux,”
in TIME, ser. LIPIcs, vol. 147. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019, pp. 12:1–12:18.

[18] T. Kuismin and K. Heljanko, “Increasing confidence in liveness model
checking results with proofs,” in Haifa Verification Conference, ser.
Lecture Notes in Computer Science, vol. 8244. Springer, 2013, pp.
32–43.

[19] J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and
J. Smaus, “A fully verified executable LTL model checker,” in CAV,
ser. Lecture Notes in Computer Science, vol. 8044. Springer, 2013, pp.
463–478.

[20] ——, “A fully verified executable LTL model checker,” Arch. Formal
Proofs, vol. 2014, 2014.

[21] S. Wimmer and J. von Mutius, “Verified certification of reachability
checking for timed automata,” in TACAS (1), ser. Lecture Notes in
Computer Science, vol. 12078. Springer, 2020, pp. 425–443.

[22] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann, “Correctness wit-
nesses: exchanging verification results between verifiers,” in SIGSOFT
FSE. ACM, 2016, pp. 326–337.

[23] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and
M. Tautschnig, “Verification witnesses,” ACM Trans. Softw. Eng.
Methodol., vol. 31, no. 4, pp. 57:1–57:69, 2022.

[24] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,” In-
stitute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 11/2, 2011.

[25] A. Degtyarev and A. Voronkov, “Equality reasoning in sequent-based
calculi,” in Handbook of Automated Reasoning (in 2 volumes), J. A.
Robinson and A. Voronkov, Eds. Elsevier and MIT Press, 2001, pp.
611–706.

[26] C. H. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” Formal Methods Syst. Des.,
vol. 6, no. 2, pp. 147–189, 1995.

[27] E. M. Clarke, O. Grumberg, D. Kroening, D. A. Peled, and H. Veith,
Model checking, 2nd Edition. MIT Press, 2018. [Online]. Available:
https://mitpress.mit.edu/books/model-checking-second-edition

[28] CHMC, “CHMC,” 2023, http://fmv.jku.at/chmc.
[29] A. Biere and R. Brummayer, “Consistency checking of all different

constraints over bit-vectors within a SAT solver,” in FMCAD. IEEE,
2008, pp. 1–4.

[30] Certifaiger, “Certifaiger,” 2021, http://fmv.jku.at/certifaiger.
[31] A. Biere and K. Claessen, “Hardware model checking competition

2010,” 2010,
http://fmv.jku.at/hwmcc10/.

[32] L. Zhang, “On subsumption removal and on-the-fly CNF simplification,”
in Theory and Applications of Satisfiability Testing, 8th International
Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005, Proceedings,
ser. Lecture Notes in Computer Science, F. Bacchus and T. Walsh,
Eds., vol. 3569. Springer, 2005, pp. 482–489. [Online]. Available:
https://doi.org/10.1007/11499107 42

[33] M. Preiner, A. Biere, and N. Froleyks, “Hardware model checking
competition 2020,” 2020.

[34] A. Kuehlmann and J. Baumgartner, “Transformation-based verification
using generalized retiming,” in CAV, ser. Lecture Notes in Computer
Science, G. Berry, H. Comon, and A. Finkel, Eds., vol. 2102. Springer,
2001, pp. 104–117.

[35] P. Bjesse and J. H. Kukula, “Automatic generalized phase abstraction
for formal verification,” in ICCAD. IEEE Computer Society, 2005, pp.
1076–1082.

[36] K. Claessen and N. Sörensson, “A liveness checking algorithm that
counts,” in FMCAD. IEEE, 2012, pp. 52–59.

54

https://doi.org/10.3233/FAIA200998
https://doi.org/10.1007/978-3-642-31365-3_28
https://mitpress.mit.edu/books/model-checking-second-edition
http://fmv.jku.at/chmc
http://fmv.jku.at/certifaiger
http://fmv.jku.at/hwmcc10/
https://doi.org/10.1007/11499107_42

Formal Methods in Computer-Aided Design 2023

BTOR2MLIR: A Format and Toolchain for
Hardware Verification

Joseph Tafese
University of Waterloo

Waterloo, Canada
jetafese@uwaterloo.ca

Isabel Garcia-Contreras
University of Waterloo

Waterloo, Canada
igarciac@uwaterloo.ca

Arie Gurfinkel
University of Waterloo

Waterloo, Canada
agurfink@uwaterloo.ca

Abstract—Formats for representing and manipulating veri-
fication problems are extremely important for supporting the
ecosystem of tools, developers, and practitioners. A good format
allows representing many different types of problems, has a
strong toolchain for manipulating and translating problems,
and can grow with the community. In the world of hardware
verification, and, specifically, the Hardware Model Checking
Competition (HWMCC), the BTOR2 format has emerged as the
dominating format. It is supported by BTOR2TOOLS, verification
tools, and Verilog design tools like Yosys. In this paper, we present
an alternative format and toolchain, called BTOR2MLIR, based
on the recent MLIR framework. The advantage of BTOR2MLIR
is in reusing existing components from a mature compiler infras-
tructure, including parsers, text and binary formats, converters
to a variety of intermediate representations, and executable
semantics of LLVM. We hope that the format and our tooling
will lead to rapid prototyping of verification and related tools
for hardware verification.

I. INTRODUCTION

Hardware Verification has been one of the biggest drivers of
formal verification research [1], with a history that spans many
breakthroughs. The developments in this field have thrived
through organized events such as the Hardware Model Check-
ing Competition (HWMCC) [2] which has run since 2011.
BTOR2 [3] has emerged as the dominating format in this com-
petition. BTOR2 has been translated into several languages, for
example, Constrained Horn Clauses (CHCs)12 and LLVM-IR3

to make use of existing verification techniques. Universality,
however, was not an objective of these projects, and thus, for
these translations, be it to CHCs or to LLVM-IR, similar tasks
had to be replicated.

During the past decade, the LLVM project [4] has dedicated
significant effort to universality. One such effort is MLIR [5],
a project that proposes a generic intermediate representation
with operations and types common to many programming
languages. MLIR was designed to be easily extensible, by
providing tools to build new intermediate representations (IR)
as dialects of the base MLIR. This eases the creation of
new compilers, circumventing the need to re-implement core
technologies and optimizations. Extensibility and scalability
are what MLIR strives for, making it a great candidate for the

1https://github.com/zhanghongce/HWMCC19-in-CHC
2https://github.com/stepwise-alan/btor2chc
3https://github.com/stepwise-alan/btor2llvm

creation of new tools and formats that represent many types of
problems and have strong tool support for manipulating and
translating problems.

During the same time, with the rise of LLVM as a compiler
infrastructure, many software verification tools have been
built for LLVM-IR programs. Existing tools tackle this hard
problem in many ways. For example, dynamic verification
is implemented in LIBFUZZER [6], a fuzzer, and KLEE [7],
a symbolic execution engine; SMT-based static verification
is implemented in SEAHORN [8] both as Bounded and Un-
bounded Model Checking; and CLAM [9] static analysis that
analyzes LLVM-IR statically using abstract interpretation.

This paper contributes BTOR2MLIR, a format and
toolchain for hardware verification. It is built on MLIR to
incorporate advances and best practices in compiler infras-
tructure, compiler design, and the maturity of LLVM. At its
core, BTOR2MLIR provides an intermediate representation
for BTOR2 as an MLIR dialect. This dialect has an encoding
very close to BTOR2 and preserves BTOR2’s semantics. This
design not only facilitates the creation of a new format for
hardware verification but also simplifies the extension of this
format to support future targets by using MLIR for all inter-
mediate representations. For example, BTOR2MLIR can be
used to generate LLVM-IR from our custom MLIR dialect.
The value of this approach is quite evident in CIRCT [10],
an open-source project, that applies this design to tackle the
inconsistency and usability concerns that plague tools in the
Electronic Design Automation industry. Although it has a
different goal than BTOR2MLIR, both projects draw great
benefit from adapting the benefits of an MLIR design to their
respective fields.

As an added bonus, using BTOR2MLIR to generate
LLVM-IR enables the reuse of established tools to apply
software verification techniques to verify hardware circuits. To
illustrate the usability of the toolchain, a new model checker
is developed using SEAHORN. The results are compared to
BTORMC [3], a hardware model checker provided by the
creators of BTOR2.

The rest of the paper is organized as follows. Section II lays
some background. Our format and toolchain, BTOR2MLIR,
is described in Section III. We discuss its correctness in
Section IV and evaluate the tool in Section V. We close
with a note on related works in Section VI and conclude in

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 13 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0002-4062-0592
https://orcid.org/0000-0001-6098-3895
https://orcid.org/0000-0002-5964-6792
https://github.com/zhanghongce/HWMCC19-in-CHC
https://github.com/stepwise-alan/btor2chc
https://github.com/stepwise-alan/btor2llvm
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_13
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_13
https://creativecommons.org/licenses/by/4.0/

Section VII.

II. BACKGROUND

BTOR2: BTOR2 [3] is a format for quantifier-free for-
mulas and circuits over bitvectors and arrays, with SMT-LIB
[11] semantics, that is used for hardware verification. BTOR2
files are often generated using tools like YOSYS [12], from the
original design in a language like VERILOG [13]. A simple 4-
bit counter is shown in Fig. 1. Its corresponding description, in
VERILOG, is shown in Fig. 1b. The circuit updates its output
at each step starting from 0 to its maximum value, 15. It also
has the safety property that the output should not be equal to
15, shown by the assertion in Fig. 1b. The circuit together with
the desired safety property are captured in BTOR2 in Fig. 1c.
First, a bitvector of width 4 is defined as ’1’ in line 1. Sort
are used later when declaring registers and operations. For
example, lines 2, 3, 5, and 8 refer to sort ’1’, respectively, by
declaring ’2’ to be a zero bitvector (0000) (line 2), state out
to be a register of sort ’1’ (line 3), ’5’ to be a one bitvector
(0001) (line 5) and ’8’ to be bitvector of ones (1111) (line
8). On line 4, out is initialized with value ’2’. On line 7, the
transition function is defined (activated at each clock edge), by
assigning the next state of out to the value out incremented
by one (the result of line 6). Finally, a safety property is
defined in line 11 with the keyword bad, requiring that the
equality of line 10 does not hold. That is, the value of out
is never 1111. Note that no clock is specified in Fig. 1c. In
BTOR2 it is always assumed that there is one single clock,
and the keyword next is used to declare how registers are
updated after a clock cycle. For a register that has not been
assigned a next value, it will get a new non-deterministic value
or keep it’s initial value (if one was given).

BTORMC: BTORMC [3] is a bounded model checker
(BMC) for BTOR2. BTORMC generates verification condi-
tions as SMT formulas and uses BOOLECTOR [3] as an
SMT solver. Based on the satisfiability result of the formula,
BTORMC on our example tells us that the safety property is
violated, as expected, since out does reach a state with value
1111.

MLIR: Multi-Level Intermediate Representation
(MLIR) [5] is a project that was developed for
TensorFlow [14] to address challenges faced by the
compiler industry at large: modern languages end up
creating their own high-level intermediate representation
(IR) and the corresponding technologies. Furthermore, these
domain-specific compilers have to be recreated for different
compilation and optimization targets and do not easily share
a common infrastructure or intermediate representations. To
remedy this, MLIR facilitates the design and implementation
of code generators, translators, and optimizers at different
levels of abstraction and also across application domains,
hardware targets, and execution environments.

Modern languages vary in the set of operations and types
that they use, hence the need to create domain-specific high-
level IRs. MLIR addresses this problem by making it easy for
a user to define their own dialects. An MLIR dialect captures

the operations and types of a target language. It is created
using TABLEGEN, a domain specific language for defining
MLIR dialects. It is used to automatically generate code to
manipulate the newly defined dialect including its Abstract
Syntax Tree (AST) and parsing. MLIR tools and optimizations
such as static single assignment, constant propagation, and
dead-code elimination can be applied off the shelf to custom
MLIR dialects. These capabilities make MLIR a reusable and
extensible compiler infrastructure. One of its strengths is the
builtin dialects it introduces, such as a BUILTIN, STANDARD,
and LLVM dialects4, among others. These dialects make it
possible to have a rich infrastructure for dialect conversion that
enables a user to define pattern-based rewrites of operations
from one dialect to another. For example, a dialect conversion
pass is provided to convert operations in the STANDARD di-
alect to operations in the LLVM dialect. MLIR also provides
an infrastructure for user-defined language translation passes.
One such pass that is provided out of the box is a translation
from LLVM dialect to LLVM-IR.

III. BTOR2MLIR

We present our tool, BTOR2MLIR, which contributes the
BTOR DIALECT, and three modules on the existing MLIR
infrastructure: a BTOR2 to BTOR DIALECT translation pass,
a BTOR DIALECT to BTOR2 translation pass and a dialect
conversion pass from BTOR DIALECT to LLVM dialect.
Our tool has approximately 3 900 lines of C++ code and
1 200 lines of TABLEGEN. Fig. 2 shows the architecture
of our tools with our contributions highlighted in green.
BTOR2MLIR uses the original BTOR2 parser provided in
BTOR2TOOLS [3], marked in blue, and MLIR builtin passes,
marked in brown. BTOR2MLIR is open-sourced and publicly
available on GitHub5.

We illustrate how each of the components of BTOR2MLIR
works by translating a factorial circuit, shown in Fig. 3a, that
is described in BTOR2. There are two safety properties, one
per bad statement. Line 14 states that the loop counter, i,
reaches 15. Line 19 states that the value of factorial is
always even.

BTOR DIALECT: Our first contribution is the BTOR DI-
ALECT, an MLIR dialect to represent BTOR2 circuits. Fig. 3b
shows the BTOR DIALECT code corresponding to Fig. 3a. It
represents the execution of the circuit using an MLIR function
main. The control flow is explicit, using a standard MLIR
representation of basic blocks with arguments and branches.
The example has two basic blocks: an unnamed initial block
(bb0) and a block bb1. Circuit initialization is modeled by
instructions in bb0, and each cycle by instructions in bb1.
Note that bb1 has two predecessors: bb0 for initialization and
bb1 for each cyle. Bitvector types are mapped to integer types
(provided by MLIR), for example, bitvec 4 becomes i4.
Each operation in the BTOR DIALECT, prefixed with btor,
models a specific BTOR2 operation. For example, btor.mul

4https://github.com/llvm/llvm-project/tree/release/14.x/mlir/include/mlir/
Dialect

5https://github.com/jetafese/btor2mlir/tree/llvm-14

56

https://github.com/llvm/llvm-project/tree/release/14.x/mlir/include/mlir/Dialect
https://github.com/llvm/llvm-project/tree/release/14.x/mlir/include/mlir/Dialect
https://github.com/jetafese/btor2mlir/tree/llvm-14

(a) Circuit.

�
module counter (

input clk,
output reg[3:0] out);
always @ (posedge clk)
begin

assert (out != 15)
out <= out + 1

end
endmodule� �

(b) Counter in VERILOG.

�
1 sort bitvec 4
2 zero 1
3 state 1 out
4 init 1 3 2
5 one 1
6 add 1 3 5
7 next 1 3 6
8 ones 1
9 sort bitvec 1
10 eq 9 3 8
11 bad 10� �

(c) Counter in BTOR2.

Fig. 1: 4-bit counter.

Bᴛᴏʀ2MLIR

Bᴛᴏʀ2 Circuit

Bᴛᴏʀ Dialect

LLVM-IRLLVM Dialect
to LLVM-IR

Dialect Conversion

Bᴛᴏʀ Dialect to
LLVM Dialect

Bᴛᴏʀ Dialect
to Bᴛᴏʀ2

Bᴛᴏʀ2 CircuitBᴛᴏʀ Dialect

Bᴛᴏʀ2 to Bᴛᴏʀ Dialect

Bᴛᴏʀ2Tᴏᴏʟs
Parser

Bᴛᴏʀ2 to
Bᴛᴏʀ Dialect

Fig. 2: BTOR2MLIR Architecture.

is mul, and btor.slice is slice. Safety properties such
as bad are represented by btor.assert_not. Special
operators such as one, ones and constd are represented
by the btor.constant operation with the expected integer
value. Boolean operators are represented by btor.cmp. For
example, eq becomes btor.cmp eq.

Translating BTOR2 to BTOR DIALECT: BTOR2MLIR
takes BTOR2 circuits as input, using BTOR2TOOLS to create
a data structure for each BTOR2 line. Our pass then generates
a program in BTOR DIALECT by constructing the appropriate
MLIR AST. Each BTOR2 operator is mapped to a unique
operation in BTOR DIALECT, a capability that is greatly
simplified and enabled by the MLIR infrastructure.

A program in MLIR can be written using multiple dialects
since the MLIR framework enables the interaction of multiple
IRs. To enable this capability, MLIR provides dialects that
are designed to serve as building blocks for more domain-
specific dialects. We utilized the framework by building the
BTOR DIALECT using the STANDARD and BUILTIN dialects.
For example, we use the module, func and bb operations
from BUILTIN. We utilize the br operation in the STANDARD
dialect to enable interaction between the two basic blocks in
Fig. 3b. This approach is consistent with the intended use of
the STANDARD and BUILTIN dialects. It saves time and effort
since we do not need to recreate operations that already exist
in other dialects. Furthermore, MLIR provides a conversion
pass from STANDARD dialect to LLVM dialect, making it
worthwhile to build BTOR DIALECT on top of the BUILTIN

and STANDARD dialects.
Dialect conversion: The BTOR2MLIR conversion pass

from BTOR DIALECT to LLVM dialect utilizes the MLIR
infrastructure for pattern-based rewrites. It rewrites BTOR DI-
ALECT operations into LLVM dialect operations. For most op-
erations in BTOR DIALECT there exists a semantically equiv-
alent operation in LLVM dialect. For example, btor.constant
in Fig. 3b is converted to llvm.mlir.constant in LLVM dialect.
For some operations, an equivalent in LLVM dialect does
not exist, in these cases it is required to rewrite them into
several LLVM operations (e.g., in btor.slice) and/or to modify
the module structure (e.g., btor.assert not). In LLVM dialect,
btor.slice is replaced by a logical shift right, llvm.lshr, and
a truncation operation, llvm.trunc. btor.assert not is mapped
to a new basic block in the LLVM dialect that has the
llvm.unreachable operation. We split the basic block bb1, in
Fig. 3b, by adding a conditional branch, llvm.cond br, to direct
control flow to the new block when the assertion is satisfied.

Translate LLVM Dialect to LLVM-IR: BTOR2MLIR
uses a translation pass from LLVM dialect to LLVM-IR,
provided by MLIR. Note the optimizations in the resulting
LLVM-IR, shown in Fig. 3c, such as constant propagation
and phi nodes.

IV. CORRECTNESS

When introducing a new tool or framework to the
community, there is always a question of how polished
it is. BTOR2MLIR builds on two mature frameworks:

57

�
1 sort bitvec 4
2 one 1
3 state 1 factorial
4 state 1 i
5 init 1 3 2
6 init 1 4 2
7 add 1 4 2
8 mul 1 3 4
9 next 1 4 7
10 next 1 3 8
11 ones 1
12 sort bitvec 1
13 eq 12 4 11
14 bad 13
15 slice 12 3 0 0
16 constd 1 3
17 ugt 12 4 16
18 and 12 17 15
19 bad 18� �
(a) Factorial in BTOR2.

�
module {
func @main() {
%0 = btor.constant 1 : i4
br ˆbb1(%0, %0 : i4, i4)

ˆbb1(%1: i4, %2: i4):
%3 = btor.constant 1 : i4
%4 = btor.add %2, %3 : i4
%5 = btor.mul %1, %2 : i4
%6 = btor.constant -1 : i4
%7 = btor.cmp eq, %2, %6 : i4
btor.assert_not(%7)
%8 = btor.constant 0 : i4
%9 = btor.constant 0 : i4
%10 = btor.slice %1, %8, %9 : i4,

i1
%11 = btor.constant 3 : i4
%12 = btor.cmp ugt, %2, %11 : i4
%13 = btor.and %12, %10 : i1
btor.assert_not(%13)
br ˆbb1(%5, %4 : i4, i4)

}
}� �

(b) Factorial in BTOR DIALECT.

�
declare void @__VERIFIER_error()
define void @main() !dbg !3 {
br label %1

1: ; preds = %14, %0
%2 = phi i4 [%5,%14], [1,%0]
%3 = phi i4 [%4,%14], [1,%0]
%4 = add i4 %3, 1
%5 = mul i4 %2, %3
%6 = icmp eq i4 %3, -1
%7 = xor i1 %6, true
br i1 %7, label %8, label %15

8: ; preds = %1
%9 = lshr i4 %2, 0
%10 = trunc i4 %9 to i1
%11 = icmp ugt i4 %3, 3
%12 = and i1 %11, %10
%13 = xor i1 %12, true
br i1 %13, label %14, label %16

14: ; preds = %8
br label %1

15: ; preds = %1
call void @__VERIFIER_error()
unreachable

16: ; preds = %8
call void @__VERIFIER_error()
unreachable

}� �
(c) Factorial in LLVM-IR.

Fig. 3: BTOR2 to BTOR DIALECT.

original roundtrip

time safe/unsafe TO time safe/unsafe TO

bitvectors

wolf/18D 157 34/0 2 168 34/0 2
wolf/19A 146 0/1 17 151 0/1 17
wolf/19B 2 3/0 0 2 3/0 0
wolf/19C 834 108/0 5 797 108/0 5
19/beem 278 9/2 4 280 10/2 3
19/goel 190 26/2 43 176 26/2 43
19/mann 4 442 29/15 9 4 751 30/15 8
20/mann 257 10/5 0 268 10/5 0

bitvectors + arrays

wolf/18A 70 20/0 0 71 20/0 0
wolf/19B 2 2/3 0 2 2/3 0
19/mann 126 1/1 1 138 1/1 1
20/mann 18 3/3 0 18 3/3 0

TABLE I: Comparing round tripped files.

BTOR2TOOLS and MLIR. This is done not only because of
the frameworks’ functionalities, but because they have been
extensively reviewed, used, and tested. BTOR2TOOLS has
been widely used in the hardware model-checking community
since its introduction in 2018. MLIR builds on LLVM, a
compiler framework that has been used and improved over
numerous projects in the last two decades and is actively
supported by industry.

Specifically, BTOR2MLIR uses the parser from
BTOR2TOOLS to generate corresponding operations and
functions in the BTOR DIALECT of MLIR. The BTOR
DIALECT is written in TABLEGEN— an MLIR domain-

specific language for dialect creation. We show how our
dialect and the class of binary operations are defined in Fig. 4a.
For example, the BtorBinaryOp class defines a class of
operations that have two arguments lhs, rhs and a result
res. It also has a trait SameOperandsAndResultType
to enforce that lhs, rhs and res have the same type.
Finally, the class specifies how the default MLIR parsers
and printers should handle such operations. We create our
arithmetic operations as shown in Fig. 4b. We mark relevant
operations as Commutative. Operation descriptions are not
shown for simplicity. We ensure that each BTOR2 operator
has a one-to-one mapping with an operation in the BTOR
DIALECT so that the translation from BTOR2 to BTOR
DIALECT is lossless and preserves BTOR2 semantics.

BTOR2MLIR relies on the optimization, folding, and can-
onization passes that MLIR provides in its translation from the
LLVM Dialect in MLIR to LLVM-IR. MLIR also provides
the mechanism for pattern-based rewrites which has helped us
avoid the introduction of undefined behavior into the resulting
LLVM-IR. We show an example of this in Fig. 5. MLIR
allows us to identify which operations in the BTOR DIALECT
we want to replace at the end of our conversion pass. A subset
of such operations are shown in Fig. 5a. For each operation
that has been identified, we provide a lowering that maps it
to a legal operation in the LLVM dialect. We are able to use
lowering patterns like VectorConvertToLLVMPattern
from MLIR for common arithmetic and logical operations as
shown in Fig. 5b.

We performed extensive testing using the HWMCC20
benchmark set to verify the correctness of BTOR2MLIR. This
is the same benchmark set used to test [15]. The tests are run
on a Linux machine with x86 64 architecture, using BTORMC

58

�
def Btor_Dialect : Dialect {
...
}

class BtorArithmeticOp<string mnemonic, list<Trait> traits = []> :
Op<Btor_Dialect, mnemonic, traits>;

class BtorBinaryOp<string mnemonic, list<Trait> traits = []> :
BtorArithmeticOp<mnemonic, !listconcat(traits

[SameOperandsAndResultType])>,
Arguments<(ins SignlessIntegerLike:$lhs,

SignlessIntegerLike:$rhs)>,
Results<(outs SignlessIntegerLike:$result)>

{
let assemblyFormat = "$lhs ‘,‘ $rhs attr-dict ‘:‘ type($result)";

}� �
(a) Creating BTOR DIALECT.

�
def AddOp : BtorBinaryOp<"add",

[Commutative]> {
...

}

def SubOp : BtorBinaryOp<"sub"> {
...

}

def MulOp : BtorBinaryOp<"mul",
[Commutative]> {
...

}

def UDivOp : BtorBinaryOp<"udiv"> {
...

}� �
(b) Creating Operations for BTOR DIALECT.

Fig. 4: Using TABLEGEN for Dialect Creation.

with an unroll bound of 20, a timeout of 300 seconds and
memory limit of 65 GB. We present the results in Table I,
where bitvector benchmarks categories are in the top half
and bitvector + array benchmark categories are in the bottom
half. All times in this table reflect solved instances and do
not include timeouts. We do not show the time it takes to
run BTOR2MLIR since the time is negligible. The results are
grouped by competition contributor such that each row shows
the time, instances solved (safe/unsafe) and timeouts (TO) for
both the original and round-tripped circuits. For example, for
the wolf/18D category, we can see that the original BTOR2
circuit solves 34 safe instances and 0 unsafe instances in 157
seconds, with 2 timeouts. The round-tripped circuit solves 34
safe instances and 0 unsafe instances in 168 seconds with two
timeouts.

We can see that the safety properties in BTOR2 circuits
are neither changed nor violated after being round-tripped
by BTOR2MLIR. In two categories with only bitvectors,
19/beem and 19/mann, one more instance in each cat-
egory is found safe after round trip, while the original
circuit leads to a memout and timeout respectively. This
gives us confidence that the translation to BTOR DIALECT,
using the BTOR2TOOLS parser, is indeed correct. Then, we
tested whether the same holds after translation to LLVM-
IR. Through this method, we were able to ensure that
BTOR2MLIR does not have errors when handling operations
that are represented in the benchmark set. This approach is
not complete, however, since it would not identify errors
that might be in our implementation but are not exercised
by the benchmarks we use. For example, BTOR2 expects
that a division by zero would result in −1, but there are no
benchmarks that exercise this kind of division. We mitigate
this by generating benchmarks for division, remainder, and
modulus operators to ensure that the expected behavior of
BTOR2 operators are represented in our test suite.

In the future, it is interesting to explore other translation
validation and verification approaches. For example, it would
be useful for BTOR2MLIR to produce a proof trail that

justifies all of the transformations that are performed by the
tool. This, for example, might be possible to achieve by
building on the work of [16], [17].

Limitations: BTOR2MLIR is able to round trip BTOR2
operators and their sorts. In LLVM-IR all BTOR2 operators
and their sorts are supported as well, but not fairness and
justice constraints.

V. EVALUATION

To evaluate BTOR2MLIR, we have built a prototype
hardware model checker by connecting our tool with SEA-
HORN [8], a well-known model checker for C/C++ programs
that works at the LLVM-IR level. It has recently been extended
with a bit-precise Bounded Model Checking engine [18]. This
BMC engine was evaluated in a recent case study [19] and we
use the same configuration of SEAHORN in our evaluation.

The goal of our evaluation is to show that BTOR2MLIR
makes it easy to connect hardware designs with LLVM-based
verification engines. We did not expect the existing software
engines to outperform dedicated hardware model checkers.
However, we hope that this will enable further avenues of
research. In the future, we plan to extend the framework to
support other LLVM-based analysis tools, such as symbolic
execution engine KLEE [7], and fuzzing framework [6].

For the evaluation, we have chosen the bitvector category
of BTOR benchmarks from the most recent Hardware Model
Checking Competition (HWMCC) [2]. We have excluded
benchmarks with arrays since the export to LLVM-IR is
not supported by SEAHORN in our experimental setup. All
our experiments are run on a Linux machine with x86 64
architecture, with unroll bound of 20, a timeout of 300 seconds
and memory limit of 65 GB. The results are presented in
Table II, grouped by competition contributor. All times in this
table reflect solved instances and do not include timeouts. We
do not show the time it takes to run BTOR2MLIR since the
time is negligible. In the rest of this section, we highlight some
of the interesting findings.

We have run BTORMC on the same machine and exact
same experimental setup (unroll bound and CPU and memory

59

�
void BtorToLLVMLoweringPass::runOnOperation() {

LLVMConversionTarget target(getContext());
RewritePatternSet patterns(&getContext());
LLVMTypeConverter converter(&getContext());
mlir::btor::populateBtorToLLVMConversionPatterns(converter,

patterns);
...
/// binary operators
// arithmetic
target.addIllegalOp<btor::AddOp, btor::SubOp, btor::MulOp,

btor::UDivOp...>();
...

}� �
(a) Identifying operations.�

...
using AddOpLowering =

VectorConvertToLLVMPattern<btor::AddOp, LLVM::AddOp>;
using SubOpLowering =

VectorConvertToLLVMPattern<btor::SubOp, LLVM::SubOp>;
using MulOpLowering =

VectorConvertToLLVMPattern<btor::MulOp, LLVM::MulOp>;
using UDivOpLowering =

VectorConvertToLLVMPattern<btor::UDivOp, LLVM::UDivOp>;
...
void mlir::btor::populateBtorToLLVMConversionPatterns(

LLVMTypeConverter &converter, RewritePatternSet
&patterns) {

patterns.add<
AddOpLowering, SubOpLowering, MulOpLowering,
UDivOpLowering, ...>(converter);

}
...� �

(b) Converting operations to LLVM-IR.

Fig. 5: Using Patter Based Rewriters in MLIR.

HWMCC 20
Benchmarks

VCGen

VCGen+Z3

Bᴏᴏʟᴇᴄᴛᴏʀ

BᴛᴏʀMC

Bᴛᴏʀ2MLIR

unroll bound of 20

unroll bound of 25

Bᴛᴏʀ 20
Bᴛᴏʀ 25

Convert Bᴛᴏʀ2
 to Bᴛᴏʀ Dialect

Convert Bᴛᴏʀ Dialect
to LLVM Dialect

Convert LLVM Dialect
to LLVM-IR

Generate verification
conditions and solve

using Z3

Generate verification
conditions

SAT
- generates executable cex
- witness can be simulated

using BᴛᴏʀMC

UNSAT

Solves instances
SAT/UNSAT

Fig. 6: Verification Strategies.

limits). We chose BTORMC because it is well integrated with
the HWMCC environment and is specifically designed for
BTOR2. The results of running BTORMC are shown in the first
columns of BTORMC in Table II. For each category, we show
the total time for all instances that are solved in that category,
and the number of instances that are solved as safe, unsafe,
and timed-out (TO), respectively. For example, the 20/mann
category is solved in 257 seconds, 10 instances are safe, 5 are
unsafe, and no instance has timed out. The performance of
BTORMC is quite good across the board.

We evaluate the problems generated by BTOR2MLIR by

plugging them into SEAHORN. SEAHORN pre-processes pro-
grams before attempting to verify them. This includes, stan-
dard LLVM optimizations (i.e., -O3), loop unrolling and loop
cutting are applied. We found that SEAHORN was able to,
in some instances, remove the assertions in the LLVM-IR,
meaning that the program was found to be safe statically,
before invoking the BMC. The BMC also runs simplifications
on the formulas that it sends to Z3, its default underlying SMT
solver. The results for this run are shown in the Z3 columns
of Table II. For example, the 20/mann category is solved
in 94 seconds, 8 instances are safe, 5 are unsafe and 2 have

60

BTORMC SEAHORN

20 25 VCGen + Z3 VCGen BTOR
w
o
l
f
/
1
8
D Time (s) 157 394 560 543 745

Safe 34 34 29 - 34
Unsafe 0 0 0 - 0
TO 2 2 7 2 2

w
o
l
f
/
1
9
A Time (s) 146 106 - - -

Safe 0 0 0 - 0
Unsafe 1 1 0 - 0
TO 17 17 18 18 18

w
o
l
f
/
1
9
B Time (s) 2 2 2 2 3

Safe 3 3 3 - 3
Unsafe 0 0 0 - 0
TO 0 0 0 0 0

w
o
l
f
/
1
9
C Time (s) 834 1 101 354 418 1 085

Safe 108 107 102 - 106
Unsafe 0 0 0 - 0
TO 5 6 11 2 7

BTORMC SEAHORN

20 25 VCGen + Z3 VCGen BTOR

1
9
/
b
e
e
m Time (s) 278 251 309 35 85

Safe 9 8 6 - 7
Unsafe 2 2 2 - 2
TO 4 5 7 4 6

1
9
/
g
o
e
l Time (s) 190 349 489 132 335

Safe 26 25 25 - 28
Unsafe 2 2 1 - 2
TO 43 44 45 27 41

1
9
/
m
a
n
n Time (s) 4 442 8 674 3 811 175 3 015

Safe 29 28 19 - 30
Unsafe 15 15 14 - 14
TO 9 10 20 2 9

2
0
/
m
a
n
n Time (s) 257 495 94 35 188

Safe 10 10 8 - 9
Unsafe 5 5 5 - 5
TO 0 0 2 0 1

TABLE II: HWMCC20 Results.

timed out. The reported time does not include the instances
that have timed out.

The aggregate time of SEAHORN on most of the categories
is higher than that of BTORMC, often by a significant amount.
We looked into this and found that SEAHORN treats the given
bound as a lower bound, rather than an upper bound. That
is, it ensures that it unrolls the programs to a depth of at
least 20, but it may continue past that point. Taking this into
account, we ran BTORMC with a bound of 25. The results are
in the second columns of BTORMC in Table II. As expected,
its aggregate times are higher than the run of BTORMC with
bound 20. We notice, however, that it is slower than SEAHORN
in the 19/mann category.

BOOLECTOR and Z3 are the SMT solvers used by BTORMC
and SEAHORN respectively. Given that BOOLECTOR is op-
timized for BTOR2 circuits, we evaluated whether the SMT
formulas generated by SEAHORN would be solved faster
by BOOLECTOR. The results for generating SMT-LIB for-
mulas using SEAHORN are presented in the VCGen col-
umn of Table II. The times are low for most categories
except wolf/18D, wolf/19C, 19/goel and 19/mann.
For example, it takes SEAHORN 175 seconds to generate the
verification conditions for instances in the 19/mann category,
with two timeouts. This includes the time it takes SEAHORN
to print the SMT formulas to disk. We plug the resulting SMT
formulas into BOOLECTOR and present the results in the BTOR
columns of Table II. The results show that using SEAHORN
to generate verification conditions and BOOLECTOR to solve
these instances is often better than using BTORMC. For exam-
ple, for category 19/mann, it takes 3 015s for BOOLECTOR
to solve 44 instances with 9 timeouts. Therefore, the total
time for SEAHORN and BOOLECTOR (3 190) represents the

BTORMC SEAHORN

20 25 VCGen+Z3 VCGen BTOR

Time (s) 6 309 11 373 5 621 1 340 5 456
Safe 219 215 192 - 217
Unsafe 25 25 22 - 23
TO 80 84 110 55 84

TABLE III: Total results for each tool.

time it takes to translate, generate SMT formula and verify
the 19/mann category. Note that two of the 9 timeouts in
this category are attributed to the fact that SEAHORN has a
timeout when generating verification conditions.

To get the big picture of how the different infrastruc-
tures performed, we collected the results over all categories
in Table III. From this table, we can see that our hybrid
pipeline combining BTOR2MLIR, SEAHORN, and BOOLEC-
TOR solves 240 instances with 84 timeouts in 6 796s (sum
of VCGen and BTOR total times), which is very encouraging.
We also present plots that compare the different pipelines that
have been explored in Fig. 7. We set the time for all timeout
instances to 350 seconds so that they are distinguished from
instances that were solved close to the timeout threshold. First,
we look at the performance of the hybrid pipeline that com-
bines BTOR2MLIR, SEAHORN and its default SMT solver Z3
against BTORMC in Fig. 7a. Z3 does as well as BTORMC for
most instances that are easy, however, it struggles when the
problems are harder. This is not as clear from Table II since
focuses on the number of timeouts and benchmarks solved.
Second, we present the performance of BTORMC against the
hybrid pipeline that combines BTOR2MLIR, SEAHORN and

61

(a) VCGen + Z3 vs BTORMC. (b) VCGen + BOOLECTOR vs BTORMC. (c) VCGen + Z3 vs VCGen + BOOLECTOR.

Fig. 7: Verification strategy comparison.

BOOLECTOR in Fig. 7b. We can see that there are more
benchmarks that this pipeline solves faster than BTORMC.
It is also clear that it solves more benchmarks than the Z3
configuration in Fig. 7a, as we would expect from Table III.
Third, we compare the two hybrid pipelines in Fig. 7c. We
can see that the configuration that uses SEAHORN to generate
verification conditions and BOOLECTOR for solving easily
outperforms the Z3 configuration.

VI. RELATED WORK

Translating BTOR2 circuits into other formats enables the
application of different verification methods and techniques.
The gains that can be made from applying one method
of encoding over another could enable solving a class of
benchmarks that are not solved with existing approaches.

BTOR2LLVM6 and BTOR2CHC7 are tools that convert
BTOR2 circuits to programs in LLVM-IR and CHCs, re-
spectively. These tools are developed in Python, in order to
be light weight, but end up repeating shared functionality
and tools since they lack a common infrastructure. Translated
BTOR2 benchmarks8 have also been collected to facilitate
research, but information of what tools were used to get the
CHC format is not publicly available. While a collection of
translated benchmarks is valuable, it is important that there
are tools to do the translation on demand. This enables rapid
prototyping in a way that saved benchmarks do not.

BTOR2C [15] is a recent tool that converts BTOR2 circuits
to C programs. It has been used to facilitate the utilization
of software analyzers by serving as a pre-processing step that
bridges the gap between the world of software verification
and hardware verification. There are limitations that arise,
however, from differences in the semantics of BTOR2 and

6https://github.com/stepwise-alan/btor2llvm
7https://github.com/stepwise-alan/btor2chc
8https://github.com/zhanghongce/HWMCC19-in-CHC

C. An important limitation that C imposes on this project
is the inability to represent arbitrary width bitvectors. This
means that BTOR2 circuits which operate on bitvectors of
width greater than 128 are not supported. These limitations,
as well as BTOR2C lack of support for BTOR2 operators that
have overflow detection are resolved by using LLVM-IR as
the target language.

A common theme across these efforts is that they are not
built on an architecture that can be easily extended. Each
project aims to make it easier to utilize advances in formal
verification, but they fail to offer a solution that does not
require recreating components that already exist.

VII. CONCLUSION

In this paper, we present BTOR2MLIR — a new format
and toolchain for hardware verification, based on the MLIR
intermediate representation framework of the LLVM compiler
infrastructure. Our goal is to open new doors for the research
and applications of hardware verification by taking advantage
of recent innovations in compiler construction technology. We
believe that this project opens new avenues for exploring
the application of existing verification and testing techniques
developed for software to the hardware domain. As a proof of
concept, we have connected BTOR2MLIR with the SEAHORN
verification engine. While out-of-the-box, this gives acceptable
performance, when combined with BOOLECTOR, a combina-
tion that is competitive against BTORMC. In the future, we
plan to continue this line of research and explore applying
testing and simulation technologies such as KLEE [7] and
LIBFUZZER [6]. We also plan to generate formats for other
verification techniques such as AIGER [20], Constrained Horn
Clauses, and SMT-LIB.

REFERENCES

[1] S. Malik, “Hardware verification: Techniques, methodology and solu-
tions,” in Tools and Algorithms for the Construction and Analysis of

62

https://github.com/stepwise-alan/btor2llvm
https://github.com/stepwise-alan/btor2chc
https://github.com/zhanghongce/HWMCC19-in-CHC

Systems, C. R. Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 1–1.

[2] A. Biere, T. van Dijk, and K. Heljanko, “Hardware model checking
competition 2017,” in 2017 Formal Methods in Computer Aided Design
(FMCAD), 2017, pp. 9–9.

[3] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2 , BtorMC
and Boolector 3.0,” in Computer Aided Verification, H. Chockler and
G. Weissenbacher, Eds. Cham: Springer International Publishing, 2018,
pp. 587–595.

[4] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–86.

[5] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: A
Compiler Infrastructure for the End of Moore’s Law,” 2020.

[6] K. Serebryany, “Continuous Fuzzing with libFuzzer and AddressSan-
itizer,” in 2016 IEEE Cybersecurity Development (SecDev), 2016, pp.
157–157.

[7] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
USENIX Symposium on Operating Systems Design and Implementation,
2008.

[8] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The SeaHorn
Verification Framework,” in Computer Aided Verification, D. Kroening
and C. S. Păsăreanu, Eds. Cham: Springer International Publishing,
2015, pp. 343–361.

[9] A. Gurfinkel and J. A. Navas, “Abstract interpretation of LLVM
with a region-based memory model,” in Software Verification - 13th
International Conference, VSTTE 2021, New Haven, CT, USA, October
18-19, 2021, and 14th International Workshop, NSV 2021, Los Angeles,
CA, USA, July 18-19, 2021, Revised Selected Papers, ser. Lecture
Notes in Computer Science, R. Bloem, R. Dimitrova, C. Fan, and
N. Sharygina, Eds., vol. 13124. Springer, 2021, pp. 122–144. [Online].
Available: https://doi.org/10.1007/978-3-030-95561-8 8

[10] S. Eldridge, P. Barua, A. Chapyzhenka, A. Izraelevitz, J. Koenig,
C. Lattner, A. Lenharth, G. Leontiev, F. Schuiki, R. Sunder, A. Young,
and R. Xia, “MLIR as Hardware Compiler Infrastructure,” in Workshop
on Open-Source EDA Technology (WOSET), 2021.

[11] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2016.

[12] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.
[13] S. Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis.

USA: Prentice-Hall, Inc., 1996.
[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg,
R. Monga, S. Moore, D. G. Murray, B. Steiner, P. A. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: A system for large-scale machine learning,” in 12th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016, K. Keeton and
T. Roscoe, Eds. USENIX Association, 2016, pp. 265–283. [Online].
Available: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/abadi

[15] D. Beyer, P.-C. Chien, and N.-Z. Lee, “Bridging hardware and
software analysis with Btor2C: A word-level-circuit-to-C translator,” in
Proc. TACAS, ser. LNCS 13994. Springer, 2023, pp. 1–21. [Online].
Available: https://www.sosy-lab.org/research/btor2c/

[16] S. Chatterjee, A. Mishchenko, R. K. Brayton, and A. Kuehlmann, “On
resolution proofs for combinational equivalence,” in Proceedings of
the 44th Design Automation Conference, DAC 2007, San Diego, CA,
USA, June 4-8, 2007. IEEE, 2007, pp. 600–605. [Online]. Available:
https://doi.org/10.1145/1278480.1278631

[17] R. E. Bryant, “Tbuddy: A proof-generating BDD package,” in 22nd
Formal Methods in Computer-Aided Design, FMCAD 2022, Trento,
Italy, October 17-21, 2022, A. Griggio and N. Rungta, Eds. IEEE,
2022, pp. 49–58. [Online]. Available: https://doi.org/10.34727/2022/
isbn.978-3-85448-053-2 10

[18] S. Priya, X. Zhou, Y. Su, Y. Vizel, Y. Bao, and A. Gurfinkel, “Bounded
Model Checking for LLVM,” in Formal Methods in Computer Aided
Design, FMCAD 2022, 2022, p. 214.

[19] ——, “Verifying verified code,” Innov. Syst. Softw. Eng., vol. 18,
no. 3, pp. 335–346, 2022. [Online]. Available: https://doi.org/10.1007/
s11334-022-00443-9

[20] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,” In-
stitute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 11/2, 2011.

63

https://doi.org/10.1007/978-3-030-95561-8_8
https://yosyshq.net/yosys/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.sosy-lab.org/research/btor2c/
https://doi.org/10.1145/1278480.1278631
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_10
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_10
https://doi.org/10.1007/s11334-022-00443-9
https://doi.org/10.1007/s11334-022-00443-9

Formal Methods in Computer-Aided Design 2023

Data-Driven Learning of Strong Conjunctive
Invariants

Arkesh Thakkar
Department of Computer Science and Automation

Indian Institute of Science
Bengaluru, India

arkesh.thakkar14@gmail.com, arkeshkumart@iisc.ac.in

Deepak D’Souza
Department of Computer Science and Automation

Indian Institute of Science
Bengaluru, India

deepakd@iisc.ac.in

Abstract—Coming up with adequate inductive invariants is
the key step in the deductive verification of programs. Moreover,
coming up with strong inductive invariants is important in several
application scenarios like compositional verification. Houdini-
style approaches are popular techniques that learn the strongest
conjunctive subset of a given set of constraints that is adequate
to prove a given pre-post specification for a program. However,
both the adequacy and strength of the learned invariants depend
on the quality of the initial set of constraints. In this work, we
propose a data-driven way of learning an initial set of constraints
from sample runs of the program. We use a novel combination of
linear regression for equality constraints and linear programming
for inequality constraints. The evaluation of our technique shows
that it is more efficient and leads to stronger adequate invariants
than some of the state-of-the-art data-driven techniques.

I. INTRODUCTION

Finding likely invariants at points in a program from sample
execution traces of the program has many applications. These
include program understanding and specification mining [1],
program testing [12], [22], and program verification [18],
[21]. Our interest is mainly in the application of learning
likely numerical invariants in the context of the Floyd-Hoare
style verification of pre-post specifications for programs. Many
existing techniques, like Houdini [8] and ICE-learning [6], [10]
attempt to learn adequate inductive invariants from a set of
base predicates. Such techniques could also benefit from a
good base set of likely invariants.

In many applications, coming up with “tight” invariants that
fit the sample data well while still generalizing well to unseen
data or leading to adequate inductive invariants is important.
Tight invariants are useful in proving strong postconditions,
or in inferring strong postconditions for compositional verifi-
cation (say of programs with sequential loops).

Prior works in data-driven invariant generation have typ-
ically used techniques like enumerative checking of a set
of bounded templates [5], algebraic equality solving [16],
[21], convex hulls [16], and neural network based learning
[20], [23]. In this paper, we propose a technique for data-
driven invariant learning based on classical linear regression
for equality constraints, and linear programming for inequality
constraints. We used linear regression along with feature
selection to find a good set of equality invariants; feature
selection gives us more optimal answers and avoids overfitting

the data. Our linear programming formulation for finding
tight inequality invariants are both more efficient and produce
stronger invariants in comparison to techniques based on
convex hulls or neural networks.

We have evaluated our technique on a range of simple
loop verification benchmarks from SVCOMP [2], by collecting
sample data at the head of the loop and learning a set of
candidate invariants. We then try to find a conjunctive subset
of these invariants that is adequate to prove the postconditions
using the Houdini algorithm. We did the same with three
state-of-the-art invariant generation tools. We were able to find
more adequate invariants than all the other tools (100 out of
104 programs), the strongest adequate invariant, in comparison
with the other tools, in 87 programs, and the average time to
generate the candidate set of invariants is 8.32 seconds.

The rest of the paper is organized as follows. We begin with
an overview of our approach in Sec. II, followed by back-
ground material in Sec. III which gives the basics of Floyd-
Hoare verification and the Houdini technique. Secs. IV, V and
VI describe our technique to generate equality and inequality
invariants, and the overall algorithm, respectively. Sec. VII
describes the experimental evaluation of our approach. We
discuss related work in Sec. VIII and conclude in Sec. IX.

II. OVERVIEW

Given a program P having a set of variables V , precondition
pre and postcondition post and a loop as shown in Fig. 1,
we first collect the traces T of variables (i.e., the value that
each variable holds) at different loop iterations by giving a
random set of inputs that satisfy the pre condition. We also
generate polynomial terms (i.e. non-linear terms) from the
existing variables of P upto a user-given degree r. This helps
us learn non-linear invariants as well, along with the linear
invariants.

After collecting the trace data T and generating a polyno-
mial degree, let the total number of dimensions (including new
variables representing polynomial terms) be n. Considering
each variable as a target variable and other n− 1 variables as
independent variables, we apply feature selection techniques
to get the features (i.e. variables among the n−1 independent
variables) that are closely related to the target variable. We
then apply linear regression to find the equality relationships

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 14 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_14
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_14
https://creativecommons.org/licenses/by/4.0/

among the target and closely related independent variables.
Applying feature selection is important because if n is large,
linear regression without feature selection could lead to over-
fitting and we may not be able to infer a generalized equality
relationship between the target and independent variables.

Consider one of the programs named “knuth”, shown below,
from the SVCOMP nla-digbench benchmark [2]. The program
implements an algorithm that searches for a divisor for fac-
torization.

unsigned n , a ;
unsigned r , k , q , d , s , t ;
d = a ;
r = n % d ;
t = 0 ;
k = n % (d − 2) ;
q = 4 * (n / (d −2) − n / d) ;
s = s q r t (n) ;
whi le (1) {

i f (! ((s >= d) && (r != 0)))
break ;

i f (2* r + q < k) {
t = r ;
r = 2* r − k + q + d + 2 ;
k = t ;
q = q + 4 ;
d = d + 2 ;

}
e l s e i f ((2 * r + q >= k)
&& (2* r + q < d + k + 2)) {

t = r ;
r = 2* r − k + q ;
k = t ;
d = d + 2 ;

}
e l s e i f ((2 * r + q >= k) &&
(2* r + q >= d + k + 2) &&
(2* r + q < 2*d + k + 4)) {

t = r ;
r = 2* r − k + q − d − 2 ;
k = t ;
q = q − 4 ;
d = d + 2 ;

}
e l s e {

t = r ;
r = 2* r − k + q − 2*d − 4 ;
k = t ;
q = q − 8 ;
d = d + 2 ;

}
}

A snapshot of collected traces is shown in the following
table:

n a r k q d s t
25 3 60 1 60 5 5 1
25 3 165 60 52 7 5 60
49 3 1 0 132 3 7 0
49 3 124 1 124 5 7 1
49 3 357 124 116 7 7 124
49 3 688 357 108 9 7 357

...
19021 15 816146 792937 340 125 137 792937
19021 15 839441 816146 332 127 137 816146
19021 15 862810 839441 324 129 137 839441

TABLE I
VARIABLE VALUES IN TRACES OF EXAMPLE PROGRAM

The documented invariant for the program is

ddq − 2qd− 4rd+ 4kd+ 8r = 8n.

As it requires some degree 3 terms, generating terms up to
degree 3 from the traces goes up to 164 dimensions. Without
applying feature selection, linear regression leads to overfit-
ting and doesn’t give any equality invariant. Thus, feature
selection is important for learning useful equality invariants.
Furthermore, we use Linear Programming to help us learn tight
inequality constraints in two and three dimensions.

As shown in Sec. VII, none of the three existing tools,
namely Daikon, DIG, and GCLN, we experimented with were
able to find an adequate invariant for this program, due to lack
of effective feature selection techniques. In contrast, our tool
LPGEN finds an adequate invariant for the above program, due
to its use of feature selection techniques (details in Sec. IV).

III. BACKGROUND

A. Preliminaries

We will use Z and R to denote the set of integers and
reals respectively. For an m×n matrix M over the reals, we
will denote by M⊺ the transpose of M , which is the n×m
matrix obtained by changing the rows of M into columns.
For m×n matrices M and N , we will denote by M + N
(respectively M − N) the matrix obtained by the pointwise
addition (respectively subtraction) of elements of M and N ,
and write M ≤ N to mean that each (i, j)-th element of M
is less than or equal to the (i, j)-th element of N . For vectors
u = [u1, . . . , un] and v = [v1, . . . , vn], the inner product of u
and v, denoted u ·v, is

∑n
i=1 uivi. The L2 norm of u, denoted

∥u∥, is defined to be
√
(
∑n

i=1 u
2
i), while the L1 norm of u,

denoted ∥u∥1, is defined to be
∑n

i=1 |ui|.
We will be dealing with a quantifier-free logical language

of constraints. Given a set of variables V = {x1, . . . , xn}, we
define the following language of constraints over V . The terms
t of this language will comprise variables from V , constants
l ∈ Z, and products and sums of terms. An (atomic) constraint
over V is now of the form t ∼ t′, where ∼∈ {=, <,≤, >,≥}.
In some cases we will also allow atomic constraints of the form
x mod l = d and x& l = m, where x is an integer variable,
and l and m are integers, representing that x mod l is d and
the bitwise-and of x and l is m; and gcd(x, y) = gcd(x′, y′)
where x, y, x′, y′ are integer-valued variables in V , and gcd
denotes the greatest common divisor function. A constraint

65

over V is a boolean combination of atomic constraints over
V .

A valuation u of variables in V is a map that assigns to each
variable x in V a real value u(x). Wherever convenient, we
will represent such a valuation as a vector [u(x1), . . . , u(xn)].
A valuation u assigns a real value tu to each term t over V ,
by inductively defining lu = l, xu = u(x), and (t + t′)u =
tu + (t′)u, etc. We say u satisfies an atomic constraint t ∼ t′

iff tu ∼ (t′)u. Finally, boolean combinations are handled in
the expected manner. We write u ⊨ c to denote the fact that
the valuation u satisfies the constraint c.

B. Verification Conditions for Simple Programs

We will consider programs with a simple loop structure, as
shown in Fig. 1. The programs have a single loop, with a set
of initialization statements S1, loop body statements S2, and
post-loop statements S3. The statements in these blocks are
assignments or if-then-else statements.

We will use standard Floyd-Hoare logic [9], [13] to specify
and reason about the correctness of these programs. A state of
a program is simply a valuation to its variables, and thus we
can ask whether it satisfies a given constraint on the variables
of the program. An “pre-post” specification for a program P
over a set of variables V is pair of constraints (pre, post) over
V . We say P satisfies the specification (pre, post) if every
terminating execution of P that begins in a state satisfying
pre, terminates in a state satisfying post .

A standard way to prove that a program P satisfies a
specification (pre, post) is to come up with a constraint inv
over the variables of the program, satisfying the conditions
(C1), (C2) and (C3) on the right in Fig. 1 (in the the sense
that the implications are logically valid). In the conditions,
we use the notation JSK to denote the standard logical se-
mantics of the statement S over the set of variables V and
V ′ = {x′ | x ∈ V }, representing the states before and after the
execution of S, respectively. For example, for an assignment
statement x:=x+1 in a program with variables V = {x, y},
we have Jx:=x+1K to be x′ = x + 1 ∧ y′ = y. We also
use the notation inv ′ to denote the constraint obtained by
substituting x′ for x in inv , for each variable x ∈ V . We call
these conditions verification conditions, and they essentially
require inv to be an adequate inductive invariant for P ,
with conditions (C1) and (C3) enforcing adequacy of inv
w.r.t. the pre-post conditions, and condition (C2) enforcing
inductiveness of inv .

C. Houdini Algorithm

We briefly outline the Houdini algorithm of [8] (see also
[15]), which is useful in efficiently identifying an adequate
inductive conjunctive subset of a given set of candidate in-
variants.

Let P be a program of the form shown in Fig. 1 over a set of
variables V , and (pre, post) be a given pre-post specification
for P . Let C be a finite set of constraints over V . Then the
Houdini algorithm finds the strongest conjunctive subset of C
that is an adequate inductive invariant for P w.r.t. (pre, post).

while (b) {

// assume pre

}

// assert post

S1

S3

S2

(C1) pre ∧ JS1K =⇒ inv ′

(C2) inv ∧ b ∧ JS2K =⇒ inv ′

(C3) inv ∧ ¬b ∧ JS3K =⇒ post ′

Fig. 1. A simple loop program and corresponding VCs for inv to be an
adequate inductive invariant

The algorithm proceeds as follows. As usual, we treat
∧

∅ to
be true .

1) Let C1 be the subset of C containing all constraints c ∈ C
such that pre ∧ JS1K =⇒ c′.

2) Check if
∧

C1 satisfies condition (C3) (i.e.
∧

C1 ∧¬b∧
JS3K =⇒ post ′). If not, return “No adequate invariant
exists.”

3) Check if
∧

C1 satisfies condition (C2) (i.e.
∧
C1 ∧ b ∧

JS2K =⇒
∧

C′
1). If so, return

∧
C1 as an adequate

inductive invariant.
Else, let (u, v) be a counter-example, where u ⊨ b ∧∧
C1 but v′ ̸⊨

∧
C′
1, where v is the state resulting from

executing S2 in u. Let C2 be the subset of C1 obtained
by dropping constraints that are not satisfied by v. Thus
C2 = C1 − {c ∈ C1 | v ̸⊨ c}. Set C1 to C2, and go back
to Step 2.

IV. EQUALITY INVARIANTS USING LINEAR REGRESSION

Suppose we are interested in tracking the values of n
different terms at the loop head in a program P . These terms
could be variables of the program (like x and i) or product
terms like (x2 or xi). Let us say we have collected m sample
values. Then we can represent the values collected as a data set
D = {d1, . . . , dm}, where each di = [d11, . . . , d1n] represents
the values of notional variables x1, . . . , xn standing for the
terms we are interested in tracking. These notional variables
are also called features. Let us fix such a data set D, with
feature dimension n ≥ 2 and number of samples m ≥ 1, for
the next couple of sections.

In this section, our goal is to learn a linear equality relation-
ship between the notional variables, whenever one exists. To
do this we consider each variable x as the target variable, and
consider the remaining n − 1 variables as independent vari-
ables. The goal is to see if the target variable can be expressed
as a “linear” combination of the independent variables. For
example, if x1 is our target variable, we would like to know if
x1 = w1 +w2x2 + · · ·+wnxn, for some real-valued weights
w1, . . . , wn. The technique of linear regression helps us to do
this.

However, when the number of independent variables is
large, linear regression may not give us good results as it could

66

Fig. 2. Generating equality invariants

overfit the data in a dataset D and may fail to generalize.
Hence we first find a subset of closely-related independent
variables (this step is called feature selection), and then apply
linear regression on this restricted set of variables.

In our proposed technique, we use two feature selection
techniques, namely L1 regularization and univariate feature
selection. We then perform two linear regression steps: once on
the subset of features obtained by regularization and once more
on the subset obtained by univariate feature selection. Finally,
after obtaining the equality constraints, we check whether they
satisfy all the data points and discard those that don’t.

These steps are summarized in Fig. 2. In the rest of this
section, we describe them in more detail.

A. Linear Regression

Given the data set D = {d1, . . . , dm}, we would like to
know whether one of the variables (say x1) bears a linear
relationship to the remaining variables, in that there exist real
values w1, . . . , wn such that for each i, di1 equals (or is close
to) w1 +w2di2 + · · ·+wndin. In the method of least-squares
regression, for a given vector W = [w1, . . . , wn]

⊺, we define
the error or loss it entails by

L(D,W) =

m∑
i=1

(di,1 − (w1 +

n∑
k=2

wkdi,k))
2. (1)

We now ask for a weight vector W which minimizes
L(D,W).

In matrix form one can express L(D,W) as ∥(Y −XW)∥2,
where

X =

1 d12 d13 · · · d1n
...

1 dm2 xm3 · · · xmn

and Y = [d11, . . . , dm1]

⊺. A standard result says that the
value of W that minimizes L(D,W) can be computed by the
closed-form solution:

W = (X⊺X)−1X⊺Y. (2)

B. L1 Regularization
L1 regularization is a way of selecting the features that are

correlated to the target variable. It seeks to penalize features
that are not correlated to the target variable by making their
coefficient weights zero.

Mathematically, in L1 regularization, we modify the loss
function from Eq (1), by adding a term as follows:

L(D,W) = ∥Y −XW∥2 + 2λ∥W∥1. (3)

Here λ is a hyperparameter that controls the amount of
regularization, and taking the L1-norm of W helps penalize
outlier features by optimizing them towards 0. The value used
for λ is 0.1 in LPGEN.

As the L1-norm is not differentiable at zero, its closed form
does not exist, so the optimal value, i.e., minimal loss, is
obtained by optimization techniques like gradient descent.

The features that are correlated to x1 can now be taken to
be those xi’s for which the coefficient wi is non-zero.

C. Univariate Feature Selection
Univariate feature selection is another technique for finding

correlated features. It is typically faster than L1 regularization
for large dimensions. Let us say we want to find features that
are correlated to x1. We first run linear regression for the target
variable x1 by considering a single independent variable xj at
a time, with xj ranging over x2, . . . , xn in turn. Let us say
that for a particular variable xj , linear regression learns the
estimate w1 + wxj . We can now define the F -score of xj ,
denoted F (xj), to be MSR(xj)/MSE (xj) where MSR(xj)
is the “mean sum of squares regression” of xj , defined to be

MSR(xj) =

m∑
i=1

(d̄− (w1 + wdij))
2

where d̄ = (
∑m

i=1 di1)/m is the mean of d11, . . . , dm1; and
MSE (xj) is the “mean sum of squares error” of xj , defined
to be

MSE (xj) =

∑m
i=1(di1 − (w1 + wdij))

2

m− 2
.

The F -score is an indicator of how significantly a feature is
related to the target variable. The greater the F -score, the
greater is its significance.

We now compute the “top-k” features for x1 as follows. Let
f̄ be the mean F -score of the variables x2, . . . , xn. We now
select those features xj whose F -score is at least as much as
f̄ , and return these as the features most correlated to x1.

67

+

+

+
+

+

+

+

+

y

+
+

+

+

(a)

+
+

+

y

(b)

+

+

+

+

+ +

+

+

+

+

+

+

+

x x

Fig. 3. (a) Structure of inequalities learnt and (b) optimizing slope and
intercept

V. INEQUALITY INVARIANTS USING LINEAR
PROGRAMMING

We now focus on learning tight inequality constraints that a
given data set satisfies. We focus on inequalities involving two
variables and three variables separately. In both cases, we for-
mulate the problem in terms of an integer linear programming
problem.

A. Two Dimensional Inequality Invariants

Our goal is to infer constraints of the form w1x+w2y+b ≥
0, for a given pair of variables x and y, which are satisfied
by the data set D. We also want to find (heuristically) “tight”
constraints. As illustrated in Fig. 3(a), we want to find (apart
from the two horizontal and two vertical min/max bounds on
x and y) four bounding lines corresponding to (a) w1 being
positive and w2 being negative (the top-left line), (b) w1 being
negative and w2 being positive (the bottom-right line), (c) w1

being negative and w2 being negative (the top-right line), and
(d) w1 being positive and w2 being positive (the bottom-left
line).

Let us focus on case (a) w.r.t. the data set in Fig. 3(b).
Intuitively, we want to minimize the slope and the y-intercept
of the line w1x + w2y + b = 0, subject to the constraint
satisfying the data points. Thus, we want the cyan line (3x−
2y + 0 ≥ 0) with slope 3/2 and intercept 0, in preference to
the blue line (3x−2y+2 ≥ 0) with slope 3/2 and intercept 2,
and the red line (2x− 1y+ 0 ≥ 0) with slope 2 and intercept
0.

Since we cannot formulate this directly as a linear program-
ming problem, we use the following ILP formulation (with x
and y corresponding to x1 and x2 respectively):

minimize 1000000 + 0.4w1 + 0.49w2 + 0.2b (4)

subject to:

w1d11 + w2d12 + b ≥ 0

. . . (5)
w1dm1 + w2dm2 + b ≥ 0

w1,−w2 > 0 (6)

where w1, w2, b are the integer values we want to infer. We
place the restriction that these values should be in the range
[−105, 105]. The coefficients in the minimization formulas
were based on experimental heuristics. The idea behind the
choice of coefficients is shown in Figure 3(b). We want to
minimize the slope and intercept to learn the cyan-colored
line.

Let’s say we try to get w1 and w2 with equal weights in
the minimization, i.e. Minimize w1−w2+b. Then it will give
2x − y + 0 ≥ 0 (corresponding to the red line), which is not
as tight as the line 3x − 2y + 0 ≥ 0 (cyan line). Due to this
reason, we gave a bit more weight to the negative coefficient
than the positive one (i.e., 0.4 to w1, which is positive, and
0.49 to w2, which is negative). Apart from this, 1000000 is
added to make the total addition positive, as the LP solver
does not support negative minimization objectives.

Similarly, we formulate cases (b)–(d) by changing the
objective function (4) as follows:

case (b) 1000000 + 0.49w1 + 0.4w2 + 0.2b (7)
case (c) 1000000− w1 − w2 + 0.2b (8)
case (d) 1000000 + w1 + w2 + 0.2b (9)

The constraints each model is subject to are (5) and the
corresponding version of (6).

We now ask an ILP solver to find optimal values of
w1, w2, b for each of the four problem instances, giving us
four inequality constraints.

This is repeated for each pair of variables.

B. Three Dimensional Inequality Invariants

Inequalities in three dimensions are inferred similar to the
case of two dimensions. The goal is to infer constraints of
the form w1x + w2y + w3z + b ≥ 0, for a given triplet
of variables x, y and z, which are satisfied by the data set
D. Also, we want to find (heuristically) “tight” constraints.
Here apart from six min/max bounds for three variables,
we find eight bounding lines corresponding to (a) w1 being
positive, w2 being negative and w3 being positive, (b) w1 being
positive, w2 being positive and w3 being negative, (c) w1 being
positive, w2 being negative and w3 being negative, (d) w1

being negative, w2 being positive and w3 being positive, (e) w1

being negative, w2 being negative and w3 being positive, (f) w1

being negative, w2 being positive and w3 being negative, (g)
w1 being negative, w2 being negative and w3 being negative,
and (h) w1 being positive, w2 being positive and w3 being
positive.

For obtaining tighter bounds in three dimensions, we use
the following ILP formulation for case (a) (with x, y, and z
corresponding to x1, x2 and x3 respectively):

minimize 1000000 + 0.6w1 + 0.2w2 + 0.6w3 + 0.2b (10)

68

Fig. 4. Steps to generate invariant

subject to:

w1d11 + w2d12 + w3d13 + b ≥ 0

. . . (11)
w1dm1 + w2dm2 + w3dm3 + b ≥ 0

w1,−w2, w3 > 0 (12)

where w1, w2, w3, b are the integer values we want to infer. We
place the restriction that these values should be in the range
[−105, 105].

Similarly, we formulate the cases (b)–(h) by changing the
objective function Eq 10 as follows:

case (b) 1000000 + 0.6w1 + 0.6w2 + 0.2w3 + 0.2b (13)
case (c) 1000000 + 0.6w1 − 0.2w2 − 0.2w3 + 0.2b (14)
case (d) 1000000 + 0.2w1 + 0.6w2 + 0.6w3 + 0.2b (15)
case (e) 1000000− 0.2w1 − 0.2w2 + 0.6w3 + 0.2b (16)
case (f) 1000000− 0.2w1 + 0.6w2 − 0.2w3 + 0.2b (17)
case (g) 1000000− w1 − w2 − w3 + 0.2b (18)
case (h) 1000000 + w1 + w2 + w3 + 0.2b (19)

The constraints each model is subject to are (11) and the
corresponding version of (12).

We now ask an ILP solver to find optimal values of
w1, w2, w3, b for each of the eight problem instances, giving
us eight inequality constraints.

This is repeated for each triple of variables.

VI. OVERALL LPGEN PROCEDURE

We now describe how we put these techniques together in
our tool LPGEN. The tool takes as input a data set (typically
obtained by collecting execution traces at the head of the loop
in a program), over a set of k named variables. We also supply
a max-degree value r, which represents the max degree of
terms the tool should consider in the invariants it learns. The
tool finally outputs a set C of candidate invariants. The main
steps taken by the tool are shown in Fig. 4, and are described
below in more detail.

a) Data preprocessing: Initialize C to empty. Process the
data set as follows:

1) If any variable x has a constant value l, add x = l as
an invariant to C, and remove x from the data set. This
reduces the computation time and chance of overfitting.

2) If any two variables x and y always have equal values,
collect x = y as an invariant and remove one of the
variables from the data set.

3) For each remaining variable x, check if x mod l (for
some integer l) is constant, and add it as an invariant to
C. Also check if x&l is constant, and if so add it as an
invariant to C.

4) For all pairs of variables (x, y) and (w, z) check if
gcd(x, y) = gcd(w, z), and if so add it to C.

5) Generate non-linear terms and data from the remaining
variables upto r degree. For example, if the variables
are (x, y) and r = 2, we get {x, y, x2, xy, y2}. The
non-linear terms will help to find non-linear equality
invariants, The number of terms from k variables of
degree at most r is n =

(
k+r
r

)
− 1, which is now the

dimension of our modified data set.
6) Finally, generate min and max bounds for each variable,

and add them as invariants to C.
b) Learning Equalities: We now apply the linear regres-

sion based technique described in Sec. IV on this data set. For
each of the n variables, we first apply L1 regularization and
univariate feature selection to find a set of correlated variables,
followed by linear regression using these as the independent
variables. This gives us 2n equality invariants. Each of these
constraints is first checked to see if it satisfies the given data,
and if so it is added to C.

c) Learning Inequalities: Next we apply the techniques
of Sec. V to obtain inequality constraints on pairs and triples
of variables respectively. We considered only linear inequality
learning, i.e., applying inequality learning as mentioned in
Sec. V only on the original set of variables and not on the
higher degree variables. This can be extended to non-linear
inequality learning but at the cost of increased computation
time and verification complexity. After inferring inequality
invariants, they are checked for consistency with the data set
before adding them to C.

We now return the set C as the set of candidate invariants.

VII. EXPERIMENTAL EVALUATION

We have implemented LPGEN in Python. We use the
scikit-learn [19] library to perform feature selection and
linear regression. We use the PuLP Python linear programming
toolkit [14] for inferring inequality invariants.

The aims of our evaluation were threefold:
• (Adequacy) Whether the set of candidate invariants are

sufficient to prove pre-post conditions for programs.
• (Strength) How strong are the adequate invariants?
• (Efficiency) How much time does it take to generate the

invariants.
With these goals in mind, we evaluated the performance of
LPGEN on a variety of pre-post verification benchmark suites

69

nla-digbench
Daikon DIG GCLN LPGen

Program Adq Inv (s) Total (s) Adq Inv (s) Total (s) Adq Inv (s) Total (s) Adq Inv (s) Total (s)
cohencu 1 N 3.23 7.47 N TO 0.06 0/5 74.13 75.10 Y 12.90 57.09
cohendiv 1 Y 1.43 4.36 N TO 0.11 5/5 18.46 20.67 Y 8.01 17.75
cohendiv 2 Y 1.68 3.67 N TO 0.06 5/5 26.61 28.22 Y 7.48 13.58
dijkstra 1 Y 1.10 1.50 N TO 0.09 5/5 0.04 0.56 Y 0.17 0.40
dijkstra 2 N 1.33 2.23 N TO 0.10 4/5 25.62 27.00 Y 4.66 24.35
divbin 1 Y 1.19 1.65 N TO 0.05 5/5 17.58 18.17 Y 0.84 1.41
divbin 2 Y 1.42 3.92 N TO 0.09 5/5 22.13 22.95 Y 4.70 7.49
egcd 1 Y 4.28 32.72 N TO 0.07 0/5 66.75 67.32 Y 45.56 183.36
egcd2 1 Y 2.26 9.15 N TO 0.10 0/5 18.17 24.28 Y 30.36 65.89
egcd2 2 Y 5.25 7.95 N TO 0.11 0/5 50.23 50.34 Y 95.16 113.66
egcd3 1 Y 2.87 4.91 N TO 0.06 1/5 27.21 30.84 Y 35.54 47.78
egcd3 2 Y 3.90 6.96 N TO 0.11 0/5 24.94 25.14 Y 75.57 86.50
egcd3 3 Y 5.30 12.26 N TO 0.07 0/5 32.46 32.72 Y 136.11 154.69
fermat1 1 N 1.46 3.27 Y 62.26 69.78 4/5 16.66 22.81 Y 4.31 11.31
fermat1 2 N 1.73 2.68 N TO 0.05 4/5 16.94 17.38 Y 5.04 45.94
fermat1 3 N 1.71 2.28 N TO 0.06 5/5 17.49 17.90 Y 4.52 10.02
fermat2 1 N 1.66 2.42 N TO 0.10 4/5 16.57 21.95 Y 3.88 21.42
freire1 1 N 1.24 1.62 N ERROR 0.06 5/5 27.78 28.11 Y 1.22 1.88
freire2 1 Y 5.80 7.04 N ERROR 0.05 0/5 51.43 51.67 Y 18.11 29.81
geo1 1 Y 1.40 2.70 N TO 0.12 5/5 24.75 25.65 Y 7.15 9.15
geo2 1 Y 1.48 3.51 N TO 0.06 5/5 24.79 26.82 Y 7.21 9.68
geo3 1 N 2.94 7.76 N TO 0.10 5/5 60.56 66.16 Y 34.57 36.57
hard 1 Y 1.36 2.98 N TO 0.06 5/5 0.04 0.48 Y 2.60 4.04
hard 2 Y 1.63 12.01 N TO 0.11 5/5 24.68 26.47 Y 8.58 25.29
knuth 1 N 4.85 41.12 N TO 0.07 0/5 42.64 42.68 Y 145.93 189.00
lcm1 1 Y 1.62 6.76 N TO 0.06 0/5 17.53 19.20 Y 9.57 39.10
lcm1 2 Y 1.81 2.70 N TO 0.06 5/5 28.98 34.27 Y 12.78 97.39
lcm1 3 Y 1.74 3.04 N TO 0.06 5/5 19.18 24.12 Y 13.99 19.17
lcm2 1 Y 1.72 4.00 N TO 0.06 2/5 19.46 19.90 Y 13.71 21.70
mannadiv 1 N 1.76 2.64 N TO 0.05 5/5 25.21 25.73 Y 6.91 8.69
prod4br 1 N 2.01 4.98 N TO 0.06 5/5 24.27 25.13 Y 16.68 24.07
prodbin 1 Y 1.39 22.64 Y 102.78 103.27 5/5 18.19 18.78 Y 6.47 24.24
ps2 1 Y 1.23 1.94 Y 6.21 6.98 5/5 17.84 18.57 Y 0.86 1.67
ps3 1 N 1.10 4.25 Y 6.49 7.07 5/5 17.40 28.07 Y 0.77 5.91
ps4 1 N 1.33 115.72 Y 8.38 9.71 5/5 19.82 25.01 Y 5.09 10.11
ps5 1 N 1.63 209.76 Y 33.37 33.96 0/5 19.02 19.53 Y 13.23 24.43
ps6 1 N 1.97 35.76 N TO 0.28 0/5 19.33 21.35 Y 5.49 14.34
sqrt1 1 Y 1.51 2.66 N 154.06 154.31 3/5 34.23 35.65 Y 2.74 16.19

TABLE II
PERFORMANCE OF TOOLS ON THE NLA-DIGBENCH BENCHMARK

loop-invariants
Daikon DIG GCLN LPGen

Program Adq Inv (s) Total (s) Adq Inv (s) Total (s) Adq Inv (s) Total (s) Adq Inv (s) Total (s)
bin-suffix-5 N 1.36 1.52 Y 0.45 3.59 0/5 0.02 0.43 Y 0.02 0.24
const Y 1.11 1.39 Y 0.11 0.25 5/5 0.01 0.31 Y 0.01 0.11
eq1 Y 1.25 1.51 Y 6.10 6.57 5/5 2.55 3.51 Y 0.15 0.36
eq2 Y 1.49 1.77 Y 12.71 13.41 5/5 28.60 29.63 Y 0.29 0.60
even N 1.15 1.26 Y 0.21 0.35 0/5 0.01 0.16 Y 0.01 0.17
linear-inequality-inv-a N 1.34 1.91 N 23.86 24.05 0/5 1.53 2.61 Y 3.68 5.47
linear-inequality-inv-b N 1.58 1.75 N 17.63 17.76 5/5 1.96 3.26 Y 3.54 5.18
mod4 N 1.18 1.28 Y 0.50 0.64 0/5 0.02 0.16 Y 0.01 0.18
odd N 1.37 1.46 Y 0.32 0.50 0/5 0.02 0.16 Y 0.01 0.10

TABLE III
PERFORMANCE OF TOOLS ON THE LOOP-INVARIANTS BENCHMARK

from SVCOMP [2], and also did the same with three state-of-
the-art data-driven invariant generation tools Diakon [5], DIG
[16], and GCLN [23]. We first generate execution traces for
each program by running them on manually provided inputs
that satisfy the given precondition, and collect data at the head
of the loop across iterations and runs. We then run the tools
to generate the set of candidate invariants. We then use our
implementation of the Houdini algorithm (using the Z3 solver
[4]) to find the strongest conjunctive subset that is adequate
to prove the programs.

We use SVCOMP benchmarks named nla-digbench
(these typically need non-linear arithmetic invariants),
loop-invariants (linear invariants) and loop-zilu

(mix of linear and non-linear invariants). Most of the programs
are single loop programs. For the few programs containing
multiple or nested loops, we make sub-problems out of these
by considering the invariant of the outer loop as the pre for
the inner loop. and the documented invariant of the inner loop
as the post condition. The loop body is manually simplified in
the case of nested loops for the inductiveness check. For the
nla-digbench benchmark, the adequacy and inductiveness
conditions are taken from the GCLN implementation [23].
For nested loops data is collected separately for each loop
and it is treated as a separate problem for invariant inference.
While running Houdini however, the loop body needs to be
engineered carefully capturing the semantics of the loop for

70

loop-zilu
Daikon DIG GCLN LPGen

Program Adq Inv (s) Total (s) Adq Inv (s) Total (s) Adq Inv (s) Total (s) Adq Inv (s) Total (s)
benchmark01 conjunctive N 1.11 1.23 Y 0.86 1.05 5/5 0.29 0.74 Y 0.02 0.12
benchmark02 linear Y 1.20 1.49 Y 18.70 18.87 5/5 0.56 1.11 Y 0.73 1.14
benchmark02 linear abstracted Y 1.20 1.49 Y 18.70 18.87 5/5 0.56 1.11 Y 0.73 1.14
benchmark03 linear Y 1.53 1.99 Y 21.41 22.26 5/5 28.46 29.28 Y 0.77 1.44
benchmark04 conjunctive N 1.48 1.91 Y 43.14 43.43 0/5 1.71 2.16 Y 0.92 1.46
benchmark05 conjunctive Y 1.41 1.71 Y 17.70 17.88 5/5 26.15 26.82 Y 0.77 1.30
benchmark06 conjunctive Y 1.39 1.82 Y 85.33 85.75 2/5 30.34 31.23 Y 7.06 10.59
benchmark07 linear N 1.33 1.54 N 3.46 3.84 0/5 24.96 25.42 Y 1.80 2.28
benchmark08 conjunctive Y 1.44 1.72 Y 10.98 11.33 5/5 1.55 2.14 Y 0.70 1.21
benchmark09 conjunctive Y 1.18 1.46 Y 1.41 1.58 5/5 0.56 1.02 Y 0.02 0.12
benchmark10 conjunctive N 1.36 1.54 Y 1.78 1.95 5/5 0.51 0.81 Y 0.13 0.35
benchmark11 linear Y 1.33 1.58 Y 4.58 4.74 5/5 0.56 0.97 Y 0.16 0.34
benchmark11 linear abstracted Y 1.33 1.58 Y 4.58 4.74 5/5 0.56 0.97 Y 0.16 0.34
benchmark12 linear Y 1.23 1.63 Y 7.53 7.77 0/5 1.34 2.03 Y 10.69 11.09
benchmark13 conjunctive Y 1.40 1.64 Y 10.88 11.07 5/5 1.57 2.46 Y 0.17 0.35
benchmark14 linear N 1.25 1.38 Y 0.42 0.61 5/5 0.01 0.22 Y 0.01 0.11
benchmark15 conjunctive Y 1.34 1.69 Y 22.30 22.49 5/5 28.37 28.86 Y 1.27 2.08
benchmark16 conjunctive N 1.19 1.35 Y 3.28 3.95 0/5 25.46 25.74 Y 0.16 0.36
benchmark17 conjunctive Y 1.46 1.85 Y 14.44 14.64 5/5 1.73 2.35 Y 0.21 0.42
benchmark18 conjunctive Y 1.20 1.48 Y 13.33 13.81 5/5 1.73 2.40 Y 0.19 0.38
benchmark19 conjunctive Y 1.23 1.53 Y 18.63 18.87 5/5 1.72 2.48 Y 0.24 0.44
benchmark20 conjunctive Y 1.27 1.69 Y 25.93 26.12 5/5 1.73 2.28 Y 2.48 2.82
benchmark21 disjunctive N 1.51 1.66 N 5.14 5.30 0/5 0.51 0.75 N 0.24 0.34
benchmark22 conjunctive N 1.30 1.58 Y 1.83 2.08 0/5 0.47 0.65 Y 0.14 0.33
benchmark23 conjunctive N 1.43 1.80 N 1.96 2.07 5/5 24.69 25.07 Y 0.14 0.36
benchmark24 conjunctive N 1.50 1.81 Y 16.34 16.63 0/5 28.09 28.66 Y 0.90 1.45
benchmark25 linear N 1.10 1.19 Y 0.29 0.48 5/5 0.01 0.33 Y 0.01 0.11
benchmark25 linear abstracted N 1.10 1.19 Y 0.29 0.48 5/5 0.01 0.33 Y 0.01 0.11
benchmark26 linear Y 1.38 1.73 Y 4.71 4.87 5/5 0.50 0.74 Y 0.17 0.34
benchmark26 linear abstracted Y 1.38 1.73 Y 4.71 4.87 5/5 0.50 0.74 Y 0.17 0.34
benchmark27 linear N 1.42 1.61 Y 26.51 26.70 0/5 27.74 28.03 Y 0.81 1.27
benchmark28 linear Y 1.16 2.77 Y 3.40 4.04 5/5 0.57 0.90 Y 0.14 0.39
benchmark29 linear N 1.25 1.42 N 4.27 4.32 0/5 0.48 0.66 Y 0.19 0.36
benchmark30 conjunctive Y 1.08 1.47 Y 2.24 2.39 5/5 0.52 0.73 Y 0.02 0.12
benchmark31 disjunctive N 1.25 1.39 Y 6.72 6.92 0/5 0.51 0.62 N 0.14 0.28
benchmark32 linear Y 1.39 1.61 Y 0.12 0.37 5/5 21.39 21.52 Y 0.01 0.12
benchmark33 linear N 1.35 1.47 Y 0.25 0.36 5/5 0.01 0.15 Y 0.01 0.11
benchmark34 conjunctive Y 1.60 2.19 Y 33.46 33.78 5/5 30.93 31.25 Y 1.24 1.61
benchmark35 linear N 1.04 1.17 Y 0.10 0.25 5/5 0.01 0.16 Y 0.01 0.12
benchmark36 conjunctive N 1.30 1.42 Y 2.47 2.90 5/5 0.52 0.78 Y 0.01 0.11
benchmark37 conjunctive N 1.30 1.46 Y 2.35 2.52 5/5 0.52 0.78 Y 0.02 0.11
benchmark38 conjunctive Y 1.50 1.75 Y 3.73 3.88 5/5 26.50 26.71 Y 0.18 0.38
benchmark39 conjunctive Y 1.15 1.49 Y 1.82 1.97 5/5 24.90 25.10 Y 0.16 0.37
benchmark40 polynomial Y 1.56 1.83 N 4.96 5.01 0/5 0.53 0.72 Y 0.21 0.47
benchmark41 conjunctive Y 1.42 1.72 Y 11.80 12.08 5/5 27.79 28.22 Y 0.17 0.38
benchmark42 conjunctive Y 1.23 1.54 Y 11.01 11.30 5/5 27.45 27.90 Y 0.18 0.38
benchmark43 conjunctive N 1.24 1.40 N 5.67 5.79 5/5 0.58 0.79 Y 0.18 0.40
benchmark44 disjunctive N 1.18 1.32 Y 4.21 4.34 0/5 0.53 0.77 Y 0.16 0.32
benchmark45 disjunctive N 1.42 1.51 N 3.57 3.80 0/5 0.58 0.71 N 0.18 0.35
benchmark46 disjunctive N 1.49 1.65 N 22.59 22.71 0/5 1.85 2.12 N 0.96 1.43
benchmark47 linear N 1.18 1.32 Y 4.63 4.76 0/5 0.59 0.85 Y 0.14 0.31
benchmark48 linear N 1.36 1.58 Y 30.15 30.40 5/5 27.63 27.99 Y 10.80 11.30
benchmark49 linear N 1.18 1.31 Y 38.28 38.46 0/5 1.66 1.83 Y 1.18 1.86
benchmark50 linear N 1.39 1.49 Y 6.25 6.38 0/5 0.57 0.69 Y 0.18 0.35
benchmark51 polynomial N 1.13 1.26 N 0.17 0.29 5/5 0.01 0.16 Y 0.01 0.11
benchmark52 polynomial N 1.19 1.33 Y 0.22 0.40 5/5 0.01 0.20 Y 0.01 0.11
benchmark53 polynomial Y 1.29 1.59 N 2.13 2.21 0/5 0.54 0.72 Y 0.19 0.44

TABLE IV
PERFORMANCE OF TOOLS ON THE LOOP-ZILU BENCHMARK

Benchmark Total Programs Without Feature Selection With Feature Selection
nla-digbench 38 25 38
loop-zilu 57 53 53
loop-invariants 9 9 9

TABLE V
ADEQUATE INVARIANTS FOUNDS BY LPGEN WITH AND WITHOUT FEATURE SELECTION

71

Fig. 5. Number of adequate invariants inferred by tools

checking inductive conditions. Moreover, invariants involving
gcd and bitwise-and are manually checked because Z3 does
not support gcd and sometimes times out for bitwise oper-
ations. So we generated the gcd and bitwise-and during the
procedure (i.e., pre-processing stage) but manually decided
whether to include it in the conjunctive invariant returned by
Houdini on the remaining candidate invariants.

Our experiments were performed on Google Colab, with a
single CPU and 12 GB of RAM.

The results are summarized in Tables II, III and IV. The
Program column specifies the name of the program along
with the loop index, For example, “lcm1 2” represents the
lcm1 program, and the loop index is 2 as it has 3 different
loops within the program. The Adq column represents whether
an adequate conjunctive subset was found or not. Column
Inv gives the time in seconds taken to infer the set of
candidate invariants, and Total gives the total time in seconds
for inferring candidate invariants and running the Houdini
algorithm.

In the Adq column “Y” represents the fact that an ade-
quate invariant was found, and “N” represents the fact no
adequate invariant was found. As GCLN infers invariants non-
deterministically, its Adq column shows out of 5 runs (with
different random seeds) how many times we were able get
an adequate invariant. “TO” in the Inv column mean the tool
didn’t compute any candidate invariants within 300 seconds.
“ERROR” means that the tool crashes with some error.

Fig. 5 summarizes the total number of programs for which
each tool inferred an adequate invariants. Out of 104 program
over the three benchmarks we got adequate invariants for 100
of them. The remaining four required disjunctive invariants
which are out of the scope of our tool. GCLN was the closest
with adequate invariants for 70 programs.

Fig. 6 summarizes the results of the strength of the adequate
invariants learnt by each tool. For each tool, we check whether
the adequate invariant it found implies that of the other tools.
If so it earns one count. LPGEN generates the largest number
of strong adequate invariants (87 programs). DIG was the next
closest with 56 programs.

Fig. 6. Comparison of strength of invariants generated by each tool vs others

Table V summarizes the total number of programs for
which adequate invariants were inferred by LPGEN, with
and without using feature selection. When the number of
features (i.e. dimension of the data) is high, as in the case of
nla-digbench benchmarks, feature selection is important
as without using it, LPGEN was able to come up with only
25 adequate invariants out of 38 programs. Both loop-zilu
and loop-invariants benchmarks had small dimension
of the data and thus got the same number of adequate invari-
ants even without feature selection. But when the dimension
increases, feature selection plays an important role, as in the
case of nla-digbench. Among the two feature selection
techniques, L1 Regularization is more effective, and out of
38 programs of nla-digbench, LPGEN found 37 adequate
invariants by using only L1 regularization as a feature selection
technique. Only 12 were found to be adequate out of 38 using
only the univariate feature selection technique. By combining
both, we got adequate invariants for all 38 programs in
nla-digbench.

In terms of efficiency in generating invariants, the average
time taken by LPGEN to infer candidate invariants is 8.32 s
which is around 5x slower than the average time of the fastest
tool (Daikon) which is 1.56 s. However we note that the total
number of adequate invariants inferred by our tool is almost
twice that of Daikon.

The LPGEN tool can be accessed at:
https://github.com/Arkesh-Thakkar/LPGen

VIII. RELATED WORK

We classify related work broadly according to whether they
are white-box or black-box (depending on whether the use the
source of the program or not).

There are several white-box invariant learning techniques
that use the program text to come up with invariants are
sufficient to prove the correctness of the program. These
include [7] and [3] which use constants and expressions from
the program text to infer candidate invariants.

Among black-box techniques we consider two categories:
techniques that use multi-round learning and techniques that

72

https://github.com/Arkesh-Thakkar/LPGen

use single-shot learning. In the first category the ICE-learning
line of work features prominently [6], [10], [11]. These
techniques are able to learnt both conjunctive and disjunctive
invariants using decision-tree based learning. However they do
not use execution traces of the program, and instead rely on
counterexamples provided by a Teacher who has access to the
program.

In the second category, where our work falls, the earliest and
most prominent work is that of Daikon [5]. Daikon essentially
checks whether 75 different types of invariant templates satisfy
the trace data, and report those that do as candidate invariants.

Nguyen et al [16], [17] and Sharma et al [21] infer poly-
nomial equalities from trace data, using algebraic equation
solving techniques. [16] also infer polynomial inequality in-
variants using a convex polyhedron approach, and and its
relaxed version, octagonal inequalities, by creating a convex
hull in two dimensions.

Finally, [23] and [20] proposed a novel neural architecture
called GCLN and CLN architectures, respectively, to learn
loop invariants. They use fuzzy logic based gates called T -
norms and T -conorms representing the continuous versions of
conjunction and disjunction. The GCLN tool uses a Piecewise
Biased Quadratic Unit (PBQU) activation function for infer-
ring inequality invariants.

All these works differ from ours in various aspects. Daikon
is limited to generating equality invariants in only three dimen-
sions and based on predefined templates. The DIG approach to
find equality invariants with equation solvers which are costly
for finding complex equality invariants, and finding inequality
invariants by constructing convex hulls can be exponential in
time complexity. The GCLN line of work is nondeterministic
in nature due to random dropouts and lack of a proper feature
selection technique. We overcome the above limitations as
our tool allows equality invariants in n-dimensions and with
proper feature selection techniques, namely L1 Regularization
and univariate feature selection, we were able to find a
good set of equality invariants. For inequalies, we use Linear
Programming (LP) solvers for finding inequality invariants in
two and three dimensions. LP solvers are much faster than
constructing polyhedrons and with the optimization objective
given in Sec.V, we were able to find tighter bounds.

IX. CONCLUSION

In this work we have presented a novel combination of
techniques, including linear regression, feature selection, and
linear optimization, to learn tight invariants from execution
trace data. Our experimental evaluation shows that our tool
is able to learn strong adequate conjunctive invariants for a
variety of programs requiring linear and non-linear predicates,
in a reasonably efficient manner.

Going ahead we would like to extend our work to learning
disjunctive invariants, in both single shot and multi-round
teacher-learner settings.

REFERENCES

[1] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. In
J. Launchbury and J. C. Mitchell, editors, Conference Record of POPL
2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Portland, OR, USA, January 16-18, 2002, pages
4–16. ACM, 2002.

[2] D. Beyer. Progress on software verification: SV-COMP 2022. In Proc.
TACAS (2), LNCS 13244, pages 375–402. Springer, 2022.

[3] P. Darke, S. Prabhu, B. Chimdyalwar, A. Chauhan, S. Kumar, A. Basak-
chowdhury, R. Venkatesh, A. Datar, and R. K. Medicherla. VeriAbs:
Verification by Abstraction and Test Generation - (Competition Contri-
bution). In TACAS, Part II, volume 10806, pages 457–462, 2018.

[4] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[5] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The daikon system for dynamic detection of
likely invariants. Science of computer programming, 69(1-3):35–45,
2007.

[6] P. Ezudheen, D. Neider, D. D’Souza, P. Garg, and P. Madhusudan.
Horn-ice learning for synthesizing invariants and contracts. Proc. ACM
Program. Lang., 2(OOPSLA):131:1–131:25, 2018.

[7] G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta. Solving
Constrained Horn Clauses Using Syntax and Data. In FMCAD, pages
170–178. IEEE, 2018.

[8] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for
ESC/Java. In Proc. International Symposium of Formal Methods Europe
(FME 2001), Berlin, Germany, 2001, pages 500–517, 2001.

[9] R. W. Floyd. Assigning Meanings to Programs. In J. Schwartz,
editor, Proc. Symposium on Applied Mathematics, volume 19. American
Mathematical Society, 1967.

[10] P. Garg, C. Löding, P. Madhusudan, and D. Neider. Ice: A robust
framework for learning invariants. In International Conference on
Computer Aided Verification, pages 69–87. Springer, 2014.

[11] P. Garg, D. Neider, P. Madhusudan, and D. Roth. Learning invariants
using decision trees and implication counterexamples. ACM Sigplan
Notices, 51(1):499–512, 2016.

[12] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites via
operational abstraction. In L. A. Clarke, L. Dillon, and W. F. Tichy,
editors, Proceedings of the 25th International Conference on Software
Engineering, May 3-10, 2003, Portland, Oregon, USA, pages 60–73.
IEEE Computer Society, 2003.

[13] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[14] S. Mitchell, M. OSullivan, and I. Dunning. Pulp: a linear programming
toolkit for python. The University of Auckland, Auckland, New Zealand,
65, 2011.

[15] D. Neider, S. Saha, P. Garg, and P. Madhusudan. Sorcar: Property-
driven algorithms for learning conjunctive invariants. In B. E. Chang,
editor, Static Analysis - 26th International Symposium, SAS 2019, Porto,
Portugal, October 8-11, 2019, Proceedings, volume 11822 of Lecture
Notes in Computer Science, pages 323–346. Springer, 2019.

[16] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. Using dynamic
analysis to discover polynomial and array invariants. In 2012 34th
International Conference on Software Engineering (ICSE), pages 683–
693. IEEE, 2012.

[17] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. Dig: A dynamic
invariant generator for polynomial and array invariants. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 23(4):1–30,
2014.

[18] J. W. Nimmer and M. D. Ernst. Automatic generation of program
specifications. In P. G. Frankl, editor, Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA 2002, Roma, Italy,
July 22-24, 2002, pages 229–239. ACM, 2002.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[20] G. Ryan, J. Wong, J. Yao, R. Gu, and S. Jana. Cln2inv: learn-
ing loop invariants with continuous logic networks. arXiv preprint
arXiv:1909.11542, 2019.

73

[21] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori.
A data driven approach for algebraic loop invariants. In Programming
Languages and Systems: 22nd European Symposium on Programming,
ESOP 2013, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings 22, pages 574–592. Springer, 2013.

[22] T. Xie and D. Notkin. Tool-assisted unit-test generation and selection
based on operational abstractions. Autom. Softw. Eng., 13(3):345–371,
2006.

[23] J. Yao, G. Ryan, J. Wong, S. Jana, and R. Gu. Learning nonlinear loop
invariants with gated continuous logic networks. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 106–120, 2020.

74

Formal Methods in Computer-Aided Design 2023

Automating Cutoff-based Verification of Distributed
Protocols

Shreesha G. Bhat and Kartik Nagar
Department of CSE, IIT Madras

Chennai, India
shreeshagbhat@gmail.com, nagark@cse.iitm.ac.in

Abstract—Distributed protocols are generally parametric and
are expected to work correctly on systems containing any number
of nodes. Therefore, proving their correctness becomes an infinite
state verification problem. The usual approach for verifying
distributed protocols is to provide an inductive invariant that
is strong enough to imply the safety property. But inductive
invariants for even simple distributed protocols can be intricate
and synthesizing them in an automated manner is a hard
problem. In this work, we investigate an orthogonal cutoff-based
technique for verifying distributed protocols. In a cutoff-based
approach, one provides a finite-sized instance of the system which
encompasses all possible modes of violation of the safety property.
Analyzing such a cutoff instance for safety violations suffices
to prove the correctness of the protocol for all instances. In
this work, we formalize a simulation-based approach to check
whether a given instance is a cutoff instance for protocols written
in a general modelling language (RML) by identifying sufficient
conditions which can be efficiently encoded in SMT. We propose
simple static analyses to automatically synthesize the cutoff
instance, simulation relation and other proof components, thus
leading to a fully automated verification procedure. Finally we
apply our technique on a number of protocols ranging from
simple leader election and mutual exclusion protocols to complex
quorum-based consensus protocols.

I. INTRODUCTION

Distributed protocols allow disparate nodes to work together
towards completing a task, and form the backbone of today’s
distributed systems. These protocols are typically specified in
a parametric fashion, which means they can be instantiated
on a system with any number of nodes. The nodes commu-
nicate with each other through message passing, and these
messages can be arbitrarily delayed or even lost. However,
the distributed protocol is expected to work correctly under
all such conditions. Here, correctness is typically defined in
terms of a safety property which must be obeyed by every
node at every step of the protocol. For example, the safety
property of a distributed mutual exclusion protocol would say
that two nodes should not be in their critical section at the
same time. Since the protocols need to consider every possible
network behavior, they are quite complex in nature. Verifying
the correctness of distributed protocols then becomes highly
important, but this problem is significantly complicated by the
parametric nature of the protocol and the asynchronous, non-
deterministic nature of the underlying network. Essentially,
every possible instantiation of the protocol needs to be proven
correct, and each such instantiation itself needs to consider a

large number of network behaviors. Further, there could be an
infinite number of instantiations of the protocol.

Recent approaches ([1]–[6]) to verifying distributed proto-
cols typically aim to find an inductive invariant, which is a
property of the protocol state satisfied at every step of any
protocol instance, which is inductive in nature and is stronger
than the safety property. However, finding an inductive in-
variant is very hard, as conceptually, it should encompass all
the complex logic that the protocol employs to maintain the
safety property under any abnormal network behavior in any
instantiation. In this work, we consider an alternative cutoff-
based approach to protocol verification that cleanly separates
the two problems of dealing with arbitrary instantiations and
arbitrary network behavior. This approach requires a cutoff
instance with a fixed, finite number of nodes whose correctness
implies the correctness of any arbitrary protocol instance.
Then, we only need to consider how the protocol maintains the
safety property under arbitrary network behavior in the cutoff
instance. Further, since the cutoff instance will have a constant,
finite number of nodes, verifying its correctness becomes a
finite state verification problem, which can be solved in an
automated fashion.

In this paper, we focus on the problem of finding such a
cutoff instance, and automatically showing that it is indeed a
cutoff. The definition of a cutoff instance gives us the follow-
ing characterization: if there exists a violation of the safety
property in any arbitrary protocol instance, then there should
also exist a violation in the cutoff instance. We automatically
construct a cutoff instance which can simulate any violation
of the safety property in any arbitrary protocol instance. While
this seems like a tall order, we hypothesize that this problem
is simpler due to two reasons: (i) a violation of the safety
property typically involves only a small number of nodes (for
example, a violation of the mutual exclusion property would
only require two nodes to be in their critical section together),
and further, the participation of other nodes of the system is
either not required, or can be simulated by the violating nodes
themselves, and (ii) most of the complex logic in the protocol
implementation which ensures the absence of a violation can
be side-stepped, since we are actually interested in simulating
the presence of a violation.

While previous works have also attempted to use cutoff
based approaches for verification ([7]–[10]), they have mostly
been limited to either a restricted class of protocols [8] with

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 15 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_15
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_15
https://creativecommons.org/licenses/by/4.0/

strong assumptions on the underlying network or a restricted
class of specifications [9]. In this work, we consider a variety
of protocols targeting different goals (consensus, mutual exclu-
sion, key-value store, etc.) and do not make any assumptions
about the underlying network. Our approach takes as input
the protocol description written in the Relational Modeling
Language (RML). We first develop a formalization of the
cutoff approach which defines sufficient conditions for proving
that a given protocol instance is a cutoff instance, which can be
encoded using SMT. We then use our hypothesis concerning
the simplicity of the cutoff instance to develop a static analysis
based approach which directly synthesizes the cutoff instance
from a violation of the safety property. Beginning from a
state which violates the safety property, our analysis moves
backwards to identify the necessary protocol actions and state
components that could be involved in a violation. We then
use the output of the static analysis to create a cutoff instance
which faithfully simulates all the protocol actions and state
components which could be involved in a violation. Finally,
we apply our SMT encoding to check the correctness of
the synthesized cutoff instance. We have implemented the
proposed approach and applied it on 8 different distributed
protocols, providing a fully automated cutoff-based proof of
correctness for all of them.

To summarize, we make the following contributions:
1) We formalize the cutoff approach for distributed proto-

cols written in the RML language, and identify suffi-
cient conditions for proving the correctness of a cutoff
instance.

2) We propose a simple static analysis-based approach to
automatically synthesize from the protocol description,
a cutoff instance and a simulation relation for proving
the correctness of the cutoff.

3) We have implemented the approach in a prototype tool
and have successfully verified 8 challenging protocols.

The rest of the paper is organized as follows: In §2, we
illustrate the cutoff-based approach to protocol verification
and our synthesis algorithm using an example. We formalize
the cutoff approach for protocols written in RML in §3 and
§4. Details of our synthesis algorithm are presented in §5.
Experimental results are given in §6, followed by a discussion
on related works and conclusion in §7.

II. MOTIVATING EXAMPLE: THE SHARDED KEY-VALUE
STORE

A. Protocol Description

As a motivating example to demonstrate our technique, we
consider the sharded key-value store protocol described in [1].
The protocol maintains key-value pairs distributed across a set
of nodes. It implements a mechanism for nodes to reshard
key-value pairs amongst one another in the presence of an
unreliable network while maintaining the safety property that
no two nodes should ever own a key simultaneously. A detailed
pseudocode description of the protocol in the RML language
[11] is provided below in Fig. 1.

Algorithm 1 The Sharded Key Value Store Protocol

1: type key, value, node, seqnum

2: relation table : node, key, value

3: relation transfer msg : node, node, key, value, seqnum
4: relation ack msg : node, node, seqnum

5: relation seqnum sent : node, seqnum
6: relation unacked : node, node, key, value, seqnum

7: relation seqnum recvd : node, node, seqnum

8: init ∀n1, n2, k, v1. table(n1, k, v1) ∧ table(n2, k, v2) =⇒ n1 =

n2 ∧ v1 = v2 ▷ All other relations are empty
9: action Reshard(n old : node,n new : node, k : key, v : value, s :

seqnum)
10: require table(n old , k, v) ∧ ¬seqnum sent(s)

11: seqnum sent(s)← true

12: table(n old , k, v)← false
13: transfer msg(n old ,n new , k, v, s)← true

14: unacked(n old ,n new , k, v, s)← true

15: action DropTransferMsg(src : node, dst : node, k : key, v :
value, s : seqnum)

16: require transfer msg(src, dst, k, v, s)
17: transfer msg(src, dst, k, v, s)← false

18: action Retransmit(src : node, dst : node, k : key, v : value, s :

seqnum)
19: require unacked(src, dst, k, v, s)

20: transfer msg(src, dst, k, v, s)← true

21: action RecvTransferMsg(src : node, dst : node, k : key, v :
value, s : seqnum)

22: require transfer msg(src, dst, k, v, s) ∧ ¬seqnum recvd(s)

23: seqnum recvd(s)← true
24: table(dst, k, v)← true

25: action SendAck(src : node, dst : node, k : key, v : value, s :
seqnum)

26: require transfer msg(src, dst, k, v, s) ∧ seqnum recvd(s)

27: ack msg(s)← true
28: action DropAckMsg(src : node, dst : node, k : key, v : value, s :

seqnum)

29: require ack msg(s)
30: ack msg(s)← false

31: action RecvAckMsg(src : node, dst : node, k : key, v : value, s :

seqnum)
32: require ack msg(s)

33: unacked(src, dst, k, v, s)← false

34: action Put(n : node, k : key, v : value)
35: require ∃v′. table(n, k, v′)
36: table(n, k, ∗)← false
37: table(n, k, v)← true

38: safety ∀k, n1, n2, v1, v2, k. table(n1, k, v1) ∧ table(n2, k, v2) =⇒
n1 = n2 ∧ v1 = v2

The protocol is described using a set of types, relations
and actions. A type (or sort in RML terminology) is defined
for nodes, keys, values and sequence numbers. The relations
describe the state of the protocol and are defined over these
sorts. In a step of the execution, any action can be fired
provided that its guard (specified by the require keyword)
is satisfied.

The relation table(n, k, v) indicates that the node n holds
the key k with the value v. A Reshard action generates a
transfer msg from the key’s current owner to its new owner.
Transfer messages can be arbitrarily dropped (through the
DropTransferMsg action), and hence the protocol employs

76

an acknowledgment mechanism, whereby the new owner
needs to send an acknowledgment message upon receiving a
transfer msg , and the current owner will keep re-transmitting
(through the Retransmit action) until it receives an acknowl-
edgment. The acknowledgement message itself can be dropped
and might require re-transmission. Since each transfer msg
message is tagged with a unique sequence number, the re-
ceiving node can ignore duplicate transfer msg’s that arise
from the re-transmission mechanism by marking the sequence
number as received in line 24; the absence of which is
used as a guard by RecvTransferMsg action. This prevents
safety violations that can occur due to older transfer messages
entering their out-of-date key value pair into the table of the
destination node after it has already been re-sharded to some
other node, or subsequent Put actions have occurred thereby
altering the associated value.

B. Cutoff based Verification

The safety property for this protocol says that in all runs,
we cannot have two different table entries for the same key.
Intuitively, this is maintained at all times, because either
a single node contains the key in its table, or the key is
in-transit. The unique sequence number associated with a
transfer msg ensures that re-transmissions do not break the
safety property. Prior works [1], [11] construct a complex
inductive invariant which leverages the above observation to
show the uniqueness of a number of state components, and
ultimately implies the safety property. In this work, we take
an orthogonal approach where we assume the existence of
a hypothetical violation and focus on (1) identifying the key
state components and actions of the protocol that contribute to
this violation, and (2) simulating this violation by maintaining
these state components in a fixed, small protocol instance. If
the cutoff instance can be shown to simulate any violation
of the safety property, proving the safety of the cutoff in-
stance is sufficient to establish correctness for all instances
of the protocol. This essentially formalizes the ‘small model’
property that has been empirically established by many prior
works for bugs in concurrent and distributed systems. Note
that while synthesizing the cutoff instance, we can completely
ignore how the protocol blocks out potential scenarios where
a violation can occur, which is one of the classical hurdles in
crafting inductive invariants. For the sharded key-value store
protocol, we show that a cutoff instance with 2 nodes can
simulate all possible violations in arbitrary sized instances of
the protocol (note that size refers to number of nodes).

C. Static Analysis

We employ a static analysis based approach on the protocol
description to find out the relevant state components and
actions that are necessary for simulating violations of the
safety property. Consider a violation in an arbitrary size system
L where we have two distinct nodes AL, BL and key K
such that table(AL,K, V1) and table(BL,K, V2) hold. We
are interested in collecting the relevant state components and
actions that are responsible for this violating state of L. At

a very high level, our static analysis starts from the state
components directly involved in the violation, and then finds
actions which can set these state components. However, for
these actions to be enabled, their guards will also need to be
maintained. So the state components in the guards also now
become relevant, and the above process continues until no new
relevant actions or state components are found.

For the sharded key value store protocol, we start with the
state components that are involved in the violation of the
safety property as the initial set of relevant state components,
S = {table(AL,K, V1), table(BL,K, V2)}. Consider the
actions that set the clauses table(AL⟨BL⟩,K, V1⟨V2⟩) (we use
entries in brackets ⟨⟩ to succinctly represent both the clauses).
We find that any action of the type Put(AL⟨BL⟩),K, V1⟨V2⟩)
and RecvTransferMsg(∗, AL⟨BL⟩,K, V1⟨V2⟩), ∗) can set
these table entries, where ∗ represents any value. These
are added to the set of relevant actions (denoted by
A). Now we consider the components in the guards
of these actions. For the RecvTransferMsg actions,
the guard contains the clauses ¬seqnum recvd(∗) and
transfer msg(∗, AL⟨BL⟩,K, V1⟨V2⟩, ∗). For the Put actions,
we have ∃v. table(AL⟨BL⟩,K, v) as the guard clause. For
the existential quantifier, we include table(AL⟨BL⟩,K, ∗)
where the value entry is not restricted and therefore all such
table entries are tracked as relevant. These entries are added
to the set S.

In this way, we keep on collecting relevant actions and
clauses, terminating in a fixed point after a few iterations.
We also simplify the sets by noting that ∗ entries subsume
other entries that contain specific values in that field. For
example, if the S set contains an entry table(AL,K, V1) and
also an entry table(AL,K, ∗), the latter subsumes the former.
On performing such reductions, we get the following fixed
point sets S and A

S = {table(∗,K, ∗), transfer msg(∗, ∗,K, ∗, ∗),
¬seqnum recvd(∗),¬seqnum sent(∗),
unacked(∗, ∗,K, ∗, ∗)}

A = {Put(∗,K, ∗),RecvTransferMsg(∗, ∗,K, ∗, ∗),
Reshard(∗, ∗,K, ∗, ∗),Retransmit(∗, ∗,K, ∗, ∗)}

Notice that though the protocol has 8 actions in total,
the action set obtained from static analysis shows that only
4 of these actions are actually relevant in a violation. In
particular, actions such as DropTransferMsg and SendAck
are not required to simulate a violation. Intuitively, this is
because these actions are not necessary to actually transfer
a key from one node to another, which is needed for realizing
a potential violation. Secondly, although the correctness of
the protocol (that is, avoiding a violation) depends on a
complex invariant involving uniqueness of a number of state
components, we do not require any of that complexity to
simulate a violation. The static analysis essentially ignores
how exactly a violating state might have been obtained, but
instead tries to trace the state components and actions that
are essential for recreating the violation. For example, it is

77

possible that a transfer message may have been dropped by
the network in a violating execution, and hence would need to
be re-transmitted. However, the cutoff system need not drop
the message in the first place (re-transmission is still required).
Intuitively, if a violation occurs in L, by maintaining the state
components in S and performing only the relevant actions in
A, we can recreate the violation in the cutoff system C.

D. Simulation Relation & Lockstep

While the static analysis gives us the relevant state com-
ponents and actions that need to be maintained in a cutoff
system, we still need to prove that any violation in any protocol
instance can be simulated by the cutoff instance. To show this,
we establish a simulation between any arbitrary instance L and
a cutoff instance C. The simulation is primarily governed by
a lockstep which describes the action(s) taken by the cutoff
instance C for every action in L. An action in L is simulated
as zero or more actions in C. We also establish a simulation
relation that holds inductively on the states of both L and
C as they progress according to the lockstep. The simulation
relation will be strong enough to show that at any step, a
violation of the safety property in L will imply a violation in
the state of C as well.

The main ingredients of the simulation relation and lockstep
have already been identified via the static analysis, i.e. the
relevant state components and corresponding actions required
to reach a violating state. What remains is to map the relevant
state components and actions of L to corresponding compo-
nents of C. Such a mapping can be obtained by mapping nodes
of L to their corresponding simulating node in C. Denoting the
node mapping as sim : DL → DC (where Dx represents the
set of nodes in the instance x), the simulation relation main-
tains that relevant state components from the set S obtained
from static analysis corresponding to any node n ∈ DL in
L match the corresponding state component of sim(n) in C.
The simulation relation does not say anything about the state
components which are not relevant for the violation. Similarly,
the lockstep ensures that whenever any action from A occurs
in L, the corresponding action is triggered in C. The rest of
the actions of L are ignored as they are not relevant to simulate
the violation.

Specifically, for the sharded key value store protocol, let us
denote the two nodes in the cutoff instance as AC and BC .
Recall that AL and BL were nodes of the larger instance L
which were involved in the violation. We have sim(AL) = AC

and sim(BL) = BC . We map the rest of the nodes to one of
AC or BC , say BC i.e. ∀N ∈ DL. (N ̸= A)∧ (N ̸= B) =⇒
sim(N) = BC . Intuitively, a node NC ∈ DC maintains the
state and performs the actions for all the nodes NL ∈ DL such
that sim(NL) = NC .

Applying the sim mapping on the relevant state components

S we get the following 5 clauses in the simulation relation:

(1) tableL(n,K, v) =⇒ tableC(sim(n),K, v)

(2) unackedL(n1, n2,K, v, s) =⇒
unackedC(sim(n1), sim(n2),K, v, s)

(3) ¬seqnum sentL(s) =⇒ ¬seqnum sentC(s)

(4) ¬seqnum recvdL(s) =⇒ ¬seqnum recvdC(s)

(5) transfer msgL(n1, n2,K, v, s) =⇒
transfer msgC(sim(n1), sim(n2),K, v, s)

Here, we use relL and relC to denote the relation rel of the
protocol for the instances L and C respectively and assume
universal quantifiers over all lower-cased variables for each
clause. Notice that the simulation relation ensures that any
violation of safety property in the protocol state of the larger
system (say tableL(AL,K, V1) and tableL(BL,K, V2)) will
result in a violation of the cutoff system. The lockstep defines
the actions fired in the cutoff instance for actions of the larger
instance, and ensures that the above simulation relation is
maintained for every step of every execution. For actions not
in the lockstep, no action is fired in the cutoff instance. Again,
the sim mapping and the relevant actions A give the following
lockstep:

(1) PutL(n,K, c) is simulated as PutC(sim(N),K, V)

(2) ReshardL(n1, n2,K, v, s) is simulated as
ReshardC(sim(n1), sim(n2),K, v, s)

(3) RetransmitL(n1, n2,K, v, s) is simulated as
RetransmitC(sim(n1), sim(n2),K, v, s)

(4) RecvTransferMsgL(n1, n2,K, v, s) is simulated as
RecvTransferMsgC(sim(n1), sim(n2),K, v, s)

Now, we can show that the simulation relation holds in-
ductively as the two instances L and C execute as-per the
lockstep. This ensures that for every violating execution of the
larger instance L, there exists a violating execution of C. By
independently showing that C does not exhibit any violations
(which is a much simpler problem, since it has only 2 nodes),
we can infer the correctness of the protocol.

III. SETUP

We consider distributed protocols written in the Relational
Modeling Language (RML) [11]. RML is a Turing-complete
language, and has been used in many prior works related
to distributed protocol verification. RML uses the notions of
relations and functions as used in many-sorted first order logic
to describe the state of a distributed protocol. Further, these can
be defined over arbitrary domains, as specified by the protocol
developer. Constraints on the initial state of the protocol, as
well as the safety property can then be directly encoded as
FOL formulae over the declared relations and functions.

The protocol description in RML P = ⟨D,R,F,Ψ,A,Φ⟩
consists of a set of declarations (D,R,F), axioms (Ψ), actions
(A) and a safety property (Φ). The declarations define the
vocabulary: D, R and F denote the set of domain names,

78

relation names and function names respectively (along with
the relation and function signatures). The axioms (Ψ) are FOL
formulae defined over the vocabulary which encode properties
of the domains. Φ denotes the safety property, which is another
FOL formula, while A denotes the actions of the protocol.

Given the protocol description, we construct a labeled
transition system modeling the execution of the protocol. The
transition system AP

I = (Σ,Σ0, δ) is parameterized by a
domain interpretation function I which associates a finite
domain of values with each domain name d ∈ D. For the
interpretation function I to be valid, we require the domains
in range of I to satisfy all the axioms in Ψ. Each state σ ∈ Σ
is an interpretation of function and relation names in F and R
to actual functions and relations over the domains defined by
the interpretation function I. That is, for a function signature
f : (d1 × . . .dn) → d in the protocol description, σ(f) will
be a function of the form I(d1) × . . . I(dn) → I(d). The
same holds for a relation r in the description.

The RML protocol description also consists of a set of
axioms Ψ0 constraining the functions and relations in the
initial state of the system. We define Σ0 = {σ ∈ Σ | σ |= Ψ0}
to be the set of states obeying the initialization axioms. Note
that the notation σ |= Ψ denotes the standard FOL definition
of an interpretation (σ) being the model of an FOL formula
(Ψ).

Transitions of AP
I will correspond to actions of the protocol.

An action a(v̄ : d̄) = ⟨g(v̄), u(v̄)⟩ is parameterized over a set
of (typed) variable names (v̄), and consists of two components:
(i) an FOL formula g (also called the guard) which can contain
free variables from v̄, (ii) an FOL formula u which models the
change in the protocol state, defined over unprimed and primed
versions of the functions and relations of the protocol. If the
current state of the protocol obeys the guard, then the state is
updated atomically using the update formula. The transitions
AP

I caused by the action a in the protocol are formally defined
as follows:

δa = {(σ,a(x̄), σ′) | ∃x̄ ∈ I(d̄). σ |= g[x̄/v̄] ∧ σ, σ′ |= u[x̄/v̄]}}

That is, for every valuation x̄ of the variables v̄, there are
transitions from states σ which obey the guard g to states σ′

such that σ, σ′ satisfy the update formula. The transition is
labeled by the action name along with the actual parameters,
i.e. a(x̄). The complete set of transitions is obtained by
considering the transition set of every action of the protocol:
δ = ∪a∈Aδa. Let δ∗ denote the reflexive and transitive closure
of δ.

The safety property Φ is defined as a FOL formulae using
the declared domains, functions and relations. In this work,
we assume that Φ only uses universal quantifiers. Hence, Φ
has the form : ∀(x̄ : d̄). ϕ. This assumption is consistent with
prior works related to distributed protocol verification, and is
not restrictive as almost all safety properties can be naturally
expressed using just universal quantification.

A trace of AP
I is a sequence of states and transition labels

of the form σ0a1σ1a2σ2 . . . anσn such that σ0 ∈ Σ0 and
(σi, ai+1, σi+1) ∈ δ for all i, 0 ≤ i ≤ n−1. Let T (AP

I) denote

the set of traces of AP
I . We use JAP

IK to denote the set of
reachable states of AP

I , i.e. JAP
IK = {σ′ | σ0 . . . σ

′ ∈ T (AP
L)}.

A transition system is safe if all of reachable states obey the
safety property of the protocol:

Definition 1. Given a distributed protocol P =
⟨D,R,F,Ψ,Φ,A⟩, a valid interpretation of domains I
obeying Ψ, the transition system AP

I is safe if for every
reachable state σ ∈ JAP

IK, σ |= Φ.

While AP
I will be a finite state system (because every

domain defined by I is finite), there can in general be infinite
number of domains which satisfy the axioms Ψ of the protocol.
For a distributed protocol to be safe, the transition system
corresponding to every valid domain interpretation should be
safe:

Definition 2. A distributed protocol P = ⟨D,R,F,Ψ,Φ,A⟩
is safe if for every valid domain interpretation function I
satisfying the axioms Ψ, AP

I is safe.

IV. CUTOFF BASED VERIFICATION

Each valid interpretation of the domains of a protocol can
be seen as a protocol instance. A typical example of a domain
with infinite number of valid interpretations is the domain of
nodes participating in a protocol. To prove that a protocol is
correct, we would need to show its correctness for all possible
protocol instances. In cutoff based verification, the idea is to
only show correctness for a specific protocol instance called
a cutoff instance. In the following, we now formalize cutoff
based verification in our framework.

Definition 3. Given a distributed protocol P, a cutoff instance
C is a valid interpretation of domains such that if AP

C is safe,
then for any valid interpretation L, AP

L is safe.

Theorem 1. For a distributed protocol P, if C is a cutoff
instance, and AP

C is safe, then the distributed protocol P is
safe.1

Notice that the definition of a cutoff instance implies that if
there exists a protocol instance with a violation of the safety
property, then the cutoff instance will also have a violation of
the safety property. In essence, the cutoff instance can simulate
the violation of the safety property in any protocol instance.
We use this characterization to propose three conditions which
together imply that a protocol instance is a cutoff instance.

These conditions require a simulation relation between
states of any arbitrary protocol instance and states of the
cutoff instance. Suppose C is the cutoff instance, resulting
in the cutoff transition system AP

C = (ΣC ,ΣC
0 , δC). Let L

be some arbitrary protocol instance, resulting in the system
AP

L = (ΣL,ΣL
0 , δL). To ensure that C is a cutoff instance,

any trace of AP
L which leads to a state violating the safety

property should be simulated by a trace of AP
C also leading

to a state violating the safety property. Consider a relation

1The proofs for the theorems are provided in the full version of our paper
at https://github.com/shreesha00/FMCAD.git

79

γL ⊆ ΣC × ΣL. We formalize below the conditions which
will ensure that C is a cutoff instance.

φinit(γL) ≜ ∀σL ∈ Σ
L
0 . ∃σC ∈ Σ

C
0 . (σL, σC) ∈ γL

φstep(γL) ≜ ∀σL, σ
′
L ∈ ΣL. ∀σC ∈ ΣC. γL(σL, σC) ∧ (σL, a, σ

′
L) ∈ δL

⇒ ∃σ
′
C ∈ ΣC. (σC, σ

′
C) ∈ δ

∗
C ∧ γL(σ

′
L, σ

′
C)

φsafety(γL) ≜ ∀σL ∈ ΣL. ∀σC ∈ ΣC. γL(σL, σC) ∧ σL |= ¬Φ

⇒ σC |= ¬Φ

The init condition φinit ensures that every initial state ofAP
L

is related by γL to some initial state of AP
C . The step condition

φstep ensures that if states of the protocol instance L and cutoff
instance C are related by γL, then after a transition in AP

L, the
new state of instance L will continue to be related to a state
of C obtained after 0 or more transitions in AP

C . Finally, the
safety condition φsafety ensures that if a state in AP

L violates
the safety property (Φ), then its simulating state in AP

C also
violates the safety property. Together, these conditions ensure
that any violating trace of any arbitrary protocol instance can
be simulated by a violating trace of the cutoff instance.

Theorem 2. Given a distributed protocol P and a valid
interpretation C, if for any valid interpretation L, there exists a
simulation relation γL such that (φinit∧φstep∧φsafety)(γL),
then C is a cutoff instance of P.

While the above conditions ensure that if the cutoff instance
is safe, then any arbitrary protocol instance is also safe, we
can further refine them based on the following observation:
we only need to simulate till the first violation of the safety
property, and hence, we can assume that the safety property
holds in all states while simulating till the first violation. The
refined step condition φfirst

step is defined as follows:

φ
first
step (γL) ≜ ∀σL, σ

′
L ∈ ΣL. ∀σC ∈ ΣC. γL(σL, σC) ∧ (σL, a, σ

′
L) ∈ δL∧

Φ(σL) ⇒ ∃σ
′
C ∈ ΣC. (σC, σ

′
C) ∈ δ

∗
C ∧ γL(σ

′
L, σ

′
C)

Lemma 3. Given a distributed protocol P and a valid inter-
pretation C, if for any arbitrary valid interpretation L, there
exists a simulation relation γL such that (φinit ∧ φfirst

step ∧
φsafety)(γL), then C is a cutoff instance of P.

If the protocol is not safe, then we can consider the first
violation of the safety property in any arbitrary instance of
the protocol. Since the cutoff instance can simulate this first
violation, this would imply that the cutoff instance would also
not be safe, thus proving the above lemma. We have found
in our experiments that the refined conditions are often more
effective in proving cutoff-ness of a protocol instance.

V. SYNTHESIZING THE CUTOFF INSTANCE

In this section, we describe our technique to synthesize the
cutoff instance and the simulation relation from the protocol
description.

Metadata component Contents

a ∈ P.actions a.named arguments : list⟨string⟩
a.guard atoms : set⟨(x, l, o)⟩
a.body : set⟨(x, l, o)⟩
where x ∈ functions ∪ relations
l ∈ list⟨named arguments ∪ {∗}⟩
o ∈ x.out ∪ {∗}

s ∈ P.sorts string that corresponds to a type
defined by the protocol

r ∈ P.relations r.args : list⟨sorts⟩
r.out = B

f ∈ P.functions f.args : list⟨sorts⟩
f.out ∈ sorts

TABLE I: The protocol metadata structure P

A. Pre-processing & Notation

The protocol description in RML is statically pre-processed
to obtain a metadata structure P which has actions, rela-
tions, sorts and functions denoted by P.actions, P.sorts,
P.relations, P.functions. Refer to Table I for a formal
description of the protocol metadata structure P and its
components. Each action has a set of named arguments, guard
atoms and a body. The guard atoms and the function body
contain sets of triplets where each triplet contains: the function
or relation under consideration, the named arguments of the
action (or *) which are its arguments, an output value (or *).
The output value indicates constraints that are expected on the
relation/function in case of guard atoms; and the updated value
of the relation/function entry in case of the body. In all cases, a
* represents that the corresponding entry cannot be determined
statically and can therefore be unconstrained. As an example,
the guard clause table(n old, k, v) for the Reshard action
would be converted to the triple (table, [n old, k, v], true) and
the update seqnum sent(s)← true is converted to the triple
(seqnum sent , [s], true).

An instantiation of an action a is a map from the named
arguments of the action to values. A value of ∗ represents
that the corresponding named argument can take any value.
An action invocation is defined as a tuple (a, I) where a ∈
P.actions and I is an instantiation of a. We define a clause
as a triple (x, L, o) where x ∈ P.relations∪P.functions, L
is a list of values (some of which can be ∗) conforming to the
types in x.args and o is either a constant of type x.out or ∗.

Referring back to our motivating example, an instantiation
of the named arguments of the Reshard action would be

I = [n old : ∗,n new : aL, k : K, v : ∗, s : ∗]

and correspondingly, an action invocation would be the tuple
(Reshard, I). Similarly, a clause on the table relation would
be (table, [aL,K, ∗], true).

B. Static Analysis

Algorithm 4 contains our static analysis algorithm, which
takes as input the protocol metadata structure P and an initial
set of clauses Sinit. Sinit will be derived from the safety
property of the protocol; more details are provided in §5.3.
Sinit contains the initial set of clauses relevant for preserving
any violation of the safety property. We maintain two sets

80

S and A where S contains a set of clauses and A a set of
action invocations. In each iteration, we consider all the new
clauses added to the set S in the previous iteration (line 8). For
each clause c, in line 9, we invoke ACTIONSTHATSET(P, c) to
obtain all the action invocations that potentially set the clause
c. We then add the guards for all these action invocations to
the set S in line 11. The while loop at line 5 terminates when
no new clauses have been added in the previous iteration, thus
indicating that we have reached a fixed point.

The function ACTIONSTHATSET(P, c) takes as input the
program P and a clause c to return a set of action invocations
A which potentially set the clause c. The algorithm works
by pattern matching. We iterate over actions and for each
atomic update in the body of the action, we check if the atomic
update tuple matches the tuple in the clause with respect to
the function/relation it updates in line 5. The if condition in
line 6 fails only if both the atomic update output and the clause
output can be determined statically and they do not match each
other.

As an example, assume that the if condition in line 5 passes
i.e. both the atomic update and the clause refer to the same
function/relation x i.e. c.x = at update.x = x. If the clause
output c.o = ∗ and at update.o = true then this means that
we are interested in actions that potentially affect x(c.L) in
any way, and this atomic update therefore satisfies that re-
quirement. Similarly, if c.o = true and at update.o = ∗, this
means that we are interested in actions that set x(c.L) = true,
but the value that the atomic update alters x(at update.l)
cannot be determined statically. Therefore, conservatively, we
assume that the atomic update could potentially alter it as
required. But, if c.o = true and at update.o = false, then
the if condition fails as the outputs can be determined statically
but do not match.

In line 7 we create an instantiation of a.named arguments
initialized to *. The PATTERNMATCH function considers
the arguments of the update atom and the clause atom
at update.l, c.L and checks for inconsistencies. For example,
at update.l = (a, b, a) and c.L = (1, 2, ∗) would pass the
check whereas at update.l = (a, b, a) and c.L = (1, 2, 3)
would fail the check. If the pattern match succeeds, the for
loop instantiaties the named arguments in at update.l based
on c.L. The tuple (a, I) now forms the action invocation
which is added to the set of action invocations returned by
the algorithm. The GUARDSFOR function returns the set of
clauses involved in the guard for an action invocation. We
iterate through all the guard atoms of the action in line 3.
The for loop in lines 5-6 assigns concrete values to the named
arguments in g.l using the instantiation I provided in the action
invocation. Then a clause tuple is created in line 7 and added
to the list of clauses returned by the algorithm.

As an example of how these methods work, we refer
back to sharded key value store example considered in §2.
If ACTIONSTHATSET(P, (unacked, [∗, aL,K, ∗, ∗], true)) is
invoked, then one of the actions returned by it would be the
Reshard action, with the action invocation (Reshard, [n old :
∗,n new : aL, k : K, v : ∗, s : ∗]) (this is because Reshard

sets unacked to true in Line-14, Algorithm 1). Similarly, if
GUARDSFOR(Reshard, [n old : ∗,n new : aL, k : K, v :
∗, s : ∗]) is invoked, the following set G is returned.

G = {(seqnum sent , [∗], false), (table, [∗,K, ∗], true)}

C. Synthesizing the Cutoff Instance, Simulation Relation &
Lockstep

Cutoff Instance. We start with the safety property Φ in the
RML description. As described in §3, the safety property only
contains universal quantifiers and hence is a formula of the
form ∀(x̄ : d̄). ϕ. The size of the cutoff system is taken to
be the number of universally quantified nodes in the safety
property.
Obtaining Sinit. Consider any arbitrary size instance L with
DL denoting the set of nodes. To begin with the static analysis,
we need to provide an initial set of clauses Sinit as input
along with the pre-processed protocol metadata structure P . To
obtain Sinit, we first negate the safety property and instantiate
all the existentially quantified variables. We define Dv

L ⊆ DL

the set of instantiated nodes or violating nodes. We then
process the resulting FOL formula ¬ϕ to obtain the set of
clauses involved in the formula.

As an example, consider the safety property for the Sharded
Key Value store protocol from §2. We have

∀N1, N2,K, V1, V2. table(N1,K, V1) ∧ table(N2,K, V2)

=⇒ N1 = N2 ∧ V1 = V2

As there are 2 quantifiers on nodes, the cutoff for the protocol
is 2. Negating and instantiating N1 = aL, N2 = bL,K =
k, V1 = v1 and V2 = v2, we get

table(aL, k, v1) ∧ table(bL, k, v2) ∧ (n1 ̸= n2 ∨ v1 ̸= v2)

giving us the following set of clauses after processing

{(table, [aL, k, v1], true), (table, [bL, k, v2], true))}

Synthesizing the Simulation Relation and
Lockstep. Having obtained Sinit, we can now invoke
STATICANALYSIS(P, Sinit) to get the set of clauses S and
set of action invocations A. We also have the cutoff instance C
with its set of nodes DC . To define the lockstep and simulation
relation, we map the nodes of the violating instance to nodes
of the cutoff system. Such a mapping sim : DL → DC is
defined as follows. Firstly, by construction, |Dv

L| = |DC | i.e.,
the number of nodes involved in the violation is the same as
the number of nodes in the cutoff system. Consequently, we
perform a one-to-one mapping of nodes from Dv

L to DC . For
the rest of the nodes DL \ Dv

L in the system L, we make the
following observations:

• If S and A obtained from the static analysis do not have
any components containing ∗ in any field of the node
type, this implies that only actions and state components
of the violating nodes are sufficient to simulate the
violation. In such a case, there is no need to map nodes

81

Algorithm 2 ACTIONSTHATSET

Arguments: P the program, and a clause c
Returns: A a set of action invocations

1: procedure ACTIONSTHATSET(P, c)
2: A = ∅
3: for a ∈ P.actions do
4: for at update = (x, l, o) in a.body do
5: if at update.x == c.x then
6: if ¬ (c.o ̸= ∗ and at update.o ̸= ∗ and c.o ̸= at update.o) then
7: Create an instantiation I of a.named arguments , initialized to ∗;
8: if PATTERNMATCH(at update.l, c.L) then
9: for i ∈ 1, len(at update.l) if at update.l[i] ̸= ∗ do

10: I[at update.l[i]]← c.L[i]

11: r ← (a, I)
12: A← A ∪ {r}
13: return A

Algorithm 3 GUARDSFOR

Arguments: P the program, an action invocation act
Returns: G a set of clauses

1: procedure GUARDSFOR(P, act)
2: G = ∅
3: for g = (x, l, o) ∈ a.guards do
4: Create a list L of length g.l, initialized to ∗
5: for i ∈ 1, len(g.l) if g.l[i] ̸= ∗ do
6: L[i]← act.I[g.l[i]]

7: G← G ∪ {(g.x, L, g.o)}
8: return G

Algorithm 4 STATICANALYSIS

Arguments: P the program, Sinit a set of clauses
Returns: S a set of clauses, A a set of action invocations

1: procedure STATICANALYSIS(P, Sinit)
2: S ← Sinit

3: Sprev ← ∅
4: A← ∅
5: while S ̸= Sprev do
6: Sd ← S \ Sprev

7: Sprev ← S
8: for each clause c in Sd do ▷ For each new clause
9: At ← ACTIONSTHATSET(P, c)

10: for each action invocation act in At do
11: S ← S ∪ GUARDSFOR(P, act)

12: A← A ∪At

13: return S,A

from DL \Dv
L as they will never appear in the simulation

relation or lockstep.
• If S or A obtained from the static analysis has compo-

nents containing ∗ in any field of the node type, we map
all the nodes from DL \ Dv

L to one of the nodes in DC .

Intuitively, the simulation relation states that for all the clauses
that are relevant to the violation (as obtained by the static

analysis procedure) in the larger system L, the same state
components are maintained in the cutoff system but in the state
component of the simulating nodes (as per the sim mapping).
Similarly, the lockstep states that the relevant actions are
performed in the cutoff system, but by the simulating nodes.

Given S,A and sim, we obtain the simulation relation and
lockstep using the procedure SIMANDLOCKSTEP(S,A, sim)
in Algorithm 5. The procedure returns the simulation relation
γ as a FOL formula and the lockstep τ as an abstract map from
action invocations of the larger system to action invocations
of the cutoff system. The main idea is to simply perform the
relevant actions of A in the cutoff system, whenever they are
performed in the larger system, synthesizing the appropriate
mapping of the action arguments, and thus maintaining a
simulation relation for the relevant state components in S.
Cutoff Verification. To prove that the synthesized cutoff
instance is actually a cutoff for the protocol, we generate FOL
formulae for each of the 3 properties φinit(γL), φstep(γL) and
φsafety(γL) mentioned in §3, using the simulation relation γ
synthesized by Algorithm 5. Furthermore, for φstep(γL), we
remove the existential quantifier over the state σ

′

C after the
transition by providing a candidate transition in the system C
as per the lockstep τ .

D. Synthesis for Consensus Protocols

We now describe how the above technique can be adapted to
work for quorum-based consensus protocols. Such protocols
are used to achieve consensus amongst the nodes on some
decision such as proposing a value or choosing a leader, with
the safety property being the uniqueness of the decision taken
i.e. no two nodes learn of two different decisions.

Quorum-based consensus protocols define a notion of a quo-
rum which refers to a set of nodes and a quorum-set which is a
set of such quorums. Additionally, the quorum-set satisfies the
quorum-intersection property i.e. any two quorums belonging
to a quorum-set intersect. These protocols also involve a voting
phase were nodes cast their unique votes for values, and values

82

Algorithm 5 Function to obtain simulation relation and lockstep
Arguments: Set of clauses S, action invocations A and mapping sim : DL → DC

Returns: FOL formula γ representing the simulation relation and lockstep τ as a map from actions of the larger system to actions of the
cutoff system
1: procedure SIMANDLOCKSTEP(S,A, sim)
2: γ ← true
3: for each clause c = (x, L, o) ∈ S do
4: For each ∗ entry in L, replace it with a unique variable name from v̄, and add those variables to L to get Largs;
5: Replace each node variable n in Largs with sim(n) to get Cargs;
6: if o == ∗ then
7: ▷ In this case, we assert that the function/relation entries are equal in the larger system and cutoff system
8: γ ← γ

⋀︁
(∀v̄. x(Largs) = x(Cargs));

9: else
10: ▷ In this case, we assert that if the relation/function entry takes the value o in L, it also does so in C
11: if x.out is of node type then
12: γ ← γ

⋀︁
(∀v̄. (x(Largs) = o) =⇒ (x(Cargs) = sim(o)));

13: else
14: γ ← γ

⋀︁
(∀v̄. (x(Largs) = o) =⇒ (x(Cargs) = o));

15: Initialize an empty map τ
16: for each action invocation act ∈ A do
17: For each ∗ value in act.I , replace it with a unique variable name from v̄, to get actL.I;
18: Replace each node value n in actL.I with sim(n) to get actC .I;
19: Define actL = (act.a, actL.I) and actC = (act.a, actC .I);
20: ∀v̄. τ(actL)← actI ;
21: return γ, τ

which receive a quorum of votes are considered as decided.
The core safety argument for such protocols typically relies on
the quorum-intersection property and the uniqueness of votes
i.e. if two values were decided, they both must have received
a quorum of votes but since any two quorum-sets intersect,
there must be a node that has voted twice which is disallowed
by the protocol. Most protocols for achieving consensus such
as Raft [12], Paxos [13] and Two-phase commit are designed
around these core principles. However, obtaining an inductive
invariant for formal verification of these protocols is still a
challenging task.

For such protocols, we assume a sort quorum for quorums
and a fixed relation member : node, quorum which governs
the membership of nodes to quorums. In our pre-processing,
for guard atoms in quorum-based consensus protocols, we
also track state components on which a quorum-agreement
is required.

At a high-level, similar to the non-consensus case, we
collect the actions and the state components responsible for a
violation through a similar static analysis procedure. However,
simulating the violation in the cutoff system by maintaining
these states now requires a more complicated lockstep. In
particular, the cutoff system tries to maintain the quorum
agreement on state components required to reach the violation
through staggered actions i.e. the cutoff system waits for a
quorum agreement on some necessary state component and
then performs the set of actions required to reach quorum
agreement in the cutoff system all at once thereby ensuring
that a quorum agreement on a state component in the larger

system is maintained in the cutoff system.2

VI. EXPERIMENTAL RESULTS

We have applied the proposed strategy on a variety of
different distributed protocols3,4 given in Table II. Our tech-
nique works in two parts, where we first attempt to auto-
matically synthesize the cutoff instance, and then attempt
to prove its correctness. For proving correctness of a cut-
off instance, we generate a FOL encoding of the 3 condi-
tions φinit(γL), φstep(γL, τL) and φsafety(γL). We reduce
the problem of checking correctness to satisfiability of the
generated FOL formulae. For example, for checking the
φstep(γL, τL) condition which is a condition of the type
p =⇒ q to be correct, we check whether p ∧ ¬q is
unsatisfiable. We use Z3 [14] as our backend SMT solver.
The experiments were run on a system with a 12-core Apple
M2 Pro processor and 16GB RAM. Table II summarizes
our experimental results. Notice that the time taken for each
protocol is in the order of few milliseconds except for the
Consensus protocol which takes significantly longer due to
the larger number of quantifiers used in the encoding.

VII. RELATED WORK AND CONCLUSION

In the recent past, there has been a lot of interest in
automated and mechanised verification of distributed protocols

2We provide an example of our technique for consensus protocols
on the Toy Consensus protocol in the full version of our paper at
https://github.com/shreesha00/FMCAD.git

3The RML descriptions and the SMT encoding of the simulation relation
and cutoff protocol for each protocol can be found at the following link:
https://github.com/shreesha00/FMCAD.git

4We provide detailed descriptions of each protocol and its cutoff instance
in the full version of our paper at https://github.com/shreesha00/FMCAD.git

83

Protocol Cutoff Time Taken(s) |γ|
Sharded Key-Value Store[15] 2 0.02 5
Leader Election in a Ring[16] 2 0.03 4
Centralized Lock Server[17] 2 0.02 5
Lock Server Sync[18] 2 0.01 2
Ricart Agrawala[19] 2 0.01 6
Two Phase Commit[20] 2 0.02 9
Toy Consensus ForAll[18] 1 0.07 5
Consensus[18] 2 29.7 11

TABLE II: γ is a FOL formula of the type
⋀︁|γ|

i=1(p =⇒
q) therefore |γ| represents the number of clauses of the type
p =⇒ q in the simulation relation. Time taken refers to the
total time taken by our synthesis+verification procedure.

([1]–[6]). Ironfleet [15] and Verdi [17] are some of the earliest
works which are more focused towards verifying real-world
implementations of distributed protocols, and typically assume
that an abstract model of the protocol works correctly. Many
of the recent approaches towards protocol verification rely
on constructing and proving some form of inductive invari-
ant. Padon et. al. [11] introduced the Ivy framework along
with the RML language which allows a protocol developer
to interactively generate an inductive invariant for verifying
safety. Other approaches ([1], [2], [5]) have continued along
this line of work, by attempting to automate the process of
deriving the inductive invariant using techniques like IC3/PDR
or data-driven approaches. While these approaches have been
successful to some extent, we note that the problem of deriving
inductive invariants is a fundamentally hard problem, and our
work allows us to sidestep it. In fact, it could be useful to
apply these techniques to the comparatively simpler problem
of finding and proving a cutoff instance.

While previous works have also attempted to use cutoff-
based approaches for verification ([7]–[10]), they have mostly
been limited to either a restricted class of protocols or a
restricted class of specifications. We note that none of these
works actually mechanize and automate the proof that a
protocol instance is actually a cutoff instance. To our best
knowledge, ours is the first work that enables automated cutoff
based verification.

In this work, we investigated the applicability of cutoff
based verification for a variety of distributed protocols. We
observe that cutoff based verification allows us to naturally
sidestep the harder problem of finding inductive invariants. We
identify sufficient conditions which can be used to verify that
a protocol instance is indeed a cutoff instance and which can
be encoded using SMT. We develop a simple static analysis-
based approach to automatically synthesize the cutoff instance
for many protocols.

We note that our approach has limitations. In particular,
it can fail in one of two ways. Firstly, the cutoff value itself
could be higher than the one chosen by our analysis. Secondly,
it is possible that the simulation relation and the lockstep
synthesized by our analysis may not work (i.e. they may not
satisfy the φstep or φsafety constraints). In either case, our
analysis will not succeed in verifying the protocol. Intuitively,

this could happen because the nodes in our synthesized cutoff
instance cannot simulate a violation of the safety property,
in which case, either of the φ constraints will not hold.
One can construct an artificial example to demonstrate this;
however, we note that we have not encountered this issue in
our experiments. It is a well-established empirical result that
most bugs in real-world protocol implementations and designs
can be discovered within a small scope of parameter values.
Our work takes a step towards generalizing and formalizing
this result by providing a generic simulation-based strategy to
synthesize cutoff instances and cutoff proofs.

To conclude, our cutoff-based verification approach demon-
strates how a combination of static analysis, SMT-based ver-
ification, and model checking can simplify the hard problem
of protocol verification. Our experimental results indicate that
cutoff results are ubiquitous and applicable for different types
of protocols. Our vision is that this work can pave the way
for more investigations into automating cutoff results for more
complex protocols.

REFERENCES

[1] Y. M. Y. Feldman, J. R. Wilcox, S. Shoham, and M. Sagiv, “Inferring
inductive invariants from phase structures,” in CAV (2), ser. Lecture
Notes in Computer Science, vol. 11562. Springer, 2019, pp. 405–425.

[2] H. Ma, A. Goel, J. Jeannin, M. Kapritsos, B. Kasikci, and K. A. Sakallah,
“I4: incremental inference of inductive invariants for verification of
distributed protocols,” in SOSP. ACM, 2019, pp. 370–384.

[3] K. L. McMillan and O. Padon, “Ivy: A multi-modal verification tool
for distributed algorithms,” in CAV (2), ser. Lecture Notes in Computer
Science, vol. 12225. Springer, 2020, pp. 190–202.

[4] O. Padon, G. Losa, M. Sagiv, and S. Shoham, “Paxos made EPR:
decidable reasoning about distributed protocols,” Proc. ACM Program.
Lang., vol. 1, no. OOPSLA, pp. 108:1–108:31, 2017.

[5] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan, “Distai: Data-driven
automated invariant learning for distributed protocols,” in 15th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2021, July 14-16, 2021, A. D. Brown and J. R. Lorch, Eds. USENIX
Association, 2021, pp. 405–421.

[6] A. Damian, C. Dragoi, A. Militaru, and J. Widder, “Communication-
closed asynchronous protocols,” in Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-
18, 2019, Proceedings, Part II, ser. Lecture Notes in Computer Science,
I. Dillig and S. Tasiran, Eds., vol. 11562. Springer, 2019, pp. 344–363.
[Online]. Available: https://doi.org/10.1007/978-3-030-25543-5 20

[7] E. A. Emerson and K. S. Namjoshi, “Reasoning about rings,” in POPL.
ACM Press, 1995, pp. 85–94.

[8] N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta, “Pa-
rameterized verification of systems with global synchronization and
guards,” in CAV (1), ser. Lecture Notes in Computer Science, vol. 12224.
Springer, 2020, pp. 299–323.

[9] O. Maric, C. Sprenger, and D. A. Basin, “Cutoff bounds for consensus
algorithms,” in CAV (2), ser. Lecture Notes in Computer Science, vol.
10427. Springer, 2017, pp. 217–237.

[10] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith,
and J. Widder, Decidability of Parameterized Verification, ser. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2015.

[11] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy:
safety verification by interactive generalization,” in PLDI. ACM, 2016,
pp. 614–630.

[12] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14). Philadelphia, PA: USENIX Association, Jun. 2014, pp. 305–
319.

[13] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, p. 133–169, may 1998.

84

https://doi.org/10.1007/978-3-030-25543-5_20

[14] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
TACAS, ser. Lecture Notes in Computer Science, vol. 4963. Springer,
2008, pp. 337–340.

[15] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. T. V. Setty, and B. Zill, “Ironfleet: proving practical dis-
tributed systems correct,” in SOSP. ACM, 2015, pp. 1–17.

[16] E. Chang and R. Roberts, “An improved algorithm for decentralized
extrema-finding in circular configurations of processes,” Commun. ACM,
vol. 22, no. 5, p. 281–283, may 1979.

[17] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. E. Anderson, “Verdi: a framework for implementing and formally
verifying distributed systems,” in PLDI. ACM, 2015, pp. 357–368.

[18] J. Yao, R. Tao, R. Gu, and J. Nieh, “DuoAI: Fast, automated inference of
inductive invariants for verifying distributed protocols,” in 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
22), Carlsbad, CA, Jul. 2022, pp. 485–501.

[19] G. Ricart and A. K. Agrawala, “An optimal algorithm for mutual
exclusion in computer networks,” Commun. ACM, vol. 24, no. 1, p.
9–17, jan 1981.

[20] J. N. Gray, Notes on data base operating systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1978, pp. 393–481.

[21] K. S. Namjoshi, “Symmetry and completeness in the analysis of param-
eterized systems,” in VMCAI, ser. Lecture Notes in Computer Science,
vol. 4349. Springer, 2007, pp. 299–313.

[22] M. Taube, G. Losa, K. L. McMillan, O. Padon, M. Sagiv, S. Shoham,
J. R. Wilcox, and D. Woos, “Modularity for decidability of deductive
verification with applications to distributed systems,” in PLDI. ACM,
2018, pp. 662–677.

[23] S. Chand, Y. A. Liu, and S. D. Stoller, “Formal verification of multi-
paxos for distributed consensus,” in International Symposium on Formal
Methods. Springer, 2016, pp. 119–136.

[24] V. Rahli, D. Guaspari, M. Bickford, and R. L. Constable, “Formal
specification, verification, and implementation of fault-tolerant systems
using eventml,” Electron. Commun. Eur. Assoc. Softw. Sci. Technol.,
vol. 72, 2015. [Online]. Available: https://api.semanticscholar.org/
CorpusID:46662559

[25] S. Paul, G. A. Agha, S. Patterson, and C. A. Varela, “Verification of
eventual consensus in synod using a failure-aware actor model,” in NASA
Formal Methods Symposium. Springer, 2021, pp. 249–267.

[26] P. Küfner, U. Nestmann, and C. Rickmann, “Formal verification of
distributed algorithms,” in Theoretical Computer Science, J. C. M.
Baeten, T. Ball, and F. S. de Boer, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 209–224.

[27] B. Charron-Bost and A. Schiper, “Schiper, a.: The heard-of model: com-
puting in distributed systems with benign faults. distributed computing
22(1), 49-71,” Distributed Computing, vol. 22, 04 2009.

[28] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “Verifying safety
properties with the tla + proof system,” in Automated Reasoning, J. Giesl
and R. Hähnle, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 142–148.

85

https://api.semanticscholar.org/CorpusID:46662559
https://api.semanticscholar.org/CorpusID:46662559

Formal Methods in Computer-Aided Design 2023

Optimal Bounded Partial Order Reduction
Iason Marmanis

Max Planck Institute for Software Systems
Kaiserslautern, Germany
imarmanis@mpi-sws.org

Viktor Vafeiadis
Max Planck Institute for Software Systems

Kaiserslautern, Germany
viktor@mpi-sws.org

Abstract—Preemption bounding (PB) and dynamic partial
order reduction (DPOR) are two key techniques for scaling up
the model checking of concurrent software. Attempts to combine
them have so far been suboptimal: they either explore redundant
executions (that DPOR alone would eliminate) or executions
exceeding the desired bound (that PB alone would not consider).

By bounding the number of rounds of a round-robin scheduler
instead of the number of preemptions, we obtain the first optimal
bounded partial order reduction algorithm. Our approach has
two additional benefits: (1) it makes checking boundedness of a
Mazurkiewicz trace linear-time (instead of NP-hard) and (2) it
extends smoothly to weak memory models.

I. INTRODUCTION

Even under sequential consistency (SC) [18], to make
automated verification of concurrent programs feasible, one
typically has to restrict their state space in several unsound
ways, such as considering only executions with up to K
recursive calls, L loop iterations, N concurrent threads, and
even M preemptive context switches between them. In this
paper, we will focus on the latter restriction, which is known
as preemption bounding (PB) or context bounding [23].

Bounding such quantities is generally sufficient for finding
safety errors in programs and can provide reasonable confi-
dence in the correctness of programs whose full verification
is intractable. PB is especially good in that regard: it achieves
great state-space reduction (since the number of executions
of a concurrent program is exponential in the number of
preemptions) and bug coverage (because bugs in practice can
be exposed with a very small number of preemptions [22]).

Bounding, however, often destroys symmetries in a pro-
gram, which lessens the effect of sound state-space reduction
techniques. In particular, PB does not work well with dynamic
partial order reduction (DPOR) [9], which calls two execu-
tions of a concurrent program equivalent if they differ only
in the order of commuting operations (e.g., two accesses to
different shared memory locations) and strives to explore only
one execution per equivalence class.

Combining DPOR and bounding optimally is non-trivial.
Coons et al. [8] weaken the benefit of DPOR leading to the
(redundant) exploration of multiple equivalent interleavings;
whereas Marmanis et al. [19] weaken the benefit of PB and
often require the exploration of executions with more preemp-
tions than the desired bound. Moreover, both approaches suffer
from the NP-hardness of checking whether a given execution
is equivalent to some execution with at most M preemptions.

In this paper, we provide an optimal combination of these
two techniques by changing the bounded quantity. Rather
than assuming a completely non-deterministic scheduler and
bounding the number of preemptive context switches, we
assume the presence of a round-robin scheduler under a fixed
ordering of the threads (e.g., in increasing thread-identifier
order) and bound the number of rounds such a scheduler can
take. This change has two immediate consequences:

1) Checking whether an execution is below the desired
bound can be decided in linear time (see §II).

2) The optimal DPOR exploration procedure of Kokolo-
giannakis et al. [12] is monotone in the number of
scheduling rounds (see §III).

Therefore, by stopping the exploration of any execution prefix
that exceeds the desired bound, we immediately obtain a
sound, complete, and optimal bounded partial order reduction
algorithm called ROUNDER (see §IV), which enables the
bounded verification of programs whose unbounded verifica-
tion is intractable (see §VI). Our optimal bounding approach
extends seamlessly to weak memory models for bounding
metrics that are similar to the number of scheduling rounds or
that constrain only the non-SC part of executions (see §V).

II. BOUNDING THE NUMBER OF SCHEDULING ROUNDS

A. Program Traces and Execution Graphs

A program trace τ is a sequence of events, each correspond-
ing to the execution of a single thread instruction, such as a
read (R) or a write (W) of a certain location and value. In a
sequentially consistent trace, every read event r in the trace
reads the value written by the last write event in the same
location that appears before r in the trace. Two traces are
(Mazurkiewicz-)equivalent if they only differ in the order of
commuting instructions (of different threads) [20].

Instead of using traces, several recent DPOR algorithms [11,
12, 14] directly explore their equivalence classes, succinctly
represented as execution graphs. An execution (graph) G
consists of a set of events G.E including one initialization
write event for each memory location and the following set of
directed edges that reflect the ordering between the events:

• the program order G.po, which orders events of the same
thread in their control-flow order and initialization write
events before all non-initialization events,

• the coherence order G.co, which (totally) orders same-
location write events, and

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 16 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0001-5077-5275
https://orcid.org/0000-0001-8436-0334
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_16
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_16
https://creativecommons.org/licenses/by/4.0/

a := y b := x x := 1

W(x, 0)W(y, 0)

R(y) R(x) W(x, 1)

popo

rf

rf co

Fig. 1. A program (left) and one of its execution graphs (right).

• the reads-from G.rf, which orders every read event after
the write event that it reads from.

We write G|S for the restriction of execution G to the set of
events S; and we say that G is a prefix of G′ if G = G′|G.E.

In Fig. 1, we show a program with three threads and one
of its execution graphs. The graph contains two initialization
writes (one for x and one for y along with three events
corresponding to the memory accesses of the program.

Given two relations X and Y , we define their composi-
tion X;Y

△
=

{
⟨x, z⟩ ∃y. ⟨x, y⟩ ∈ X ∧ ⟨y, z⟩ ∈ Y

}
and the

inverse X−1 △
=

{
⟨x, y⟩ ⟨y, x⟩ ∈ X

}
of X . Finally, we write

X+ for the transitive closure of X .
We now define the following four derived relations:
• The causality order, G.porf

△
= (G.po∪G.rf)+, captures

dependencies between events due to the program order
and the reads-from relation: an event b causally ordered
after an event a cannot be executed before a because it
depends on a’s execution.

• The from-reads relation, G.fr
△
= G.rf−1;G.co, orders

every read event before the same-location writes that are
co-after than the write that the read it is reading from.

• The extended coherence order, G.eco
△
= (G.rf∪G.co∪

G.fr)+, orders all same-location access events apart from
two reads that read from the same write—their order is
immaterial.

• The SC order, G.sc
△
= (G.po ∪ G.eco)+, puts together

orderings due to the program and due to coherence.
An execution G is (sequentially) consistent if G.sc is irreflex-
ive. A consistent execution G represents the equivalence class
of the set of all linearizations of G.sc.

Other memory models require only certain subsets of the
G.sc relation to be irreflexive. For example, coherence re-
quires G.po;G.eco to be irreflexive, while release-acquire
consistency requires G.porf;G.eco to be irreflexive.

B. Round-Robin Rounds

We define the (round-robin) rounds of a program trace
τ = e1, e2, ... , ek to be the number of times a round-robin
scheduler needs to start again from the first thread to generate
the trace τ , i.e., rounds(τ) △

= |
{
ei tid(ei) > tid(ei+1)

}
|.

where tid(e) returns the thread identifier of event e.
The notion of rounds can be naturally lifted to execution

graphs: the rounds of an execution graph is the least among
the rounds of the traces it represents, i.e., rounds(G)

△
=

min
{
rounds(τ) τ linearizes G.sc

}
.

The execution graph in Fig. 1 represents the following three
traces: (a) a := y ;x := 1 ; b := x, (b) x := 1 ; a := y ; b := x,
and (c) x := 1 ; b := x ; a := y. It has one round, since traces
(a) and (b) have one round, whereas trace (c) has two rounds.

Algorithm 1 Greedy algorithm for rounds(G)

1: procedure rounds(G)
2: S ← G.E
3: rounds← 0
4: while S ̸= ∅ do
5: rounds← rounds+ 1
6: for i← 1 ... N do
7: while

(
∃e ∈ S. tid(e) = i

∧ ∄e′ ∈ S. ⟨e′, e⟩ ∈ G.sc

)
do

8: S ← S \ {e}
9: return rounds− 1

Clearly, to compute the rounds of an execution G we do not
have to enumerate the traces of G. Assuming G has N threads,
Algorithm 1 computes rounds(G) with a greedy approach: it
follows the scheduling of the round-robin scheduler adding as
many events from the current thread as possible. Any trace
τ ′ has at least as many rounds as the trace τ that rounds(.)
(implicitly) constructs. To see this, observe that at the first
point where τ and τ ′ differ, τ ′ could be extended with the
event e of thread t, but instead moved to the next thread and
possibly incurred an additional round.

We note that rounds(.) is monotone w.r.t. the prefix relation.

Proposition 1. Given two consistent executions G and G′, if
G is a prefix of G′, then rounds(G) ≤ rounds(G′).

Proof. Consider a trace τ ′ of G′ with rounds(G′) rounds.
Restricting it to the events of G yields a trace τ of G.E with
at most rounds(G′) rounds.

C. Rounds versus Context Switches

We say that a program trace incurs a context switch when-
ever adjacent elements of the trace belong to different threads.
A preemptive context switch between two events is one where
the thread of the first event could have continued execution:
it is neither blocked nor finished. As with scheduling rounds,
we straightforwardly count the number of (preemptive) context
switches in a trace and lift that definition to execution graphs.

Although the formal definitions of scheduling rounds and
context switches are very similar, the number of scheduling
rounds and the number of context switches of a particular trace
can differ widely. The reason is that one scheduling round in a
program with N threads can contain events from at least one
and at most N threads. Consequently, a round-robin execution
of a program with N threads and K rounds can have at most
K ×N context switches.

Conversely, an arbitrary execution with N threads and C
context-switches can be generated by a round-robin scheduler
with at most C − ⌊C/N⌋ rounds. To see this, consider the
worst-case scenario where as many of the context-switches as
possible incur a new round: at least ⌊C/N⌋ of them originate
from the same thread and therefore at least ⌊C/N⌋ increase
the thread identifier of the current thread, which does not incur
a new round.

87

III. OPTIMAL UNBOUNDED DPOR

In this section, we recall the TruSt algorithm [12] in
Algorithm 2. With every execution graph G, TruSt keeps track
of a total order <G on G.E, which corresponds to the order
they were added to the graph.

Algorithm 2 TruSt’s exploration algorithm
1: procedure VERIFY(P)
2: VISITP(G∅)

3: procedure VISITP(G)
4: if ¬consistent(G) then return
5: switch a← nextP(G) do
6: case a = ⊥
7: return “Visited full execution graph G”
8: case a ∈ error

9: return “Visited erroneous execution G”
10: case a ∈ R

11: for w ∈ G.Wloc(a) do VISITP(SetRF(G, a,w))

12: case a ∈ W

13: VISITCOSP(G, a)
14: for r ∈ G.Rloc(a) s.t. ⟨r, a⟩ ̸∈ G.porf do
15: D ← {e ∈ G.E | r <G e ∧ ⟨e, a⟩ ̸∈ G.porf}
16: if ISMAXIMAL(G, {r} ∪D , a) then
17: VISITCOSP(SetRF(G|G.E\D , r, a), a)

18: case
19: VISITP(G)

20: procedure VISITCOSP(G, a)
21: for wp ∈ G.Wloc(a) do VISITP(SetCO(G,wp, a))

TruSt’s exploration of the execution of program P starts by
invoking VISITP on the empty execution graph. At each step,
TruSt checks that the current execution graph is inconsistent
and drops it if so (line 4). Otherwise, TruSt augments the
current execution with the next event a picked by the scheduler
(line 5), and proceeds differently depending on the type of a.
The interesting cases are when a is a read or a write.

In the case of a read event, TruSt considers all the executions
where a reads from some write event w in the same location
as a. (SetRF(G, a,w) modifies G so that a reads from w.)

In the case of a write event a, TruSt first considers every
possible co-placement for a (placing it directly after each write
wp to the same location as a via SetCO(G,wp, a), line 21).
Second, it considers revisiting each previously added read r
of the same location as a that does not causally precede a
(line 14). The revisit operation removes from the execution all
events added after r that do not causally precede a (line 17).

To perform the revisit, TruSt checks a maximality condition
for the set of events that would be removed from the execution
graph (line 16). Intuitively, ISMAXIMAL(G,S, a) checks if it
is possible to reconstruct G from the restriction of G to the
events of G.E \ S, by adding the events of S one by one
in the order prescribed by <G in a coherence-maximal way:
each read event must read from the co-maximal same-location

write, and each write must be added at the end of co. This
condition is necessary to guarantee optimality, i.e., no execu-
tion graph is explored twice. We omit the concrete definition
of ISMAXIMAL and refer the reader to Kokologiannakis et al.
[12] for details about this condition.

Assuming that nextP(.) always picks an event from the
leftmost available thread, we can prove that the steps of TruSt
are monotone w.r.t. to the rounds function, i.e., if VISITP(G)
invokes VISITP(G

′), then rounds(G) ≤ rounds(G′).
To prove this monotonicity, we need the following corollary

that follows directly from TruSt’s proof of correctness [13,
Prop A.22 (P4)]:

Corollary 1. Let G be a consistent execution visited by
Algorithm 2 and e be either the revisited read, if the last step
was a revisit, or the last event added, otherwise. Then, there
is no G.porf-maximal event e′ such that tid(e′) > tid(e).

Proposition 2. Assuming that nextP(.) always picks an event
from the leftmost available thread, if a call to VISITP(G)
directly calls VISITP(G

′), then rounds(G) ≤ rounds(G′).

Proof. For calls from lines 11 and 13, we immediately have
rounds(G) ≤ rounds(G′) from Prop. 1.

The remaining case is when the call to VISIT(P, G′) results
from a revisit at line 17. Let Ĝ be the execution that results
from G′ by removing the added write a and the revisited read
r, and S be the linearization of G.po on the events in G.E\Ĝ.E
in non-decreasing thread identifier order. Note that r is the first
event in S. From TruSt’s proof of correctness [13, Prop A.22
(P3)], G can be obtained from Ĝ by adding the missing events
in the order they appear in S in a coherence-maximal way. We
now consider two cases, depending on whether there exists a
trace τ of Ĝ with rounds(Ĝ) rounds such that tid(last(τ)) ≤
tid(r), where last(.) returns the last event of a trace.

If there is such a trace τ , then it is easy to see that τ++S is
a trace of G and rounds(τ ++S) = rounds(τ). Thus we have
rounds(G) ≤ rounds(τ ++ S) = rounds(τ) = rounds(Ĝ).
From monotonicity, we have rounds(Ĝ) ≤ rounds(G′), which
gives us the desired rounds(G) ≤ rounds(G′).

Otherwise, let τ̂ be a trace of Ĝ with rounds(Ĝ) rounds.
Again, τ̂ ++ S is a trace of G, but rounds(τ̂ ++ S) =
rounds(τ̂) + 1, because tid(last(τ̂)) ≤ tid(r). Since
rounds(G) ≤ rounds(τ̂ ++ S) and rounds(τ̂) = rounds(Ĝ),
showing that rounds(Ĝ) ≤ rounds(G′) − 1 suffices to prove
that rounds(G) ≤ rounds(G′).

Assume the opposite, i.e., rounds(Ĝ) ≥ rounds(G′) and let
K = rounds(G′). From monotonicity, rounds(Ĝ) ≤ K, and
thus rounds(Ĝ) = K. Let G′′ be the execution that results
from removing r from G′. Since Ĝ ⊑ G′′ ⊑ G′, from mono-
tonicity, it is also rounds(G′′) = K. From TruSt’s proof of
correctness [13, Prop A.22 (P9)], because a revisited r in G′,
tid(a) > tid(r). From Corollary 1 for G′, any event e′ with
tid(e′) > tid(r) is not G′.porf-maximal, and therefore the
only event e′ in G′′ with tid(e′) > tid(r) that is G′′.porf-
maximal is the write a. Any trace τ ′′ with K rounds must end
with a, otherwise we can remove a from τ ′′ and obtain a trace

88

τ̂ ′ of Ĝ with at most K (and therefore exactly K) rounds such
that tid(last(τ̂ ′)) ≤ tid(r), which contradicts the hypothesis.
Let τ ′ be a trace of G′ with K rounds. Removing r from τ ′

results in a trace τ ′′ of G′′ with at most K (and therefore
exactly K) rounds. Since τ ′′ ends with a, and r must be after
a in τ ′, it is τ ′ = τ ++ [r, a], for a trace τ of Ĝ. Therefore
rounds(τ ′) = rounds(τ)+1 (tid(a) > tid(r)). This leads to
a contradiction: rounds(Ĝ) = rounds(τ) = rounds(τ ′) − 1 =
rounds(G′)− 1 = rounds(Ĝ)− 1.

IV. OPTIMAL BOUNDED DPOR
Given Prop. 2, we can trivially obtain an algorithm that

explores all executions of a program P with up to k rounds.
Let ROUNDER be Algorithm 2 that, apart from consistency,
also checks whether rounds(G) ≤ k at line 4.

ROUNDER is sound, complete, and optimal. Soundness is
trivial because any execution that is not consistent or exceeds
the bound k is dropped. Completeness of ROUNDER, i.e.,
ROUNDER explores every consistent execution of P with up
to k rounds, follows from the completeness of TruSt and
Prop. 2. Optimality, i.e., no execution graph is explored twice,
is inherited from the TruSt algorithm because ROUNDER
explores a subset of the executions that TruSt does.

Theorem 1. ROUNDER is sound, complete, and optimal.

V. EXTENSIONS FOR WEAK MEMORY MODELS

While in the previous sections we have focused on sequen-
tially consistent executions, the framework can also be used for
weaker memory models, such as x86-TSO, PSO, and RC11. In
fact, TruSt is parametric in the choice of the memory model,
provided it respects some common assumptions, such as ruling
out porf cycles.

Our optimal bounding approach can be similarly generalized
to such memory models by choosing a bounding function that
validates Prop. 2. A sufficient condition is for the function
(a) to be monotone w.r.t. the prefix relation and (b) to not
be affected by the coherence maximal addition of an event.
To see this, note that any execution graph that TruSt visits in
order to reach a final execution graph Gf is a prefix of Gf

that is (possibly) extended with coherence-maximally added
events [19].

One suitable such function is the modification of Algo-
rithm 1 by changing G.sc to just G.porf. Another is to count
the number of simple sc cycles in an execution graph, or
the number of events participating in such cycles. It is also
possible to combine the results of multiple such functions by
any monotone operation (e.g., addition or to return a tuple).

VI. EVALUATION

We implemented ROUNDER on top of the GENMC tool
[15], which implements the TruSt algorithm. To evaluate
ROUNDER, we investigate (a) how many rounds are usually
enough to discover concurrency bugs (§ VI-A), and (b) how
efficient is ROUNDER for that number of rounds (§ VI-B).

Our evaluation shows that 2 rounds suffice to uncover
almost all concurrency bugs, and for a bound of 2, bounded
search is generally much faster that a plain DPOR algorithm.

TABLE I
ROUNDER’S SPEEDUP COMPARED TO GENMC

GENMC k = 2 k = 3
Benchmark Time (s) Speedup Speedup

bstack(5) 90.37 37.50 5.11
bstack(6) 859.83 104.35 9.89
bstack2(8) 174.72 95.48 9.84
bstack2(9) 730.50 243.50 19.37
dglm-queue(6) 105.58 9.36 2.17
dglm-queue(7) 589.54 22.49 3.88
dglm-oe(7) 22.23 3.01 1.02
dglm-oe(8) 33.33 3.60 1.11
dglm-fifo(7) 24.40 1.81 1.10
dglm-fifo(8) 40.48 1.88 0.83
ms-queue(6) 296.69 42.44 4.96
ms-queue(7) 148.64 34.09 4.61
ms-queue(8) 660.85 81.39 8.50
ms-oe(6) 242.88 23.13 4.26
ms-oe(7) 490.78 34.22 5.62
ttas-lock2(7) 28.13 7.99 2.12
ttas-lock2(8) 149.35 19.20 3.93
ttas-lock3 424.31 22.30 3.80

Experimental Setup: We conducted all experiments on a
Dell PowerEdge M620 blade system with two Intel Xeon E5-
2667 v2 CPU (8 cores @ 3.3 GHz) and 256GB of RAM. We
used LLVM 11.0.1 for GENMC and ROUNDER. All reported
times are in seconds. We set a timeout limit of 30 minutes.

A. Rounds and Bug Discovery

To evaluate how many rounds are sufficient to discover
concurrency bugs in practice, we run ROUNDER on the two
sets of benchmarks used in the evaluation of BUSTER [19].

For the first set of benchmarks consisting of programs from
SV-COMP [24] and SCTBench [25], ROUNDER discovered all
bugs with only two rounds, apart from one benchmark with
100 threads where it times out before discovering the bug.
ROUNDER managed to find one more bug than BUSTER before
timing out because of the significantly reduced overhead of the
bound calculation.

For the second set of benchmarks, consisting of concur-
rent data structures with induced bugs, ROUNDER discovered
again all bugs with two rounds, with the exception of two
benchmarks where it timed out, while BUSTER does not. The
reason for this is that the number of executions grows faster
as the round-robin bound increases compared to when the
preemption-bound increases.

B. Bounding Efficiency

To evaluate how efficient ROUNDER is, we compared its
execution time for bounds of two and three against the un-
bounded DPOR algorithm implemented in GENMC. We again
used a set of correct concurrent data structures as benchmarks.

Our results are summarized in Table I. We report the
execution time of GENMC and the speedup when run with
ROUNDER for bounds of two and three. In most benchmarks,
ROUNDER is significantly faster under both bound values.
For the “dglm-oe” and “dglm-fifo” benchmarks, little to no

89

speedup is observed because ROUNDER explores most to all
program executions for these small bounds.

In comparison to BUSTER, we note that the execution time
of ROUNDER grows faster as the bound increases. This hap-
pens because scheduling rounds are a coarser-grained bound-
ing metric than preemptions: one additional round typically
allows many more executions than one additional preemption.

VII. RELATED WORK AND CONCLUSIONS

In this paper, we have presented the first optimal bounded
DPOR algorithm. While bounding the number of round-
robin scheduling rounds in the context of DPOR is a novel
contribution of this paper, the bound itself is not new. It was
first used by Lal et al. [17] as a technical device to show
that preemption-bounded verification of concurrent pushdown
automata is decidable, and has since been used for related
decidability results.

Two other works have tried to integrate notions of concur-
rency bounding into DPOR algorithms, albeit nonoptimally.
Specifically, Musuvathi et al. [21] developed the BPOR al-
gorithm, which combines DPOR with a preemption-bound
search by weakening the reduction obtained by DPOR to avoid
exploring any executions with a larger number of preemptions
than the desired bound. As a result, their algorithm explores
redundant equivalent executions leading to poor performance,
which is often worse than the state of the art in unbounded
DPOR. More recently, Marmanis et al. [19] developed a
different sound approach for combining DPOR and PB by
allowing the exploration of executions that exceed by the
desired bound by a certain margin equal to the number
of threads in the program minus two. Their tool, BUSTER,
avoids any redundant exploration, and so is generally faster
than unbounded DPOR; it does, however, typically explore
a large number executions exceeding the bound, negatively
impacting its performance. Both approaches are further limited
by the need to determine whether a given execution graph
(Mazurkiewicz trace) exceeds the desired preemption bound,
which is an NP-complete problem [21].

A large body of work on DPOR devoted on coarser equiv-
alence relations [4, 6, 7, 10, 14] and on supporting weak
memory models [1, 3, 11, 14, 16]. These works are mostly
orthogonal to our extension over TruSt [12], and can likely be
integrated into ROUNDER.

Finally, Abdulla et al. [2] and Atig et al. [5] have proposed
bounds for the TSO and Power memory models, but being
based on preemption bounding, they are not very suitable for
integration with DPOR. In contrast, the proposed bounds of
§V, while coarser, can be integrated smoothly into ROUNDER.

ACKNOWLEDGMENTS

We would like to thank the anonymous FMCAD reviewers
for their feedback. This work has received funding from Ama-
zon and from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 101003349).

REFERENCES

[1] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi
Atig, Bengt Jonsson, Carl Leonardsson, and Konstanti-
nos Sagonas. “Stateless model checking for TSO and
PSO”. In: TACAS 2015. Vol. 9035. LNCS. Berlin,
Heidelberg: Springer, 2015, pp. 353–367. DOI: 10.1007/
978- 3- 662- 46681- 0 28. URL: http: / /dx.doi .org/10.
1007/978-3-662-46681-0 28.

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed
Bouajjani, and Tuan Phong Ngo. “Context-Bounded
Analysis for POWER”. In: TACAS 2017. Ed. by
Axel Legay and Tiziana Margaria. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2017, pp. 56–74. ISBN:
978-3-662-54580-5. DOI: 10.1007/978-3-662-54580-
5 4.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt
Jonsson, and Tuan Phong Ngo. “Optimal stateless
model checking under the release-acquire semantics”.
In: Proc. ACM Program. Lang. 2.OOPSLA (Oct.
2018), 135:1–135:29. ISSN: 2475-1421. DOI: 10.1145/
3276505. URL: http://doi.acm.org/10.1145/3276505.

[4] Pratyush Agarwal, Krishnendu Chatterjee, Shreya
Pathak, Andreas Pavlogiannis, and Viktor Toman.
“Stateless Model Checking Under a Reads-Value-From
Equivalence”. In: CAV 2021. Ed. by Alexandra Silva
and K. Rustan M. Leino. Cham: Springer International
Publishing, July 2021, pp. 341–366. ISBN: 978-3-030-
81685-8. DOI: 10.1007/978-3-030-81685-8 16.

[5] Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro
Parlato. “Context-Bounded Analysis of TSO Systems”.
In: FPS 2014. Ed. by Saddek Bensalem, Yassine Lakh-
neck, and Axel Legay. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 21–38. ISBN: 978-3-642-
54848-2. DOI: 10.1007/978-3-642-54848-2 2.

[6] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlo-
giannis, Nishant Sinha, and Kapil Vaidya. “Data-centric
dynamic partial order reduction”. In: Proc. ACM Pro-
gram. Lang. 2.POPL (Dec. 2017), 31:1–31:30. ISSN:
2475-1421. DOI: 10 .1145 /3158119. URL: http : / /doi .
acm.org/10.1145/3158119.

[7] Krishnendu Chatterjee, Andreas Pavlogiannis, and Vik-
tor Toman. “Value-Centric Dynamic Partial Order Re-
duction”. In: Proc. ACM Program. Lang. 3.OOPSLA
(Oct. 2019). DOI: 10.1145/3360550. URL: https://doi.
org/10.1145/3360550.

[8] Katherine E. Coons, Madan Musuvathi, and Kathryn
S. McKinley. “Bounded Partial-Order Reduction”. In:
OOPSLA 2013. Indianapolis, Indiana, USA: ACM,
2013, pp. 833–848. ISBN: 9781450323741. DOI: 10 .
1145/2509136.2509556. URL: https://doi.org/10.1145/
2509136.2509556.

[9] Cormac Flanagan and Patrice Godefroid. “Dynamic
partial-order reduction for model checking software”.
In: POPL 2005. New York, NY, USA: ACM, 2005,

90

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3276505
http://doi.acm.org/10.1145/3276505
https://doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1007/978-3-642-54848-2_2
https://doi.org/10.1145/3158119
http://doi.acm.org/10.1145/3158119
http://doi.acm.org/10.1145/3158119
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
https://doi.org/10.1145/2509136.2509556
https://doi.org/10.1145/2509136.2509556
https://doi.org/10.1145/2509136.2509556
https://doi.org/10.1145/2509136.2509556

pp. 110–121. DOI: 10 . 1145 / 1040305 . 1040315. URL:
http://doi.acm.org/10.1145/1040305.1040315.

[10] Jeff Huang. “Stateless model checking concurrent pro-
grams with maximal causality reduction”. In: PLDI
2015. New York, NY, USA: ACM, 2015, pp. 165–174.
DOI: 10.1145/2737924.2737975. URL: http://doi.acm.
org/10.1145/2737924.2737975.

[11] Michalis Kokologiannakis, Ori Lahav, Konstantinos
Sagonas, and Viktor Vafeiadis. “Effective stateless
model checking for C/C++ concurrency”. In: Proc.
ACM Program. Lang. 2.POPL (Dec. 2017), 17:1–17:32.
ISSN: 2475-1421. DOI: 10 .1145/3158105. URL: http :
//doi.acm.org/10.1145/3158105.

[12] Michalis Kokologiannakis, Iason Marmanis, Vladimir
Gladstein, and Viktor Vafeiadis. “Truly stateless, opti-
mal dynamic partial order reduction”. In: Proc. ACM
Program. Lang. 6.POPL (Jan. 2022). DOI: 10 . 1145 /
3498711. URL: https://doi.org/10.1145/3498711.

[13] Michalis Kokologiannakis, Iason Marmanis, Vladimir
Gladstein, and Viktor Vafeiadis. “Truly Stateless, Opti-
mal Dynamic Partial Order Reduction (supplementary
material)”. In: (Jan. 2022). URL: https://plv.mpi- sws.
org/genmc.

[14] Michalis Kokologiannakis, Azalea Raad, and Viktor
Vafeiadis. “Model checking for weakly consistent li-
braries”. In: PLDI 2019. New York, NY, USA: ACM,
2019. DOI: 10.1145/3314221.3314609.

[15] Michalis Kokologiannakis and Viktor Vafeiadis.
“GenMC: A model checker for weak memory
models”. In: CAV 2021. Ed. by Alexandra Silva and
K. Rustan M. Leino. Vol. 12759. LNCS. Springer, 2021,
pp. 427–440. DOI: 10.1007/978-3-030-81685-8 20.

[16] Michalis Kokologiannakis and Viktor Vafeiadis. “HMC:
Model checking for hardware memory models”. In:
ASPLOS 2020. ASPLOS ’20. Lausanne, Switzerland:
ACM, 2020, pp. 1157–1171. ISBN: 9781450371025.
DOI: 10.1145/3373376.3378480. URL: https://doi.org/
10.1145/3373376.3378480.

[17] Akash Lal and Thomas Reps. “Reducing Concurrent
Analysis Under a Context Bound to Sequential Anal-
ysis”. In: CAV 2008. Ed. by Aarti Gupta and Sharad
Malik. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 37–51. ISBN: 978-3-540-70545-1.

[18] Leslie Lamport. “How to Make a Multiprocessor Com-
puter that Correctly Executes Multiprocess Programs”.
In: IEEE Trans. Computers 28.9 (Sept. 1979), pp. 690–
691. DOI: 10.1109/TC.1979.1675439. URL: http://dx.
doi.org/10.1109/TC.1979.1675439.

[19] Iason Marmanis, Michalis Kokologiannakis, and Vik-
tor Vafeiadis. “Reconciling Preemption Bounding with
DPOR”. In: TACAS 2023. Ed. by Sriram Sankara-
narayanan and Natasha Sharygina. Cham: Springer Na-
ture Switzerland, 2023, pp. 85–104. ISBN: 978-3-031-
30823-9.

[20] Antoni Mazurkiewicz. “Trace Theory”. In: PNAROMC
1987. Vol. 255. LNCS. Berlin, Heidelberg: Springer,

1987, pp. 279–324. DOI: 10.1007/3-540-17906-2 30.
URL: http://dx.doi.org/10.1007/3-540-17906-2 30.

[21] Madalan Musuvathi and Shaz Qadeer. Partial-Order
Reduction for Context-Bounded State Exploration.
Tech. rep. MSR-TR-2007-12. Microsoft Research,
2007. URL: https://www.microsoft.com/en-us/research/
wp-content/uploads/2016/02/tr-2007-12.pdf.

[22] Madanlal Musuvathi and Shaz Qadeer. “Iterative Con-
text Bounding for Systematic Testing of Multithreaded
Programs”. In: PLDI 2007. San Diego, California, USA:
ACM, 2007, pp. 446–455. ISBN: 9781595936332. DOI:
10.1145/1250734.1250785. URL: https: / /doi .org/10.
1145/1250734.1250785.

[23] Shaz Qadeer and Jakob Rehof. “Context-Bounded
Model Checking of Concurrent Software”. In: TACAS
2005. Ed. by Nicolas Halbwachs and Lenore D. Zuck.
Vol. 3440. LNCS. Springer, 2005, pp. 93–107. DOI:
10 .1007/978- 3- 540- 31980- 1\ 7. URL: https : / /doi .
org/10.1007/978-3-540-31980-1%5C 7.

[24] SV-COMP. Competition on Software Verification (SV-
COMP). 2019. URL: https://sv-comp.sosy-lab.org/2019/
(visited on 03/27/2019).

[25] Paul Thomson, Alastair F. Donaldson, and Adam Betts.
“Concurrency testing using schedule bounding: an em-
pirical study”. In: PPoPP 2014. ACM, 2014, pp. 15–28.
DOI: 10.1145/2555243.2555260. URL: https://doi.org/
10.1145/2555243.2555260.

91

https://doi.org/10.1145/1040305.1040315
http://doi.acm.org/10.1145/1040305.1040315
https://doi.org/10.1145/2737924.2737975
http://doi.acm.org/10.1145/2737924.2737975
http://doi.acm.org/10.1145/2737924.2737975
https://doi.org/10.1145/3158105
http://doi.acm.org/10.1145/3158105
http://doi.acm.org/10.1145/3158105
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3498711
https://plv.mpi-sws.org/genmc
https://plv.mpi-sws.org/genmc
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1007/3-540-17906-2_30
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2007-12.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2007-12.pdf
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-540-31980-1%5C_7
https://doi.org/10.1007/978-3-540-31980-1%5C_7
https://sv-comp.sosy-lab.org/2019/
https://doi.org/10.1145/2555243.2555260
https://doi.org/10.1145/2555243.2555260
https://doi.org/10.1145/2555243.2555260

Formal Methods in Computer-Aided Design 2023

Datapath Verification via Word-Level E-Graph
Rewriting

Samuel Coward1,2, Emiliano Morini1, Bryan Tan1, Theo Drane1 and George A. Constantinides2
1 Intel Corporation, 2 Imperial College London,

Email: {samuel.coward, emiliano.morini, bryan.tan, theo.drane}@intel.com, g.constantinides@imperial.ac.uk

Abstract—Formal verification of datapath circuits is challeng-
ing as they are subject to intense optimization effort in the
design phase. Industrial vendors and design companies deploy
equivalence checking against a golden or existing reference
design to satisfy correctness concerns. State-of-the-art datapath
equivalence checking tools deploy a suite of techniques, includ-
ing rewriting. We propose a rewriting framework deploying
bitwidth-dependent rewrites based on the e-graph data structure,
providing a powerful assistant to existing tools. The e-graph
allows generation of a path of rewrites between the reference
and implementation designs, which can then be checked by
a trusted industry tool. We demonstrate that the intermediate
proofs generated by the assistant enable convergence in a state-
of-the-art tool, without which the industrial tool runs for 24 hours
without making progress. The intermediate proofs automatically
introduced by the assistant also reduce the total proof runtime
by up to 6×.

Index Terms—Formal Verification, Datapath, E-Graph, Equiv-
alence Checking.

I. INTRODUCTION

Arithmetic datapath circuits like adders and multipliers are
included in almost every electronic device. Designers of these
circuits implement low-level optimizations targeting the best
power, performance and area. As a result, the verification of
datapath circuits is challenging since the code can be difficult
to review, making it hard to identify a sufficient test suite.
Typically, exhaustive simulation is infeasible due to the size
of the input space. Undetected bugs lead to system failures and
reputational damage [1]. Formal Verification (FV) is the only
scalable option to prove the absence of bugs in hardware [2].

One of the most successful FV approaches to verify datapath
circuit designs is based on Equivalence Checking (EC), where
the design under test, usually called the implementation, is
proven to be equivalent to a golden reference design, often
called the specification. Electronic Design Automation (EDA)
vendors have developed commercial tools drastically lowering
the entry barrier [3], allowing semiconductor companies to
fully verify many different designs [4], [5].

Commercial tools orchestrate a suite of solver technolo-
gies [3], including SAT, SMT and BDD based solvers. Yet
still some simple designs can not be proven equivalent. For
example, an industrial state-of-the-art tool is unable to prove
the equivalence of the two designs shown in Figure 1 without
requiring manual effort to apply advanced formal techniques.
We enhance the capabilities of such tools by deploying word-
level rewriting in combination with a data structure, known
as an e(quivalence)-graph. E-graphs are found at the heart

module spec (A, B ,M, N,O) ;
input [1 5 : 0] A, B ;
input [3 : 0] M, N;
output [6 2 : 0] O;
wire [3 0 : 0] D;
wire [3 0 : 0] E ;

a s s i g n D = A << M;
a s s i g n E = B << N;
a s s i g n O = D * E ;

endmodule

(a) Specification design.

module impl (A, B ,M, N,O) ;
input [1 5 : 0] A, B ;
input [3 : 0] M, N;
output [6 2 : 0] O;
wire [3 1 : 0] C ;
wire [4 : 0] P ;

a s s i g n C = A * B ;
a s s i g n P = M + N;
a s s i g n O = C << P ;

endmodule

(b) Implementation design.

Fig. 1: A motivational example, where existing EC tools fail
to prove the equivalence of these two designs.

of modern SMT solvers [6], but by applying them at the
abstraction level used by humans in RTL design we can tailor
the rewrites to datapath verification.

In this work we modify an existing e-graph-based RTL
optimization tool [7] to produce a powerful formal verifi-
cation assistant. The proposed verification assistant is able
to exceed the capabilities of the industrial state of the art,
reduce verification runtimes and decrease the complexity of
the EC problem. The approach taken here is similar to that
of Stepp, Tate and Lerner, who initially developed an e-graph
based LLVM optimizer [8], and later modified it to perform
translation validation [9]. We differ from this previous work
in that we validate numerically intense optimizations at a
lower abstraction level often performed by a human rather
than a compiler. We also deploy modern e-graph developments
allowing us to incorporate value range analysis techniques and
can generate a simplified EC problem for FV engineers. The
approach presented is sound, as we check each intermediate
step using a trusted EC tool. The paper contains the following
novel contributions:

• a word-level e-graph framework that composes a set of
sub-problems from local rewrites to assist FV tools,

• a specialized and extensible bitwidth dependent rewrite
set for datapath verification,

• an e-graph extraction method minimizing the ‘distance’
between two designs,

• test cases showing an enhancement in capabilities over
industrial tools, reducing the need for manual FV effort.

First, we provide the necessary background on verification
and e-graphs. In Section III we describe how word-level e-

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 17 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_17
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_17
https://creativecommons.org/licenses/by/4.0/

Fig. 2: The inputs of an EC tool are two designs, specification
and implementation, a set of constraints to drive the possible
values to tests and a set of lemmas to prove. Each lemma
can pass, fail or be inconclusive. A counterexample (cex) is
provided for each failing lemma.

graphs can be applied to produce a verification assistant. In
Section IV we describe a case study where we outperform the
industrial state of the art. Finally, in Section V we present re-
sults demonstrating overall verification runtime improvements.

II. BACKGROUND

A. Datapath Verification

Classic formal property verification methods successfully
used to verify state machines and communication protocols
are not able to verify datapath dominated circuits. Theorem
Proving [10]–[14] and Symbolic Trajectory Evaluation [15]
are valuable approaches, but their common downsides are a
high barrier to entry and maintenance of complex code bases.

An alternative and successful approach is to rely on EC,
defining two circuit representations to be equivalent if for all
valid inputs they generate identical outputs. EC has been used
in several contexts in the semiconductor industry [4], [16].
The most popular types of EC are Boolean, Sequential and
Transactional, and in this paper we focus on Transactional
EC of combinational circuits, where the result of a given
computation in the implementation is compared against the
result of the same computation in the trusted specification.
The output of the comparison can be pass, when a property is
proven, fail, when the property is not true (a counterexample
is generated), or inconclusive, when the tool does not manage
to either prove or disprove a property. See Figure 2.

A trusted reference is fundamental for EC. One standard
verification flow used in the semiconductor industry is the
following: starting from a component specification, a devel-
oper writes a high-level reference C++ design without any
interaction with the designer who writes the RTL implemen-
tation, providing diversity and independence between the two,
which are then formally tested for equivalence. Many more
tests can be run on the C++ code, due to the great difference
in simulation speed between C++ and RTL. This is usually
described as C2RTL EC. Another common option is what is
called RTL2RTL EC, where the reference is a trusted version
of the same design in RTL, usually a version from previous
projects or based on a third party library like Synopsys’
DesignWare [17].

spec impl

w1 w2 · · · wn

Fig. 3: Overview of the waterfall approach used by FV
engineers. The dashed line between spec and impl represents
an inconclusive verification. Full equivalence is achieved intro-
ducing n intermediate designs wi and proving the equivalences
of all the pairs (spec, w1), (w1, w2), . . . , (wn, impl).

Inconclusive results are commonplace in real-life EC and
require advanced techniques to achieve full convergence, oc-
cupying most of the FV engineer’s time. A common approach
is to generate a “waterfall”, where the verification between
implementation and specification is achieved by introducing
intermediate designs, as shown in Figure 3. If all the interme-
diate equivalence steps are proven, the equivalence between
specification and implementation holds.

One of the key motivations for this work derives from an
overview of the technology behind Synopsys’ industry leading
Datapath Validation (DPV) tool [3]. The tool orchestrates a
suite of techniques and solvers to prove the equivalence of
input designs. One of these techniques is a set of rewrite
engines. In [3], the authors state that certain rewrite sets “are
only applied selectively” or their application “can be counter-
productive”. As a result these rewrite engines are heuristic and
may not explore the required space. The techniques presented
in Section III describe a rewrite orchestration approach that
does not suffer from these limitations.

One relevant work combined rewriting and theorem proving
to verify the correctness of gate-level multiplier designs in
RTL [18], [19]. In this work, the authors deploy ACL2
verified [20] rewrites to transform optimized implementations
into normalized implementations. Whilst our work targets a
higher abstraction level, techniques and principles applied in
the multiplier verification work will be relevant here.

B. E-Graphs

E-graphs cluster equivalent expressions into e(quivalence)-
classes, enabling a compact representation of alternative but
functionally identical implementations. In the e-graph, nodes
represent variables, constants or operators that point to chil-
dren e-classes. This captures the intuition that we may choose
how to implement a given sub-expression at any point in the
design. Due to these nested choices, an e-graph can represent
exponentially many implementations in the number of nodes.

An e-graph is grown via constructive application of local
equivalence preserving rewrites, l → r, where the right-hand
side of the rewrite is added to the e-class containing l, without
removing l as would be done in a traditional rewrite engine. As
a result, the e-graph avoids the phase-ordering problem, where
the order of application impacts the results. This approach to
growing an e-graph is known as equality saturation [8], [21],

93

(a) Initial e-graph contains
(2× x) ≫ 1

(b) Apply x× 2 → x ≪ 1

(c) Apply (x ≪ s) ≫ s → x

Fig. 4: Simple e-graph rewriting over the integers. The dashed
boxes represent e-classes of expressions, where we have
highlighted the modified e-class in red at each stage. Green
nodes represent newly added nodes.

[22]. A simple e-graph rewriting example is shown in Figure 4,
where the dashed boxes represent e-class boundaries and the
arrows connect nodes to their child e-classes.

The e-graph data structure has been used in the formal
methods community for many years [23] and can be found in
modern SMT solvers such as Z3 [6]. One particularly relevant
work used e-graphs to perform translation validation of an
LLVM compiler [9]. The recently released egg library [21]
has enabled researchers to quickly develop a wide range of
e-graph applications, ranging from hardware design [7] to
rewrite rule synthesis [24]. By using e-graphs to represent
datapath circuit designs in RTL we can take advantage of the
e-graphs’ ability to explore equivalent designs efficiently.

III. PROVING EQUIVALENCE VIA E-GRAPH REWRITING

The problem we tackle is, given specification and imple-
mentation RTL designs, prove them equivalent or reduce the
original EC problem to a simpler one to solve. Given this
objective, we will now describe how e-graph rewriting can
provide an efficient solution. Figure 5 illustrates the overall
flow of the assistant. In this work we used a particular
commercial tool throughout, but any RTL2RTL EC tool could
be substituted in its place.

A. E-Graph Initialization

Using the framework developed in [7], we produce an e-
graph representation of RTL, encoding all signal bitwidth and

signage definitions. We use an intermediate language made up
of nested S-expressions, as in Common Lisp [25]:

term::=(operator [term] [term]...[term])

For example, the following System Verilog:

l o g i c [7 : 0] a , b ;
l o g i c [8 : 0] c ;
always comb c = a [7 : 0] + b [7 : 0] ;

corresponding to an unsigned addition of two primary 8-bit
inputs a and b, stored in a 9-bit result is expressed as:

(+ 9 unsigned 8 unsigned a 8 unsigned b).

The + operator takes eight arguments, describing the output
and operand signals.

This intermediate language is sufficient to correctly repre-
sent the functional behaviour of combinational RTL. Verilog
operator definitions are context dependent meaning knowledge
of all bitwidth and signage definitions is essential [26]. In this
work we target word-level RTL written in System Verilog.
Using the open-source Slang parser [27], we implemented
an automated flow converting System Verilog into this inter-
mediate language. We parse both RTL designs and generate
expressions, S and I , in the intermediate language, for the
specification and implementation respectively.

In most e-graph applications built using egg, the e-graph
is initialized with a single expression representing the design
to be optimized. However, in our work we initialize the e-
graph with both S and I , such that the e-graph has two roots.
The nodes common to both designs are automatically shared
by egg. In this paper we describe RTL generating a single
output, but using constructs from [7] it is trivial to generalize
to multiple outputs from each design.

In Figure 6, we represent the two designs shown in Figure 1
in a single e-graph. Colors indicate the design in which each
node is used. Note that the designs initially only share the
input variables and no intermediate signals. In the following
sections we will discuss how as the e-graph is grown, common
intermediate signals can be discovered. Initialising the e-graph
with both designs means that we can simultaneously rewrite
both designs in order to find a common equivalent.

B. Bitwidth Dependent Rewriting

The rewrites define the space of equivalent designs that can
be reached as the e-graph grows. We build upon a subset of
the bitwidth dependent rewrites described in [7], which was
originally designed for optimization and was learnt from in-
dustrial RTL engineers. The optimization rewrite set deployed
specific rewrites to improve correlation with the downstream
logic synthesis tool. These rewrites are not deployed in the
verification rewrite set. It is natural that the verification rewrite
set should include many of the optimization capabilities but
also incorporate additional verification specific rewrites that
‘undo’ optimizations. For example, it may be productive to
include transformations that introduce redundant logic that
enables further sharing.

94

Specification

Implementation

Slang
Parser

E-graph

Rewrite

Analysis

Extraction &
Proof Production

I1 I2 · · · Im

I∗

S1 S2 · · · Sn

S∗

EC EC

EC

EC EC

EC

EC

Fig. 5: Flow diagram for the verification assistant, taking a specification and implementation circuit design in System Verilog.
The designs are parsed and an e-graph is constructed. From the rewritten e-graph, extract two designs S∗ and I∗ along with
intermediate designs forming a verification waterfall.

Fig. 6: Initial e-graph representing two designs shown in
Figure 1, a specification (blue) and implementation (red).
Shared nodes are colored green. Edge labels denote bitwidths.
All e-classes (dashed boxes) initially contain a single node.

Table I describes the small set of additional verification
specific rewrites learnt from experience using commercial EC
tools. Several of these rewrites are the reverse of rewrites
targeting optimization. The space of rewrites that ‘undo’
optimizations is less intuitive, so selecting valuable rewrites to
include is challenging. We selected rewrites that were relevant
for the test cases presented here. The assistant is designed such
that it is simple for users to extend the rewrite set with their
own transformations that are applicable to their designs.

One important consideration is to ensure that few rewriting
opportunities are missed. To achieve this we parameterize
the pattern matching left-hand side and apply the rewrites
conditionally. We construct necessary and sufficient conditions
that are functions of the rewrite parameters. Letting l(·)

TABLE I: An example set of bitwidth dependent datapath
verification rewrites. All rewrites are conditionally applied
to ensure correctness. Bitwidth and signage information of
operators and operands is omitted here for concision.

Name Left-hand Side Right-hand Side
Unmerge Shift a ≪ (b+ c) (a ≪ b) ≪ c
Mult Left Shift a× (b ≪ c) (a× b) ≪ c
Shift to Mult a ≪ const a× 2const

Mult to Add a× 2 a+ a

and r(·) denote functions mapping a vector of parameters
p⃗, encoding operand bitwidth and signage, to expressions
in the intermediate language. Given a parameterized rewrite,
l(p⃗) → r(p⃗), we construct a condition, ϕ, such that l(p⃗) ∼=
r(p⃗) ⇐⇒ ϕ(p⃗). The sufficiency ensures that only valid,
equivalence preserving, rewrites are applied. The necessity
guarantees that no rewriting opportunities are missed for this
rewrite. Missed opportunities can be the difference between a
proven equivalence check and an inconclusive result. We will
see this in Section IV.

A challenge for RTL level verification is that functional
behaviour is bitwidth dependent, for example the addition
of two 8-bit values stored in an 8-bit and a 9-bit result
differ in general but may be equivalent under certain design
constraints. We use the interval analysis and bitwidth reduction
rewrites described in [28], deploying egg’s built-in e-class
analysis feature. These rewrites detect and reduce operators
to the minimum bitwidth required to store the result, hence
normalizing the operations. Such techniques are also deployed
in commercial tools [3], but program analysis on e-graphs is
able to provide more precise abstractions [29].

Having defined a set of rewrites, we use equality saturation
to apply them to the e-graph initialized as described in Section
III-A. Rewrites are applied to both the specification and imple-
mentation designs simultaneously with the objective being to
discover equivalent sub-expressions across the two designs. As
rewrites are applied, new nodes are added to the e-graph and
the e-classes grow, as we see in Figure 8. We vary the number
of e-graph rewriting iterations to control the e-graph growth

95

S S1
. . .

. . .

Sn S∗ I∗ Im . . .

. . .

I1 I

EC EC ?? EC EC

Assume-Guarantee

Fig. 7: E-graph extracted waterfall, generated automatically by
the assistant. We use EC tools to prove the equivalence of the
intermediate steps. The central equivalence check between S∗

and I∗, which may not be true, may not be provable using the
EC tool, but represents a simplified problem.

throughout this work. Constructive rewrite application adds
the overhead of maintaining many equivalent representations
of the two designs in the e-graph, but greatly simplifies the
problem of determining a correct rewrite application order.

C. Extraction

Once the e-graph has saturated or reached a timeout, the
e-graph represents two sets of equivalent designs, one for the
specification and one for the implementation. From the e-graph
we now seek to extract two designs, S∗ ∼= S and I∗ ∼= I that
share the maximum number of common nodes. If S and I
are found in the same e-class, namely the tool found a path of
rewrites between the two designs, then S∗ and I∗ are identical.
If they are found in different e-classes, we extract distinct S∗

and I∗ sharing as many of the common sub-expressions as is
feasible from the e-graph. Figure 5 shows the flow.

To extract S∗ and I∗ we first identify which e-classes in
the e-graph are associated with each design. Let C denote the
set of all e-classes. Given a root e-class, r, we recursively
construct an associated Cr ⊆ C. Starting from Cr = ∅, we
iterate through each node in r, adding its children e-classes
to Cr. We continue, recursively visiting each of the child e-
classes and iterating through the contained nodes until Cr

stops growing. This construction is guaranteed to terminate.
Letting root(e), be a function returning the root e-class

for a given expression e in the intermediate language, we
use the algorithm described above to construct Cspec ⊆ C
starting from root(S) and Cimpl ⊆ C starting from root(I). We
construct the shared e-class set, Cshared = Cspec ∩Cimpl, which
is used to identify the S∗ and I∗ that share the most common
nodes. We update the spec and impl sets, C ′

spec = Cspec\Cshared
and C ′

impl = Cimpl \ Cshared. In Figures 6 and 8, we highlight
C ′

spec in blue, C ′
impl in red and Cshared in green.

In previous work we have deployed hardware specific cost
functions, for example circuit area or delay, that we seek to
minimize in the extraction phase [7], [28]. In this instance, we
use a simpler objective function of e-graph nodes n:

obj(n) =

{︄
K, if class(n) ∈ Cshared,

−1, otherwise,
(1)

where class(n) returns the e-class containing the node n and
K is the total number of e-classes in the e-graph. We maximize
this objective function to ensure that we share the maximum

number of nodes possible, where the negative scoring of
unshared nodes ensures that amongst designs sharing the same
number of nodes, we extract the simplest one. We formu-
late the problem as an integer linear programming problem
(ILP) [30]. We define N to be the set of nodes and E ⊆ N×C
the set of edges. We also introduce Nc to denote the set of
nodes in a given e-class c and Pc to denote the set of parent
nodes of c. For each node n ∈ N we associate an objective,
obj(n), and a binary variable xn ∈ {0, 1}, which indicates
whether n is implemented in either of the extracted RTL
designs. Lastly we introduce R = root(I) ∪ root(S). With
these definitions the problem formulation is the following:

maximize
∑︂
n∈N

obj(n) · xn (2)

subject to ∀(n, c) ∈ E : xn ≤
∑︂
n̂∈Nc

xn̂ (3)

∀c ∈ R :
∑︂
n∈Nc

xn = 1 (4)

∀c ∈ C :
∑︂
n∈Nc

xn ≤ 1 (5)

∀c ∈ C s.t. Pc ̸= ∅ :
∑︂
n∈Nc

xn ≤
∑︂
n̂∈Pc

xn̂. (6)

In the ILP problem, (3) guarantees that for every node n, we
implement a node from each of its child e-classes, extracting
only valid designs. (4) then ensures that the outputs from both
specification and implementation designs are produced by the
extracted design. Lastly, (5) allows at most one node in each
e-class to be implemented and (6) ensures that only e-classes
with implemented parents are selected, namely there are no
unused signals in the generated RTL. We deploy topological
sorting variables to handle cycles in the e-graph [7], [30]. We
use the Coin-Or CBC solver to solve the ILP problem.

For improved performance, we also use a comparable
objective function that computes a greedy extraction based
on egg’s built-in method. Such an approach is faster but
fails to correctly account for common sub-expressions so may
generate designs that are not as ‘close’ as the ILP approach.
We would recommend the ILP approach for solving EC
problems that will require manual intervention.

The extracted solution corresponds to two expression in the
intermediate representation, S∗, equivalent to the specification
and I∗, equivalent to the implementation, from which the tool
automatically generates RTL. Using the recently added proof
production feature in egg [31], two sequences of intermediate
designs separated by a single rewrite are produced such that

S ∼= S1
∼= . . . ∼= Sn

∼= S∗ and I ∼= I1 ∼= . . . ∼= Im ∼= I∗.

To remove the need to trust the correctness of the rewrites,
the assistant generates System Verilog implementations for
each of the intermediate designs and deploys the EC tool
to formally verify the equivalence at each step as shown
in Figure 7. If the EC tool can prove each step including
S∗ ∼= I∗, we have proven the equivalence of S and I . Each
intermediate proof is independent and can thus be proven in

96

parallel. We can also specialize the solver configuration for
each intermediate proof, since we are able to map rewrites
to an optimal solver setup. For example, the commercial tool
provides a set of solve scripts that handle proof orchestration
with different capabilities. These scripts can be enabled by a
user. We encoded a mapping from rewrites to the most efficient
solve script in the assistant. With limited effort the assistant
can be extended to target additional solvers.

To ensure soundness of the generated waterfall, a final
“Assume-Guarantee” lemma proving S ∼= I is included,
which uses all of the intermediate proofs (assuming they
passed). This provides confidence that no gaps were left in
the reasoning. If the tool is unable to prove S∗ ∼= I∗ then
human intervention is required. However the EC problem is
simplified, as these designs share more common signals than
the original S and I .

IV. CASE STUDY

We present a case study of a real world problem where this
technique proves beneficial. In all the following results we use
an up-to-date version of the commercial EC tool running on
SLES 12 on Intel Xeon W-2155 CPUs.

The designs shown in Figure 1 are alternative ways to
implement floating point multiplication of denormal numbers.
More precisely, given two denormals 21−bias × 0.manta and
21−bias × 0.mantb, the product of their mantissas is usually
reduced to a standard non-denormal multiplication by shifting
the values, expressing it as either (manta ≪ m)×(mantb ≪ n)
or equivalently as (manta × mantb) ≪ (m + n), where
m = lzc(manta) + 1, n = lzc(mantb) + 1 and lzc(·) is the
leading zero counter function.

In three iterations of rewriting the e-graph applies a se-
quence of rewrites such that the specification and implemen-
tation are found within the same e-class. The progress of
the e-graph can be seen in Figures 8. After two iterations
of rewriting the first shared signal is detected, see the green
left-shift in Figure 8a, where we have highlighted the initial
specification and designs sharing the green node with brighter
arrows. The e-graph shown in Figure 8b, after three iterations
of rewriting, contains only green nodes, since the tool was
able to apply a sequence of rewrites such that the original root
nodes of S and I were merged into the same equivalence class.
As a result, all e-classes are shared, meaning Cshared = C.

From the final e-graph, Figure 8b, the tool then extracts
identical S∗ and I∗ along with the sequence of rewrites that
were applied to reach it. We summarise the rewrites applied
below, omitting bitwidth alteration and commutativity steps.

(A×B) ≪ (M +N) → (7)
Unmerge Left-Shift ((A×B) ≪ N) ≪ M → (8)

Left-Shift Mult (A× (B ≪ N)) ≪ M → (9)
Left-Shift Mult (A ≪ M)× (B ≪ N) (10)

The e-graph assistant runs in 0.14 seconds, growing an e-
graph comprised of 77 nodes. The EC tool is unable to prove
the “Left-Shift Mult” and “Mult Left-Shift” transformations

when non-uniform bitwidths are used. We resolve this by
automatically inserting an additional intermediate step with
standardized bitwidths. We hypothesize that this is due to a
rewrite rule only being applied under certain parameterizations
in the EC engine.

Including all commutativity and bitwidth alteration rewrites,
the assistant generated a total of 20 intermediate equivalence
checks (including the “Assume-Guarantee” lemma) for the EC
tool to prove. All intermediate proofs and the final complete-
ness lemma are proven in 0.1 seconds by the EC tool. In
contrast, when passed the original EC problem, S ∼= I with
no assistance, the tool did not return a result within 24 hours.

V. RESULTS

Having demonstrated how the verification assistant can
provide the intermediate steps transforming a previously in-
conclusive proof into one solved in under one second, we will
now demonstrate how the assistant can improve overall verifi-
cation runtimes across a datapath optimization benchmark set.
We take benchmarks from [32] and implement original and
optimized RTL for those designs that are fully described in this
paper. The ADPCM decoder is an approximate multiplication
implementation. We include two instances of a kernel from the
H.264 VBSME (variable block size motion estimator), which
correspond to absolute difference summation trees of size four
and eight,

∑︁
i |ai−bi|. The FIR Filter is a typical finite impulse

response filter of depth eight. The case study and box filter are
Intel provided benchmarks. The box filter is a reconfigurable
square filter, sampling four pixels at a time. The dataflow
graph for this design is shown in Figure 9. The optimized
design deploys constant factorization and mux rewriting which
is relatively challenging for the EC tool to prove.

The benchmarks include a range of arithmetic and logical
operators, representative of typical RTL optimizations that
may be performed by hand or by a specialized datapath
optimization tool. For each benchmark, we run the assistant
until either, it discovers a complete path between specification
and implementation or it deploys five iterations of rewriting,
whichever comes first. The e-graph applies all rewrites in
parallel at each iteration, meaning that many parts of the
designs can be simultaneously transformed in each iteration.

In these results, the EC tool does not report any increase in
the initial compilation time, which is less than a second for
all cases presented here. We report the runtime from when
the solvers start running. For the baseline, we deploy all
the EC tool’s solvers in parallel and take the fastest proof.
When the verification assistant has generated a sequence of
intermediate proofs, we report the maximum time taken to
solve a single sub-problem, since each proof can be run in
parallel. In practice, the industrial tool’s multi-processor envi-
ronment introduced runtime overhead that was not related to
the proof. Namely, running a proof on a server grid produced
unpredictable runtime results due to the licence checks and
interactions with the workload management software.

Table II presents the performance impact of the assistant
on the total verification time. In the first example, ADPCM

97

(a) E-graph after two iterations of rewriting. Designs sharing an intermediate signal are highlighted with black arrows.

(b) E-graph after three iterations of rewriting (77 nodes), where S and I have been merged into the same e-class.

Fig. 8: Stages of e-graph growth starting from the initial e-graph in Figure 6.

Decoder, the EC tool efficiently proves the correctness of the
two designs, meaning that the overhead of the assistant is
detrimental, increasing total runtime. It is worth noting that
the intermediate proofs do help reduce the solve time.

In the remaining benchmarks, the baseline EC tool takes
longer to prove equivalence. The introduction of intermediate
proofs reduces the EC solve time by up to 465x, when we
just compare the EC tool runtimes and discount the assistant’s
runtime. Including the runtime to generate the intermediate
proofs, the total verification time is reduced by up to 6x. In
most cases, the EC tool solves each of the intermediate proofs
in less than 0.5 seconds as each step represents a single local
modification to the design. The assistant can effectively select
the most optimal solver orchestration script per intermediate
proof, which greatly helps performance. This is possible
because the assistant understands what transformation has
been applied at each stage. Such an approach avoids wasted
compute resources, since there is no need to run different
solvers in parallel for each of the intermediate problems.

The box filter is an Intel provided benchmark and is the only

example where the assistant is unable to find a complete path.
This verification problem may require additional rewriting
iterations or entirely new rewrites to reach the implementation
design. To minimize runtime, we deploy the faster greedy
extraction method. To solve the EC problem, S∗ ∼= I∗,
we default to one of the slower but more powerful solver
orchestration scripts. In this case, the S∗ ∼= I∗ EC problem
takes significantly longer to prove than the other sub-problems.
In general, as the assistant is able to deploy longer sequences
of dependent rewrites, corresponding to more iterations of
rewriting, we expect to find S∗ and I∗ that are increasingly
close. In Table II, we reported box filter results based on
five iterations of rewriting. If we instead limit the e-graph
to three iterations of rewriting, the assistant’s runtime is
reduced from 16 seconds to 2 seconds. The intermediate
proofs generated by this smaller e-graph can be proven in 1.12
seconds, reducing the total verification time to approximately
3 seconds, corresponding to a 24x speedup over the baseline.

The box filter results highlight a tradeoff between resource
investment into generating intermediate proofs and into solv-

98

TABLE II: Industrial EC tool performance with and without intermediate proofs generated by the assistant. We report the
baseline EC tool performance when solving the original EC problem. We also report the runtime of the e-graph assistant and
the runtime of the EC tool when solving the problem with the intermediate proofs. The sum provides a total verification time
for the assisted proof. The last column shows the speedup ratio achieved using the assistant. Runtimes are in seconds.

Benchmark EC without assistance Assistant EC with assistance Assisted Total Speedup (without/with)
ADPCM Decoder 0.68 0.38 0.49 0.87 0.78
H-264 VBSME-4 7.93 7.04 0.71 7.75 1.02
H-264 VBSME-8 93.13 14.3 0.20 14.50 6.42
FIR Filter 5.50 3.49 0.79 4.28 1.29
Box Filter 79.56 16.10 1.61 17.71 4.49
Case Study - 0.14 0.10 0.24 -

TABLE III: Summary of e-graph assistant properties across
the benchmarks. We report the number of rewriting iterations,
the e-graph size in terms of node count, the number of
intermediate proofs generated, and whether the e-graph found
a complete path of rewrites between S and I .

Benchmark Num. Iter. E-graph Nodes Num. Proofs Full Path
ADPCM 3 469 20 Y
VBSME-4 5 5640 26 Y
VBSME-8 5 5800 46 Y
FIR Filter 5 4700 23 Y
Box Filter 5 21400 115 N
Case Study 3 149 20 Y

Fig. 9: Dataflow graph of the initial box filter design. The SEL
nodes represent muxes.

ing these proofs. Understanding the turning point would allow
the assistant to automatically identify which intermediates will
be most beneficial, a task beyond the current tool.

In addition to the solvers described so far, we also investi-
gated the open-source SymbiYosys equivalence checker [33].
However, for the instances we tried, we were not able to
solve any equivalence problems since the tool is SAT/SMT
based and does not handle datapath problems efficiently. A key
advantage of a rewrite based approach is that performance is
not affected by bitwidths, whilst SAT-based solvers will suffer

from exponential slowdowns as the bitwidths are increased.
This approach is promising because we do not typically need
the full power of a SAT or SMT solver on the entire design,
meaning that a specialized tool that does not target notions of
completeness can prove valuable.

VI. CONCLUSION

This paper applies recent advances in e-graph rewriting to
datapath equivalence checking to develop an automated formal
verification assistant that enhances the capabilities of industrial
tools. By incorporating both the specification and implemen-
tation into a single data structure, the assistant simultaneously
rewrites both designs to efficiently identify common equivalent
sub-expressions. From the e-graph, the tool extracts a sequence
of intermediate designs, breaking the complete equivalence
check into a sequence of smaller sub-proofs which can be
proven by trusted tools. In cases where the assistant is unable
to identify a complete path between the specification and
the implementation designs, the e-graph rewriting may still
reduce the equivalence checking to a simpler sub-problem.
This enables FV engineers to focus on the challenging core
of the verification task and helps the EC tool to identify
additional internal equivalence pairs automatically, reducing
the complexity of the overall equivalence check.

The assistant developed through this work is able to find
a complete sequence of intermediate designs, enabling a
commercial EC tool to prove equivalence in under a second
on a problem that was previously beyond its capabilities. We
also demonstrated test cases where the verification assistant
was able to reduce verification runtimes by up to 6x.

Future work will primarily investigate integration of the
techniques presented in this paper into complete solvers to
improve the rewrite engines in such tools. We will also explore
different front-ends to enable C to RTL equivalence checking
and will incorporate registers to facilitate equivalence checking
across multiple cycles. Exploring alternative applications, such
as the gate-level multiplier verification challenge discussed
in the background, would highlight the generality of the ap-
proach. Lastly, there are many performance optimizations that
we will make to the assistant. For example, having discovered
shared classes in the e-graph, we could freeze these sub-
graphs to limit e-graph growth. Such optimizations and better
orchestration would allow us to extend the evaluation to larger
inconclusive problems requiring deeper e-graph exploration.

99

REFERENCES

[1] V. Pratt, “Anatomy of the Pentium bug,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 915, 1995.

[2] A. Darbari, “Smart Formal for Scalable Verification,” in Design and
Verification Conference and Exhibition (DVCon) United States, 2019.

[3] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for
system-level to RTL equivalence checking,” in Proceedings -Design,
Automation and Test in Europe, DATE, 2009.

[4] B. Xue, P. Chatterjee, and S. K. Shukla, “Simplification of C-RTL
equivalent checking for fused multiply add unit using intermediate mod-
els,” in Proceedings of the Asia and South Pacific Design Automation
Conference, ASP-DAC, 2013.

[5] E. Morini and S. Elliott, “Formal verification of integrated circuit
hardware designs to implement integer division,” 2019.

[6] L. De Moura and N. Bjørner, “Z3: An efficient SMT Solver,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4963
LNCS. Springer, 2008.

[7] S. Coward, G. A. Constantinides, and T. Drane, “Automatic Datapath
Optimization using E-Graphs,” in IEEE 29th Symposium on Computer
Arithmetic (ARITH). IEEE, 9 2022, pp. 43–50.

[8] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality saturation: A new
approach to optimization,” in ACM SIGPLAN Notices, vol. 44, no. 1.
Association for Computing Machinery, 2009.

[9] M. Stepp, R. Tate, and S. Lerner, “Equality-based translation validator
for LLVM,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), vol. 6806 LNCS, 2011.

[10] W. A. Hunt, M. Kaufmann, J. S. Moore, and A. Slobodova, “Industrial
hardware and software verification with ACL2,” Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 375, no. 2104, 2017.

[11] J. S. Moore, T. W. Lynch, and M. Kaufmann, “A mechanically checked
proof of the AMD5K86™ floating-Point division program,” IEEE Trans-
actions on Computers, vol. 47, no. 9, 1998.

[12] D. M. Russinoff, “ A Mechanically Checked Proof of IEEE Compliance
of the Floating Point Multiplication, Division and Square Root Algo-
rithms of the AMD-K7 ™ Processor ,” LMS Journal of Computation
and Mathematics, vol. 1, 1998.

[13] J. Harrison, “A machine-checked theory of floating point arithmetic,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1690,
1999.

[14] ——, “Handbook of practical logic and automated reasoning,” Choice
Reviews Online, vol. 47, no. 06, 2010.

[15] C. J. H. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” Formal Methods in System
Design, vol. 6, no. 2, 1995.

[16] T. Drane and H. Jain, “Formal Verification and Validation of High-Level
Optimizations of Arithmetic Datapath Blocks,” in SNUG, 2011.

[17] Synopsys, “Design Compiler User Guide S-2021.06-SP2,” Synopsys,
Mountain View, Tech. Rep., 6 2021.

[18] M. Temel and W. A. Hunt, “Sound and Automated Verification of Real-
World RTL Multipliers,” in Proceedings of the 21st Formal Methods in
Computer-Aided Design, FMCAD 2021, 2021.

[19] M. Temel, A. Slobodova, and W. A. Hunt, “Automated and Scalable
Verification of Integer Multipliers,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 12224 LNCS, 2020.

[20] M. Kaufmann and J. S. Moore, “ACL2: An industrial strength version
of Nqthm,” in COMPASS - Proceedings of the Annual Conference on
Computer Assurance, 1996.

[21] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha,
“Egg: Fast and extensible equality saturation,” in Proceedings of the
ACM on Principles of Programming Languages, vol. 5, no. POPL, 2021.

[22] R. Joshi, G. Nelson, and K. Randall, “Denali: A goal-directed super-
optimizer,” in Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). Association
for Computing Machinery, 2002.

[23] C. G. Nelson, “Techniques for program verification,” Ph.D. dissertation,
Stanford University, 1980.

[24] C. Nandi, M. Willsey, A. Zhu, Y. R. Wang, B. Saiki, A. Anderson,
A. Schulz, D. Grossman, and Z. Tatlock, “Rewrite rule inference
using equality saturation,” in Proceedings of the ACM on Programming
Languages, vol. 5, no. OOPSLA, 2021.

[25] G. Steele, Common LISP: the language. Elsevier, 1990.
[26] D. Thomas and P. Moorby, The Verilog® hardware description lan-

guage. Springer Science & Business Media, 2008.
[27] M. Popoloski, “Slang,” 2023. [Online]. Available: https://github.com/

MikePopoloski/slang
[28] S. Coward, G. A. Constantinides, and T. Drane, “Automating

Constraint-Aware Datapath Optimization using E-Graphs,” 2023.
[Online]. Available: https://arxiv.org/abs/2303.01839

[29] ——, “Abstract Interpretation on E-Graphs,” 3 2022. [Online].
Available: https://arxiv.org/abs/2203.09191

[30] Y. R. Wang, S. Hutchison, J. Leang, B. Howe, and D. Suciu, “SPORES:
Sum-product optimization via relational equality saturation for large
scale linear algebra,” Proceedings of the VLDB Endowment, vol. 13,
no. 11, 2020.

[31] O. Flatt, S. Coward, M. Willsey, Z. Tatlock, and P. Panchekha, “Small
Proofs from Congruence Closure,” in Formal Methods in Computer-
Aided Design, 9 2022.

[32] A. K. Verma, P. Brisk, and P. Ienne, “Data-flow transformations to
maximize the use of carry-save representation in arithmetic circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 10, pp. 1761–1774, 2008.

[33] YosysHQ GmbH, “SymbiYosys.” [Online]. Available: https:
//symbiyosys.readthedocs.io/en/latest/index.html

100

https://github.com/MikePopoloski/slang
https://github.com/MikePopoloski/slang
https://arxiv.org/abs/2303.01839
https://arxiv.org/abs/2203.09191
https://symbiyosys.readthedocs.io/en/latest/index.html
https://symbiyosys.readthedocs.io/en/latest/index.html

Formal Methods in Computer-Aided Design 2023

µARCHIFI: Formal Modeling and Verification
Strategies for Microarchitectural Fault Injections

Simon Tollec∗ , Mihail Asavoae∗ , Damien Couroussé§ , Karine Heydemann¶‡ and Mathieu Jan∗
∗Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France – firstname.lastname@cea.fr
§Univ. Grenoble Alpes, CEA, List, F-38000, Grenoble, France – firstname.lastname@cea.fr

¶Thales DIS, France – firstname.lastname@thalesgroup.com
‡Sorbonne Univ., CNRS, LIP6, F-75005, Paris, France

Abstract—This paper introduces µARCHIFI, an open-source
tool dedicated to the formal modeling and verification of
microarchitecture-level fault injections and their effects on com-
plex hardware/software systems. First, we address the problem of
the system modeling, and our implementation is integrated into
the Yosys toolchain. Second, we introduce verification strategies
to evaluate the fault effects for software-level security. We
demonstrated the practical use of µARCHIFI on RISC-V use
cases using state-of-the-art model-checking tools for hardware
verification.

Index Terms—Faulty transition system ; Bounded model check-
ing ; SW/HW co-verification ; Security

I. INTRODUCTION

Context. Fault Injection (FI) attacks aim at applying abnor-
mal execution conditions to an embedded system, such as high
temperature or electromagnetic radiation. These disturbances
induce computational errors in the system, leading to undesired
behaviors. From a security point of view, these FI attacks
can create vulnerabilities, such as the ability of an attacker
to retrieve sensitive data or to acquire execution privileges on
the platform. Consequently, there is a growing desire to study
fault injections and better understand their effects to analyze
the system’s security or develop countermeasures.

Different abstraction layers are involved in describing faults
in a system [1]. Faults initially appear in the circuit, and
representing faults at this level permits to describe their
initial effect, e.g., bit-flip, bit-reset. The consequences of the
fault then propagate in the microarchitecture, can be captured
by sequential logic, and induce a different behavior at the
software level. An analysis at the hardware level, e.g., [2]–
[4], can show that a module is functionally incorrect due to the
perturbation induced by fault injections. Such approaches are
sufficient for the robustness analysis of standalone components
such as cryptographic IPs, but usually, the exploitation of a
fault injection, in an attack, involves software. On the other
side, a pure software analysis, e.g., [5]–[7], struggles to model
many subtle behavioral effects induced by fault injection [8].

Recent research motivates the need to consider both the
hardware and the software in the same analysis [8]–[10]. Lau-
rent et al. show how faults on the forwarding mechanism per-
mit to retrieve a previously computed value and reintroduces
it in one of the processor pipeline stages [11]. Tollec et al.
show how faults on the prefetch buffer can result in various

software-level consequences [10], such as: immediate replay
of instructions that are alive in the prefetch buffer; execution
of instructions in incorrect order; and corruption of the next
branch target. However, such effects, induced by faults in the
processor microarchitecture, can only be leveraged in an attack
by specific software conditions, in particular the sequence
of program instructions executed, such that the fault effects
propagate until the attack target is reached.

Problem Statement. There is a need for modeling and
analysis methods to better understand fault effects while
considering the software and the hardware together. Such
techniques can help to highlight microarchitectural implemen-
tation details impacting the system’s security. We need to
automatically build a model that encompasses both hardware
and software implementation details, and fault effects. Such a
model needs to be tractable by verification tools in order to
leverage automated verification techniques.

Proposal and contributions. We propose a complete work-
flow for the formal analysis of a full system composed
of hardware and software components under fault injection.
Faults are modeled at the microarchitectural level to accurately
analyze the impact of a fault injection at the hardware level and
their effects at the software level. We leverage bounded model
checking in order to reason about the impact of fault injections
on the system and their possible exploitation by an attacker.
This work is a follow-up of [10], and we bring improvements
in two directions. First, we formalize the model-checking
problem with a transition system including the attacker model.
We describe its implementation in an end-to-end formal anal-
ysis workflow, named µARCHIFI, based on Yosys [12] and a
third-party model checker. µARCHIFI generates the system’s
formal model from the RTL implementation of the hardware,
an input binary program, and the attacker model to analyze the
system’s robustness under fault injection. The attacker model
supports various fault-injection models. Second, we discuss
practical strategies to improve the efficiency of the workflow,
leveraging well-known optimization techniques from formal
methods. We illustrate the use of µARCHIFI on several case
studies and evaluate the impact of the proposed strategies.
µARCHIFI is open-source and will be publicly available on
the GitHub of Yosys1.

1Currently available on https://zenodo.org/record/7958412

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 18 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0009-0007-1343-0586
https://orcid.org/0000-0001-5291-8567
https://orcid.org/0000-0003-2761-3627
https://orcid.org/0000-0003-2092-924X
https://orcid.org/0000-0002-3016-8109
https://zenodo.org/record/7958412
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_18
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_18
https://creativecommons.org/licenses/by/4.0/

Paper outline. Section II introduces microarchitectural fault
injection models and hardware transition systems. Section III
describes the faulty transition system we introduce to analyze
microarchitectural fault consequences at the software level.
Section IV introduces our verification problem. The formal
model is then automatically generated by the tool detailed in
Section V. Section VI evaluates our approach in three case
studies. Section VII discusses our contributions wrt. related
work, and Section VIII concludes.

II. BACKGROUND

This section introduces microarchitectural fault models, pro-
vides definitions on hardware transition systems modeling, and
describes the Yosys framework that can translate a hardware
description to formal models.

A. Microarchitectural Faults

Fault Injection (FI) attacks are a powerful threat against
embedded systems that cover various physical injection means
like clock glitches, electromagnetic pulses, or laser fault
injections. In [13], Brockmann et al. propose a unified fault
injection model that describes fault effects in the microarchi-
tecture. The authors represent the synchronous digital circuit
as a directed graph (V,E) composed of vertices V and edges
E. Vertices V represent logic gates, state-holding elements,
inputs, and outputs in the circuit, while edges E represent
circuit wires connecting two vertices and carrying a digital
value. Each vertex representing a logic gate in the graph
is associated with a Boolean function describing the gate
behavior. By definition, a fault occurs in the circuit when
a given logic gate is not evaluated with its correct Boolean
function.

Microarchitectural faults in the graph are parametrized with
the three following attributes: location, effect, and number.
The location lists the vertices v ∈ V targeted by the fault
injection. The effect specifies the fault effect by associating a
faulty Boolean function with the targeted vertices. Finally, the
number describes the maximum number of vertices simulta-
neously affected by a fault.

B. Transition System for Sequential Hardware Circuits

We model sequential hardware circuit [14, §2.1.2] as a
transition system M = (S, S0, X, T) where:

• S is the set of circuit states,
• S0 ⊆ S is the set of initial states,
• X is the set of circuit inputs,
• T : S ×X → S is the transition function of the circuit.
A system state s ∈ S corresponds to a valuation of state-

holding elements (e.g., microarchitectural registers, memories)
in the hardware design. Assuming there are n state-holding
elements, denoted as registers in the following, the state s can
be seen as a vector of the n register values s := ⟨r1,..., rn⟩.

An initial state s0 ∈ S0 is a system state where each
register rj,1≤j≤n is evaluated with its initial values. Initial
states can be determined according to register reset values, for

instance. Uninitialized registers imply multiple initial states in
the system.

An input x ∈ X is a vector x := ⟨i1,..., im⟩ composed
with a valuation of the m input variables given to the system.
Circuit outputs are not considered in the formalization as they
are not useful for the rest of this work.

The transition function T describes the valid transitions
from a state si and an input vector xi to the state si+1 at the
next circuit clock cycle. The function T is determined with
the combinational logic of the hardware design and can be
decomposed in n register transition functions δrj where each
register next state value is computed by applying δrj to the
current state and the input vector.

si+1 = T (si, xi) = ⟨δr1(si, xi), . . . , δrn(si, xi)⟩

In hardware circuits, intermediate combinational results
are often factorized to minimize the number of operations.
This optimization avoids duplicating identical operations to
reduce hardware costs. We denote combinational functions
these intermediate results. Consequently, the register transition
functions δrj can be expressed as a composition of these
intermediate combinational functions.

C. Yosys Framework

Yosys [12] is an open-source synthesis tool with a compiler-
like infrastructure. Its frontend takes as input a design de-
scription using a hardware description language like Verilog.
The Yosys intermediate language, called RTLIL, is a netlist
composed of gates and wires. The backend converts the RTLIL
design into various outputs ranging from technological targets
like FPGA or ASIC to formal languages.

In particular, Yosys can transform a hardware design de-
scription into a hardware transition system. Supported for-
mal languages are AIGER, SMV, BTOR2 and SMT-LIB.
AIGER [15] describes hardware systems at the bit level using
an and-inverter graph. The SMV language [16] is provided
by the symbolic model checker NUXMV [17] and describes
finite and infinite transition systems. NUXMV lifts the verifi-
cation from the bit level to the word level with data types
like bit vectors or memories. BTOR2 [18] is a word-level
generalization of AIGER and provides word-level data types,
registers, and memories. Finally, the SMT-LIB language [19]
is the standard specification to describe SMT problems and
is broadly supported by SMT solvers. SMT-LIB can also
specify hardware transition systems using the quantifier-free
bit-vector theory. Yosys can produce VCD waveform traces of
the successive hardware states from model-checker outputs.

Finally, Yosys has built-in options to simulate the design
and set the register’s initial values. These functionalities allow
a user to configure the initial state of the circuit before
converting it into a hardware transition system M.

III. FAULTY SYSTEM MODELING

Hardware analysis often relies on equivalence-checking
techniques [4], [20] to capture faults that induce a different
circuit behavior compared to a reference model. But these

102

methods can only classify fault effects at the circuit level
and cannot determine whether the faults have consequences on
the running software. To analyze the consequences of a fault
described at the microarchitectural level on the software, we
need to observe its propagation in the system. For this purpose,
in the following, we perform model checking to capture the
successive system states between the fault injection and the
fault manifestation. This section defines a faulty transition
system comprising the program, the hardware, and the attacker
model.

A. Bringing the Software and the Hardware Together

The hardware processor design is modeled as a transition
system M = (S, S0, X, T), as introduced in Section II. The
software program is the sequence of instructions to be executed
on the processor. The program is encoded in the initial state
of a memory modeled simultaneously with the processor.
Accordingly, the initial state S0 of the system restricts the
possible processor executions to the software program under
study. The input set X of the system does not represent the
program as it is already encoded in the transition system.
Instead, system inputs are used to model the fault injections
applied during the processor operation. The attacker model and
the faulty transition system are introduced in the following of
this section.

B. Attacker Model

We define an attacker model which specifies how the
attacker can perturb the system operation. This model re-
lies on the definition of microarchitectural faults introduced
in Section II-A and extends this definition to describe the
attacker’s capabilities on a hardware transition system. The
attacker model comprises i) the attacker’s goal expressed as
a reachability property φ, ii) the number of faults N that the
attacker can inject into the system, and iii) the fault model.
The fault model is parametrized by the triplet (L, T , E) and
describes the possible modifications that a fault may induce
on the system.

• L is the set of possible locations of the fault,
• T is the timing range of the fault injection,
• E is the set of possible effects of the fault.

The fault location L is a set that denotes the registers
targeted by the fault injection, i.e., L ⊆ {r1,..., rn}.

The timing range T ⊂ N of the fault is a set of non-negative
integers that specifies when the fault injection can occur in the
system. For example, a fault can be injected in the transition
system between states si and si+1 if i ∈ T .

The fault effect E ⊂ {set , reset ,flips, . . . } is a set of
functions that modifies how a register is updated in the next
state. For instance, a fault e ∈ E injected in register rj
consists in replacing the transition function δrj with the faulty
transition δerj within the same domain, i.e., it produces the
same output data type. A non-exhaustive list of possible effects
is given below for an 8-bit register:

e ∈ E : δrj (s) ↦→ δerj (s)

reset : δrj (s) ↦→ 0x00
set : δrj (s) ↦→ 0xff
flips : δrj (s) ↦→ ¬δrj (s)
fliplsb : δrj (s) ↦→ δrj (s)⊕ 0x01

The number of fault injections N restricts the possibilities
offered by the fault model (L, T , E). An attacker can use at
most N faulty transitions δer to compute the next system states.

The attacker’s goal φ is a reachability property defined on
the transition system M. It represents a vulnerability that the
attacker wants to reach in order to create an exploit on the
system by injecting faults. In the system’s normal operation,
such an exploit should not exist. In other words, ¬φ is a
system’s invariant that the attacker wants to break.

Let us illustrate some practical instantiations of the attacker
model we defined. Laser fault injections are accurate in space
and time and can be modeled with only one or two bit-flip.
On the other hand, voltage or clock glitches are less accurate
and can affect the whole design. We may model them with
multiple bit-set and bit-reset.

C. Faulty Hardware Transition System

The faulty transition system MF = (S, S0, X, T) results
from the modification of the hardware and software transition
system M and the attacker model ((L, T , E), N, φ). First, a
new variable cnt ∈ [[0, N]] is added in the system model to
encode the maximum number of fault injections N . The cnt
is incremented each time a faulty transition is applied and
cannot be targeted by the fault model, i.e., cnt /∈ L. Then, for
each targeted register rl in L, we add a new input xl to the
system to control the fault injection. The input xl determines
whether a fault is injected in register rl, and hence, if the value
of register rl in the next state should be computed using the
normal transition function δrl or the faulty transition δerl .

r′l =

{︃
δrl(s) if xl = False
δerl(s) if xl = True

A possible extension of this faulty transition system is to
expose intermediate combinational functions often used in
hardware circuits, as introduced in Section II. We can then ex-
tend our fault model and the resulting faulty transition system
to target these combinational functions with fault injection.
This extension is not formalized here but is implemented in
the µARCHIFI tool.

IV. TRANSITION SYSTEM VERIFICATION

This section introduces verification techniques on a faulty
transition system. In addition, we describe how the knowledge
of the running software can be leveraged to refine the transition
system verification.

103

A. Verification Problem Statement
In Section III, we model the system under attack as a

transition system MF = (S, S0, X, T). The set of initial states
S0 describes the possible software execution path to analyze,
and the inputs X control the possibilities of the attacker to
inject faults in the system. The verification problem is then a
reachability property verification where an attacker wants to
find a sequence of states (s0, s1,..., sk) ∈ Sk+1 such that:

• s0 is an initial state, i.e., s0 ∈ S0,
• transition between states si and si+1 is valid, i.e., it exists

an input xi ∈ X such that si+1 = T (si, xi),
• the number of faults injected in the system does not

exceed the attacker capacity, i.e., cnt ≤ N and,
• φ(sk) is true.
Such a path in the transition system allows an attacker to

identify an instance of the fault model and a software execution
trace that verifies the property φ.

Different strategies exist to iterate over the transition
model to verify the property. Unbounded verification tech-
niques [21]–[24] prove the property in the general case,
but the data dependency and the transient nature of faults
make these techniques ill-suited [25] on the fault injection
problem. Bounded verification techniques like Bounded Model
Checking (BMC) [26], [27] prove the property from an initial
state for a limited number of transitions, fixed a priori with
a bound. This bound is typically set according to the length
of execution trace of the analyzed software. In this work, we
rely on bounded verification techniques to address the fault
verification problem.

The remainder of this section introduces software-related
considerations for applying well-known optimization tech-
niques to speed up our BMC verification.

B. Sandboxing Execution Paths
Sandboxing is a general technique that adds a global con-

straint on the model to reduce the problem’s state space. We
apply sandboxing to restrict the Program Counter (PC) to a
range of values that a simple static analysis can retrieve from
the addresses in the binary, e.g., using objdump-like tool. The
verification framework then stops exploring software execution
paths that do not satisfy this sandboxing constraint. Conse-
quently, the BMC procedure can also terminate faster when
the entire state space has been explored. However, adding such
a global constraint on the model may lose the k-completeness
of the bounded verification procedure. This technique must
therefore be used to explore possible vulnerabilities rather than
prove the system’s robustness.

While only one PC exists at the software level, several
microarchitectural registers store its value in the processor de-
sign. The fetch stage PC speculates on the next addresses to be
read from memory. Applying the sandboxing technique on this
register would thus require relaxing the sandboxing constraint.
The execute stage PC misses unconditional branches that are
resolved directly in the decode stage. We therefore implement
sandboxing by constraining the PC of the decode stage of in-
order processors, as presented later in Section VI.

Algorithm 1: Bounded model checking (BMC) with
concretization

Input: transition system M = (S, S0, X, T), reachability
property φ, BMC bound k, concretization depth m,
number of concretizations L

Output: a path π if a φ is reachable, None otherwise

1 Function BMC_Concretizing(M, φ, k, m, L) is
// BMC() checks the reachability of φ up to

the bound. M, φ, ϕ, i are global variables.
2 Function BMC(bound) is
3 while i < bound do
4 if ϕ ∧ φ(si) is SAT then
5 exit(π := (s0, ..., si))
6 i← i+ 1
7 ϕ← ϕ ∧ (si = T (si−1, xi−1)) // Unrolling
8 end
9 end

// Initial BMC verification up to step m
10 ϕ← S0(s0) ; i← 0
11 BMC(m)

// Concretization loop
12 ψ ← ϕ ; setPC ← ∅ ; iter ← 1
13 incomplete enum ← False
14 while ψ is SAT do
15 address← get_model(ψ)(PC)
16 setPC ← setPC ∪ address
17 ψ ← ψ ∧ (PC ̸= address)
18 if iter = L then
19 incomplete enum ← True; Break
20 iter ← iter + 1
21 end

// Parallel BMC verifications for each
concretized path up to bound k

22 for address ∈ setPC do
23 ϕ← ϕ ∧ (PC = address)
24 BMC(k)// run BMC on ϕ (concretized paths)
25 end
26 if incomplete enum then
27 ϕ← ϕ ∧ (PC /∈ setPC)
28 BMC(k) // run BMC on ϕ (remaining paths)
29 end

C. Concretizing Execution Paths

BMC algorithms [27] typically unroll the transition system
in a formula ϕ to check the reachability of a property φ. As
a result, solving the formula ϕ suffers from the increasing
number of variables and clauses.

We apply the general concretizing technique to split ϕ into
sub-formulas encoding the different software execution paths.
Like sandboxing, we rely on the PC to distinguish between
these different execution paths. However, a given PC value
can refer to several microarchitectural contexts if more than
one execution path can reach this address at the same time.
This aspect is discussed at the end of this section.

The concretization procedure is detailed in Algorithm 1.
After initializing the formula ϕ with an initial state s0 and
performing BMC up to bound m (lines 10-11), a concretization
loop enumerates the possible values for the PC (lines 12-21).
This loop successively asks an SMT solver to give models

104

- Sandboxing

- Concretization

Fig. 1: µARCHIFI architecture and verification tool-chain.

of the system with different PC values. It stops when no
more system model exists, i.e., ψ becomes unsatisfiable, or
after a given number of concretizations L (lines 18-19). A
new BMC procedure is performed for each enumerated PC
value until bound k (lines 22-25). When the PC enumeration
is incomplete, the remaining paths are encoded within a
single formula and checked together (lines 26-28). A program
analysis can identify branches’ locations in the program and
determine the optimal depth m the user should perform the
concretization.

D. Discussion

Both the sandboxing or the concretization techniques reduce
the state space to explore by adding terms and clauses to
the formula encoding the problem. However, this general
approach has some limitations. To speed up verification, a
trade-off must be found between eliminating execution paths
and the number of additional state variables that increase
the complexity of the formula to check. For example, we
might want to add constraints ensuring that injected faults
lead to a different system behavior than the fault-free reference
model. This technique allows to focus on analyzing effective
faults while ineffective ones are ignored. However, it requires
capturing the complete microarchitectural state twice, leading
to an excessively complex system encoding formula. The
verification times thus increase.

V. TOOL IMPLEMENTATION

This section introduces the µARCHIFI tool we developed to
generate a formal transition system from a hardware descrip-
tion, a program, and an attacker model. First, we detail how a
user can use the tool, then we give its implementation details.

A. µARCHIFI Usage

µARCHIFI, illustrated in Fig. 1, takes as input a processor
hardware description in Verilog, a binary software program,
and an attacker model comprising the fault model. First,
the user can simulate the execution of the target program,
compiled for the corresponding ISA, on the hardware design to

set the initial state of the hardware right before the instruction
sequence to analyze formally. Then, the user needs to spec-
ify the attacker model comprising the goal φ, the maximal
number of faults N , and the fault model (location, timing,
and fault effects). This model is automatically integrated into
the system through the FaultRTLIL pass. The attacker’s
goal can also be specified into the hardware design using
the SystemVerilog Assertion subset supported by Yosys. Fi-
nally, the µARCHIFI tool produces a transition system, as
introduced in Section III-B, in SMT-LIB or BTOR2 format.
The faulty transition system can be verified using external
model-checking tools compatible with these input formats, like
AVR [25], PONO [28] or BTORMC [18].

When an external model checker finds a counterexample, as
illustrated in the verification box in Fig. 1, a VCD file reports
precisely where the fault is injected and when the attacker’s
goal is reached. However, understanding the propagation of
faults and their consequences requires human expertise, but
this task can be facilitated by external tools that perform
differential traces comparison against a reference model.

Additional global constraints for the sandboxing technique
can be specified to the model checker or can be directly
included in the input Verilog design parsed by Yosys. The
concretization technique requires an external model checker to
enumerate possible execution paths and is thus not integrated
into the µARCHIFI tool.

B. µARCHIFI Architecture

Fig. 1, in the modeling box, illustrates the integration
of the µARCHIFI tool with the Yosys framework. Yosys
can parse and translate a hardware specification into formal
languages, allowing us to focus on the automated integration
of an attacker model into the system. We work on the
RTLIL intermediate representation of Yosys to get the best
expressivity and exhaustiveness to specify the fault model.
Besides, as the Yosys RTLIL translation preserves all signal
and register names from the Verilog processor design, the user
can accurately select fault locations based on name pattern
matching, cell type, or cell-width filtering. In addition, the

105

TABLE I: Use Cases description and expected verification result.

Hardware Design Software Program Attacker Model BMC Results

Name Logic Gates Flip-Flops Name gcc Flag Attacker goal φ Location Timing Effect N k Reachability

Use Case I CV32E40P 2842 179 VerifyPIN V7 Og Bypass authentication Flip-Flops in Control path 60:75 Symbolic 1 75 φ reachable

Use Case II Secure Ibex 4422 211 VerifyPIN V1 Os Bypass authentication Flip-Flops in Lockstep * Symbolic 5 46 φ unreachable

Use Case III Ibex 1983 114 KeySchedule (AES) Os Set expanded key to 0 Combinational in EX Stage * Reset 2 38 φ unreachable

preservation of names facilitates the generation of compre-
hensive counterexamples.

Our work extends the Yosys tool by proposing a
FaultRTLIL translation pass, illustrated in Fig. 1, that takes
the attacker’s model (L, T , E), N, φ in input and integrates it
into the system. This integration is achieved in several steps.
First, a new RTLIL register is created to encode the maximum
number of fault injections N the attacker can inject into the
system. Then, a clock is added to control the timing range
of the fault injection T . Finally, additional logic functions are
inserted into the intermediate representation for each location
l ∈ L potentially targeted by a fault injection, modeling
the possible fault effects E . The targeted elements are then
replaced by an if-then-else structure controlled by a fault
selector. Fault selectors are exposed as system inputs and
indicate whether the fault should be injected or not. The
maximum counter value N and the clock for fault injection
timing T , introduced previously, are used to constrain the fault
selectors.

VI. EVALUATION

This section illustrates the use of µARCHIFI in three case
studies, applies the verification strategies introduced in Sec-
tion IV, and discusses the tool’s limitations. The µARCHIFI
implementation, the case studies, and the experimental results
are publicly available2.

All verifications have been executed on an 11th Gen Intel(R)
Core(TM) i7-1185G7 CPU platform. Every program presented
in this section is compiled with the RISC-V toolchain for
the RV32IMC architecture (gcc version 10.2.0). For each
verification, the BMC bound k is fixed according to the longest
program execution trace plus a 10-percent increment to capture
possible modifications in the control flow.

A. Use Case I: Robust Software

Use Case I illustrates the possibility for a user to analyze
the robustness of a secure program running on a processor.

Software. We consider a memcmp-like authentication mech-
anism from the FISSC benchmark suite [29]. This collection
provides eight versions of the VerifyPIN program embed-
ding software countermeasures against fault injections. The
VerifyPIN program compares two 3-digit3 PIN codes stored
in memory: a user and a secret PIN. The user can authen-
ticate when the two codes are identical. In the following,
PIN values are symbolic, but we assume that the user PIN
and the secret PIN are different in each of their digits. In

2https://doi.org/10.5281/zenodo.7958412
3VerifyPIN uses 4-digit PINs in its original version.

Use Case I, we target VerifyPIN v7 with the most software
countermeasures. It implements hardened booleans, constant
iteration, loop counter check, inline PIN comparison, and
duplication of critical tests. VerifyPIN V7 is compiled with the
optimization flag Og to prevent the compiler from removing
the countermeasure. The program runs in constant time, in 69
clock cycles.

Hardware. We execute the program on the 32-bit, in-order,
4-stage pipeline CV32E40P RISC-V core from the OpenHW
group [30]. The version under study does not provide any
security countermeasures.

Attacker Model. In this system, the attacker aims to bypass
the secure authentication mechanism without triggering the
software countermeasures.

φI := (authenticated ∧ ¬software alert)

The VerifyPIN V7 program implements the authentication
process in two steps. First, a constant-time loop sets a Boolean
to True if a difference is detected between the two PINs.
Second, a comparison is performed to test the Boolean value
and allow the authentication. We evaluate the robustness of the
second comparison block against a single fault injected on the
sequential logic of the processor control path. The considered
fault model targets 102 registers among 179 in the processor.
Use Case I is summarized in Table I.

Verification Results. Table II compares verification per-
formance between three model checkers with and without
faults. Performing the verification without fault ensures that
the attacker goal φ does not hold outside of an attack. The
analysis results in Table I highlight that the attacker can bypass
the authentication by injecting a single fault. Counterexamples
provided by the model checkers permit the user to find the
exact location of the fault that leads to the vulnerability φI.
All solvers found the same fault model on this use case, but we
can observe that PONO is faster to solve the model-checking
problem.

B. Use Case II: Robust Hardware

Use Case II details how a user can determine whether a
fault injected into a secure processor can induce a vulnera-
ble behavior on the software without being detected by the
hardware countermeasure.

Software. We consider VerifyPIN V1, the baseline version
of the VerifyPIN collection, without any countermeasure. As in
Use Case I, the same constraint is applied to user- and secret-
PIN, which are still symbolic. VerifyPIN V1 is compiled with
the optimization flag Os.

Hardware. The Ibex [31] is a parametrizable open-source
32-bit, in-order processor. We analyze the small version of the

106

https://doi.org/10.5281/zenodo.7958412

core [32] in its secure configuration. The Secure Ibex imple-
ments protections against physical attacks like the redundancy-
based Lockstep mechanism that instantiates the core twice
and compares the outputs. The duplicated core is called the
Shadow Core and an alert signal is triggered if an attack has
been detected during the operation of the processor.

Attacker Model. In this second use case, the attacker still
aims to bypass the secure authentication mechanism without
triggering the hardware countermeasures.

φII := (authenticated ∧ ¬hardware alert)

The considered attacker model cannot inject more than five
faults into the system. Fault Locations are limited to the
sequential logic in the Shadow core since we do not want
to inject the same fault in both cores.

Verification Results. Table I reports that an attacker cannot
bypass the secure authentication with the considered fault
model. This use case leverages the fact that the Secure Ibex
implements hardware countermeasures. On the one hand,
assuming that the hardware alert cannot be triggered makes
sense as the attacker wants to bypass the authentication
without being detected. On the other hand, it helps the solver
simplify the formula during the verification. Table II reports
verification performance. BTORMC fails to solve the problem,
and we stop the verification after 2 hours.

C. Use Case III: Cryptographic Software

Use Case III details how a user can apply the tool to
software implementations of cryptographic algorithms.

Software. Tiny AES [33] is a small software implementation
of the encryption algorithm. The key schedule function of
the AES program expands the key into several separate keys
for each round of AES. We focus here on a round of the
key schedule function from the 128-bit AES. The program is
compiled with the optimization flag Os.

Hardware. We run the key schedule function on the baseline
version of the small Ibex core without any countermeasure.

Attacker Model. The attacker wants to set to zero a byte
in the penultimate round key. An attacker can then use the
observation of such an effect to perform differential fault
analysis [34], [35]. Fault consequences are observed at the
end of the key schedule function to limit the analysis to a
small sequence of instruction.

φIII := (9 th Round keybyte = 0)

To attempt to reach the property φIII, we allow an attacker
to inject up to two word-reset faults anywhere in the execute
stage of the Ibex.

Verification Results. As reported in Table I, an attacker can-
not reach his goal with the considered fault model. Additional
verification not described here shows that a more powerful
attacker reaches his goal with four fault injections instead of
two. We can also note that the verification of φIII on the AES
program without fault is faster than both Use Case I and II
because the AES key is fixed for while the two 3-digit PINs
are symbolic for the VerifyPIN program.

TABLE II: Use-cases verification time with three model checkers.

Without Fault With Faults

PONO YOSYS-BMC BTORMC PONO YOSYS-BMC BTORMC

Use Case I 12.6s 11.1s 1.5s 107s 249s 273s

Use Case II 20.7s 10.6s 3.5s 250s 373s timeout

Use Case III 0.3s 2.4s 0.1s 313s 1945s 3427s

TABLE III: Verification time improvement with the sandboxing
technique wrt. the baseline verification time with faults in Table II.

PC Sandboxing PONO YOSYS-BMC BTORMC

Use Case I 0x1c4 ≤ PC ≤ 0x234 110s (+2.8%) 242s (-2.8%) 205s (-24.9%)

Use Case II 0x84 ≤ PC ≤ 0x114 206s (-17.6%) 297s (-20.4%) timeout

Use Case III 0x40 ≤ PC ≤ 0xc0 107s (-65.8%) 1454s (-25.2%) 1659s (-52.0%)

TABLE IV: Verification time improvement with the concretization
technique wrt. the baseline verification time with faults from Table II.

Concretization

Concretized step Baseline Parallelized Accumulated

Use Case I 62 (Status comparison) 249s 189s (-24.1%) 509s (+104%)

Use Case II 31 (PIN comparison) 373s 304s (-18.5%) 891s (+139%)

Use Case III 23 (No branch instruction) 1945s 1504s (-22.7%) 2955s (+51%)

D. Influences of Verification Strategies

Sandboxing Execution Paths. For each use case introduced
before, we determine the range of possible values for the
program counter (PC) by dumping addresses from the binary
file. Here, the possible addresses are contiguous, and we add a
global constraint on the system to force the PC to stay in this
set of values. Table III illustrates that the sandboxing strategy
results in an improvement of the performances up to 65%,
and these additional constraints do not prevent model checkers
from retrieving the vulnerability highlighted in Use Case I

Such improvements are due to two factors. First, some fault
effects are not analyzed if they lead to PC values out of
the memory range considered. Secondly, the verification may
end before the bound k if all execution paths in the system
exit from the considered address range. We also observe that
improvements vary between the different solvers even if PONO
remains more efficient on the use cases analyzed.

Concretizing Execution Paths. We apply the concretization
strategy for each use case with an enumeration bound L = 3
to split the bounded verification procedure into L + 1 sub-
verifications (c.f., Algorithm 1). We arbitrarily set L = 3 as it
provides the best performance in these practical use cases. A
higher value of L increases the accumulated verification time
without improving the parallelized time.

Table IV reports the concretization steps, the baseline verifi-
cation time from Table II, and the concretization performance.
We show each experiment’s wall-clock time and accumulated
verification time since we can parallelize the executions. Per-
formance is given for the YOSYS-BMC since other evaluated
model checkers do not permit to retrieve the SMT formula
encoding the unrolled system.

On Use Case I, we concretize the execution at the first
branching instruction targeted by fault injection. It corresponds
to the PIN-status comparison to allow authentication (step 62).

107

This results in an improvement of the verification time by 24%.
On Use Case II, we apply concretization during a PIN-digit
comparison and enumerate PC values associated to different
execution paths. However, few performance improvements are
observed, especially regarding the accumulated verification
time. We believe this is due to the hardware countermeasure
that already prevents executing different paths due to the faults.
No branching instruction exists on Use Case III. However,
many execution paths are possible due to fault injections.
Concretization is applied at step 23, at half of the verification
time. This results in a 22.7% verification time improvement.

In conclusion, concretization often improves the verification
time thanks to the parallelization of the executions. However,
these verification times remain higher than the one obtained
when using the PONO model checker (Table II).

VII. RELATED WORK

Similar works propose modeling and verification method-
ologies to study fault injection effects. Classical verification
methods like simulation are used [3], [6], [36], [37], but they
are often not exhaustive, and it is often difficult to highlight
corner cases, like the Prefetch Buffer introduced in Section I.
For instance, VERFI [3] needs to set a fixed input test vector
to evaluate cryptographic implementation robustness to faults.
In the following, we will discuss papers that propose a formal
framework to analyze fault effects on the system.

First, some works analyze fault effects on hardware imple-
mentation [2], [4], [20]. Formal techniques were first dedicated
to analyzing cryptographic circuits with equivalence checking.
AutoFAULT tool [2] can parse and transform a small block
cipher written in VHDL into a SAT formula to determine if
a fault can induce a wrong ciphertext. The FIVER tool [4]
translates Verilog netlists to Binary Decision Diagram to
compare a fault-free circuit with a faulty copy to determine
the fault effects. FIVER symbolically checks every possible
input and classifies fault effects according to the expected
reference behavior. Faults are classified as effective, ineffective,
or detected, depending on whether they induce a different
behavior and if the countermeasure (if any) detects them.
SYNFI [20] can parse technological netlists to prove the
equivalence between golden and faulty circuits to detect if
the synthesis step removes countermeasures. However, SYNFI
does not handle sequential verification since the design to
analyze is unrolled to perform equivalence checking, and thus,
the tool cannot analyze software. In comparison, µARCHIFI
does not support advanced technological netlists, but we still
support any Verilog or SystemVerilog design by plugging
our translation pass into the Yosys tool. In addition, we
take advantage of a simplified word-level netlist to bridge
the gap with the software and facilitate the analysis of the
transitional system. We also keep the sequential logic instead
of unrolling and flattening the whole design to use model-
checking verification techniques.

On the other hand, some additional works model and
study faults at the software level and analyze fault effects
on the control flow [5], [7], [38]–[40]. These approaches

address the binary or the Instruction Set Architecture level
and propose methodologies to analyze the robustness of the
software programs. SAMVA [40] assesses a binary program
against multiple instruction-skip attacks with static analysis.
The proposed method by Ducousso et al. [7] permits scaling on
large programs like bootloader with up to 10 fault injections.
However, these works do not consider the execution platform,
and the generic fault models used are sometimes inadequate
to model microarchitectural implementation details.

Furthermore, commercial tools offer all the building blocks
required for such a fault injection analysis, but their closed
nature prevents users from integrating them into the same
verification framework. SystemVerilog Assertion (SVA), sup-
ported by tools such as Synopsys VC Formal or Siemens
QuestaVerify, could define the attacker’s goal, but is not
suitable for fault modeling. On the other hand, tools such as
Cadence JasperGold offer support for fault injection but do
not consider software. In short, none of these tools address the
verification of software and hardware against fault injection.

Finally, apart from fault injection, some works [41], [42]
tackle the problem of hardware-software co-verification using
BMC verification. Schmidt et al. [42] propose to separate the
control path and the computation in the modeling to cope with
system complexity. However, this compositional approach is
undermined when the underlying hardware is corrupted by
fault injection since data and control are then both impacted.

VIII. CONCLUSION

In this paper, we propose a faulty transition system to
model the hardware implementation of a processor and the
software program conjointly. This modeling allows to formally
analyze and study the propagation of faults in the microarchi-
tecture and their consequences on the system behavior. The
µARCHIFI tool automatically implements this model, from
the hardware design description at the RTL level, in Verilog,
a binary program, and a specification of the attacker model.
µARCHIFI allows to specify a large variety of microarchitec-
tural fault models with high expressiveness. We illustrate the
use of µARCHIFI on three use cases encompassing complete
microarchitectural designs of RISC-V processors representa-
tive of the embedded market and binary programs of hundreds
of machine instructions. We discuss possible strategies to
improve the verification performance. At this stage, the user
of µARCHIFI must find a sweet spot between the size of
the hardware design, the size of the analyzed program, and
the complexity of the fault model. Future work will focus on
combining several verification strategies leveraging software,
such as sandboxing and concretization techniques, but also
robust hardware embedding countermeasures to analyze fault
injections on a larger scale.

108

REFERENCES

[1] B. Yuce, P. Schaumont, and M. Witteman, “Fault Attacks on Secure Em-
bedded Software: Threats, Design and Evaluation,” Journal of Hardware
and Systems Security, Jun. 2018.

[2] J. Burchard, M. Gay, A.-S. M. Ekossono, J. Horáček, B. Becker,
T. Schubert, M. Kreuzer, and I. Polian, “AutoFault: Towards Automatic
Construction of Algebraic Fault Attacks,” in 2017 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2017.

[3] V. Arribas, F. Wegener, A. Moradi, and S. Nikova, “Cryptographic
Fault Diagnosis using VerFI,” in 2020 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), Dec. 2020.

[4] J. Richter-Brockmann, A. Rezaei Shahmirzadi, P. Sasdrich, A. Moradi,
and T. Güneysu, “FIVER – Robust Verification of Countermeasures
against Fault Injections,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, Aug. 2021.

[5] M.-L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A Symbolic
Approach for Evaluation the Robustness of Secured Codes against
Control Flow Injections,” in Verification and Validation 2014 IEEE
Seventh International Conference on Software Testing, Mar. 2014.

[6] M. Hoffmann, F. Schellenberg, and C. Paar, “ARMORY: Fully Auto-
mated and Exhaustive Fault Simulation on ARM-M Binaries,” IEEE
Transactions on Information Forensics and Security, vol. 16, 2021.

[7] S. Ducousso, S. Bardin, and M.-L. Potet, “Adversarial Reachability
for Program-level Security Analysis,” in 32nd European Symposium on
Programming (ESOP), 2023, pp. 59–89.

[8] J. Laurent, C. Deleuze, F. Pebay-Peyroula, and V. Beroulle, “Bridging
the Gap between RTL and Software Fault Injection,” ACM Journal on
Emerging Technologies in Computing Systems, vol. 17, no. 3, May 2021.

[9] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and
P. Schaumont, “Software Fault Resistance is Futile: Effective Single-
Glitch Attacks,” in 2016 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), Aug. 2016.

[10] S. Tollec, M. Asavoae, D. Couroussé, K. Heydemann, and M. Jan, “Ex-
ploration of Fault Effects on Formal RISC-V Microarchitecture Models,”
in 2022 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC), Sep. 2022.

[11] J. Laurent, V. Beroulle, C. Deleuze, and F. Pebay-Peyroula, “Fault
Injection on Hidden Registers in a RISC-V Rocket Processor and
Software Countermeasures,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2019.

[12] C. X. Wolf, “Yosys open synthesis suite,”
https://github.com/YosysHQ/yosys, 2016.

[13] J. Richter-Brockmann, P. Sasdrich, and T. Guneysu, “Revisiting Fault
Adversary Models – Hardware Faults in Theory and Practice,” IEEE
Transactions on Computers, 2022.

[14] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
Apr. 2008.

[15] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,” 2011.
[16] A. Irfan, A. Cimatti, A. Griggio, M. Roveri, and R. Sebastiani, “Ver-

ilog2SMV: A Tool for Word-level Verification,” in Proceedings of the
2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2016.

[17] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuXmv Symbolic Model
Checker,” in Computer Aided Verification, 2014.

[18] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2 , BtorMC and
Boolector 3.0,” in Computer Aided Verification, 2018.

[19] C. Barrett, P. Fontaine, and A. Stump, “The SMT-LIB Standard,” 2010.
[20] P. Nasahl, M. Osorio, P. Vogel, M. Schaffner, T. Trippel, D. Rizzo, and

S. Mangard, “SYNFI: Pre-Silicon Fault Analysis of an Open-Source
Secure Element,” May 2022.

[21] M. Sheeran, S. Singh, and G. Stålmarck, “Checking Safety Properties
Using Induction and a SAT-Solver,” in Formal Methods in Computer-
Aided Design, 2000, pp. 127–144.

[22] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
Computer Aided Verification, vol. 2725. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003.

[23] A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in
Verification, Model Checking, and Abstract Interpretation, 2011.

[24] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of
property directed reachability,” in 2011 Formal Methods in Computer-
Aided Design (FMCAD), Oct. 2011.

[25] A. Goel and K. Sakallah, “AVR: Abstractly Verifying Reachability,”
in Tools and Algorithms for the Construction and Analysis of Systems,
A. Biere and D. Parker, Eds., 2020.

[26] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking
Using Satisfiability Solving,” Formal Methods in System Design, 2001.

[27] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds., Handbook
of Model Checking. Springer International Publishing, 2018.

[28] M. Mann, A. Irfan, F. Lonsing, Y. Yang, H. Zhang, K. Brown, A. Gupta,
and C. Barrett, “Pono: A Flexible and Extensible SMT-Based Model
Checker,” in Computer Aided Verification, 2021, pp. 461–474.

[29] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. de
Choudens, “FISSC: A Fault Injection and Simulation Secure Collection,”
in Computer Safety, Reliability, and Security, 2016.

[30] OpenHW group, “OpenHW Group CV32E40P User Manual,” https://
cv32e40p.readthedocs.io/en/latest/.

[31] LowRISC, “Ibex: An embedded 32 bit RISC-V CPU core,” https:
//ibex-core.readthedocs.io/en/latest/.

[32] “Ibex RISC-V Core github repository,” https://github.com/lowRISC/
ibex#configuration.

[33] kokke, “Tiny AES,” https://github.com/kokke/tiny-AES-c, 2019.
[34] J. Takahashi, T. Fukunaga, and K. Yamakoshi, “DFA Mechanism on the

AES Key Schedule,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC 2007). Vienna, Austria: IEEE, Sep. 2007.

[35] S. S. Ali and D. Mukhopadhyay, “A Differential Fault Analysis on AES
Key Schedule Using Single Fault,” in 2011 Workshop on Fault Diagnosis
and Tolerance in Cryptography, Sep. 2011.

[36] J. Grycel and P. Schaumont, “SimpliFI: Hardware Simulation of Em-
bedded Software Fault Attacks,” Cryptography, vol. 5, no. 2, Jun. 2021.

[37] T. Given-Wilson, N. Jafri, and A. Legay, “Combined software and
hardware fault injection vulnerability detection,” Innovations in Systems
and Software Engineering, vol. 16, no. 2, Jun. 2020.

[38] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. Iyer, “SymPLFIED:
Symbolic program-level fault injection and error detection framework,”
in 2008 IEEE International Conference on Dependable Systems and
Networks With FTCS and DCC (DSN), Jun. 2008.

[39] J.-B. Bréjon, K. Heydemann, E. Encrenaz, Q. Meunier, and S.-T. Vu,
“Fault attack vulnerability assessment of binary code,” in Proceedings
of the Sixth Workshop on Cryptography and Security in Computing
Systems. Valencia Spain: ACM, Jan. 2019.

[40] A. Gicquel, D. Hardy, K. Heydemann, and E. Rohou, “SAMVA: Static
Analysis for Multi-fault Attack Paths Determination,” in Constructive
Side-Channel Analysis and Secure Design (COSADE), 2023, pp. 3–22.

[41] D. Groβe, U. Kühne, and R. Drechsler, “HW/SW co-verification of
embedded systems using bounded model checking,” in Proceedings
of the 16th ACM Great Lakes Symposium on VLSI - GLSVLSI ’06.
Philadelphia, PA, USA: ACM Press, 2006.

[42] B. Schmidt, C. Villarraga, T. Fehmel, J. Bormann, M. Wedler,
M. Nguyen, D. Stoffel, and W. Kunz, “A New Formal Verification
Approach for Hardware-dependent Embedded System Software,” IPSJ
Transactions on System LSI Design Methodology, pp. 135–145, 2013.

109

https://cv32e40p.readthedocs.io/en/latest/
https://cv32e40p.readthedocs.io/en/latest/
https://ibex-core.readthedocs.io/en/latest/
https://ibex-core.readthedocs.io/en/latest/
https://github.com/lowRISC/ibex#configuration
https://github.com/lowRISC/ibex#configuration
https://github.com/kokke/tiny-AES-c

Formal Methods in Computer-Aided Design 2023

Sylvia: Countering the Path Explosion Problem in
the Symbolic Execution of Hardware Designs

Kaki Ryan
University of North Carolina

Chapel Hill, NC, USA
kakiryan@cs.unc.edu

Cynthia Sturton
University of North Carolina

Chapel Hill, NC, USA
csturton@cs.unc.edu

Abstract—Symbolic execution is a powerful verification tool for
hardware designs, in particular for security validation. However,
symbolic execution suffers from the path explosion problem in
which the number of paths to explore grows exponentially with
the number of branches in the design. We introduce a new
approach, piecewise composition, which leverages the modular
structure of hardware to transfer the work of path exploration
to SMT solvers. Piecewise composition works by recognizing that
independent parts of a design can each be explored once, and
the exploration reused. A hardware design with N independent
always blocks and at most b branch points per block will
require exploration of O(2bN) paths in a single clock cycle
with our approach compared to O(2bN) paths using traditional
symbolic execution.

We present Sylvia, a symbolic execution engine implementing
piecewise composition. The engine operates directly over RTL
without requiring translation to a netlist or software simulation.
We evaluate our tool on multiple open-source SoC and CPU
designs, including the OR1200 and PULPissimo RISC-V SoC.
The piecewise composition technique reduces the number of paths
explored by an order of magnitude and reduces the runtime by
97% compared to our baseline. Using 84 properties from the
security literature we find assertion violations in open-source
designs that traditional model checking and formal verification
tools do not find.

Index Terms—symbolic execution, verilog, register transfer
level, verification, formal methods, hardware security

I. INTRODUCTION

The verification of hardware designs is a key activity for
ensuring the correctness and security of a design early in the
hardware lifecycle. Current best practice includes assertion-
based verification (ABV) [17], which has simulation-based
testing as the underlying means of verification, and formal
verification techniques, an umbrella term encompassing many
techniques with the goal of proving a given property of a de-
sign. One technique that has gained recent attention, especially
in security verification applications, is symbolic execution [8],
[40], [44], [48]. In addition to finding property violations,
symbolic execution has been used to verify information-flow
properties [25] or to find hardware trojans [44].

Symbolic execution generalizes testing by replacing input
values with symbols, where each symbol represents the set of
possible values of the input parameter. A symbolic execution
engine drives symbolic execution using the semantics of the
program’s language, but updated to include symbols. As exe-
cution proceeds the symbols are used in place of literal values.
When a branch point, or control flow statement, is reached

(e.g., an if statement), both possible branches are explored
separately. The result of symbolically executing a design for
one clock cycle is a tree of paths, each one associated with
a unique path condition that describes the conditions satisfied
by branches taken along the path. Symbolic execution is often
used to find assertion violations. If any path is found to violate
a given assertion, then the associated path condition acts as
a precise description of the inputs that will drive (concrete)
execution along the same path. Concrete values that satisfy
the path condition are a counter-example to the assertion.

Unfortunately, symbolic execution suffers from the path
explosion problem: the number of paths grows exponentially
with the number of branch points in the design. Prior work
has sought to avoid the path explosion problem by combining
symbolic execution with model checking [6], concrete execu-
tion traces [40], or by limiting the use to small designs [42].

We introduce piecewise composition, a technique that lever-
ages the structure of hardware designs and the power of
satisfiability modulo theories (SMT) solving to reduce the
amount of repeated work. A single clock cycle of symbolic
execution produces a full tree of paths, where the root of the
tree is the initialized reset state and the leaves are realizable
design states in the next clock cycle. The inspiration behind
piecewise composition is the recognition that independent
parts of the design are being re-explored unnecessarily in each
root-to-leaf path. Instead, each independent block of logic can
be explored once, without consideration of the other blocks. To
reconstruct full root-to-leaf paths through the design, whether
for finding assertion failures, describing how information flows
through a design, or to generate testcases, the algorithm uses
SMT queries to combine the independently explored path
fragments.

Perhaps surprisingly, we show that with piecewise compo-
sition, a design with N always blocks, each with at most
b binary branch points, symbolic execution for a single clock
cycle requires exploring O(2bN) paths, instead of the O(2bN)
paths typical of standard symbolic execution. The number of
paths to explore grows exponentially with only the number of
branch points in any one independent block, and linearly with
the number of blocks.

Symbolic execution is closely related to symbolic simulation
[2] [3] [6]. In both, concrete input values are replaced with
symbolic values, representing any possible value, and the sym-
bolic values are allowed to propagate through the design. How-

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 19 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0009-0002-7764-5715
https://orcid.org/0000-0003-3930-7440
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_19
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_19
https://creativecommons.org/licenses/by/4.0/

ever, in symbolic simulation, the analysis is centered around
dataflow. At the end of a simulation run, each signal may hold
the value true, false, or a boolean expression characterizing
the entire circuit that drives that particular signal. Where
there are control points in the circuit, they are expressed as
if-then-else (ITE) statements in the boolean expression.
In symbolic execution, the analysis is centered around control
flow. At the end of one iteration of symbolic execution, each
signal holds a symbolic expression in a subset of first-order
logic that characterizes the particular path taken through the
register-transfer level (RTL) code. In addition, there is a path
condition that represents the conditions under which execution
would follow the particular path through the design.

In comparing symbolic simulation and symbolic execution,
there is a trade-off being made between the complexity of
queries sent to the SMT solver (symbolic simulation) and
the number of paths to explore (symbolic execution). With
piecewise composition, we examine a new point in the design
space, reducing the number of paths to explore to a tractable
amount, while still keeping SMT queries simple enough for
modern solvers. The result is a symbolic execution engine that
can handle large designs and operate directly over the register-
transfer level design. Sylvia targets the Verilog hardware
description language (HDL), however the approaches and
principles presented in this work are applicable to other HDLs.

This paper presents the following contributions:
1) Introduction and definition of piecewise composition, a

technique that leverages the modular nature of hardware
designs to counter the path explosion problem in sym-
bolic execution;

2) Design and implementation of Sylvia, a symbolic exe-
cution engine for Verilog RTL using piecewise compo-
sition;

3) Evaluation of piecewise composition and our implemen-
tation on five open-source designs, including an SoC and
two CPUs.

II. PRELIMINARIES

A. Example Verilog RTL Fragment

In the following discussion we will use the fragment of
Verilog shown in Figure 1. In this example, inpA and inpB
are input signals (along with clk), while all other named
variables are state-holding regs. We use the set V to denote
all design variables (regs, wires, etc.) other than clk. In
Figure 1, V = {inpA,inpB,g0,g1,y,z}.

B. Symbolic Execution

In symbolic execution [33], concrete values are replaced
with symbolic values. Each symbol represents an arbitrary,
but fixed, value of appropriate type. As execution proceeds,
the symbols are used in place of concrete values wherever
they occur. Variables may take on concrete values ({0,1}∗),
symbolic values (α , β , γ, . . .), or a symbolic expression (e),
which is an expression in a quantifier-free subset of first-order
logic that supports bitvector arithmetic, the standard Verilog
operators and the theory of equality. The symbolic execution

1 a lways @ (posedge c l k) b e g i n
2 i f (g0)
3 y <= inpA ; / / inpA i s an i n p u t s i g n a l
4 e l s e
5 y <= 0 ;
6 end
7

8 a lways @ (posedge c l k) b e g i n
9 i f (g1)

10 z <= inpB ; / / inpB i s an i n p u t s i g n a l
11 e l s e
12 z <= 0 ;
13 end

Fig. 1: Verilog RTL fragment with two branches.

engine (or just engine from now on) implements the semantics
of the RTL Verilog; there is no compilation down to a netlist.

We model the symbolic execution of a design as a transducer
SE = (RTL,Σ,Π,σ0,π0,E):

• RTL is the design, modeled as a partially ordered se-
quence of Verilog statements.

• Σ ⊂ 2V×E is the set of symbolic stores. Each symbolic
store σ ∈ Σ is a function mapping program variables in
V to symbolic expressions in E: σ : v → e.

• Π is the set of path conditions. A path condition π ∈ Π is
a boolean formula in the same subset of first of first-order
logic mentioned in the preceding paragraph. The path
condition is composed of symbolic and concrete literals,
which describe the conditions satisfied by branches taken
along the current path.

• σ0 is the initial symbolic store. All input variables other
than the clock are initialized with fresh symbols.

• π0 is the initial path condition, which is always initialized
to π0 = True.

• E ⊆ RTL×Σ×Π×RTL×Σ×Π is the transition relation
of the engine. Given the current RTL statement, symbolic
store, and path condition the engine updates the symbolic
store and path condition and moves to a next statement
to execute (at branch points there is more than one to
choose from).

To continue with our example, in the RTL fragment shown
in Figure 1, the symbolic store σ would maintain the values
of variables inpA, inpB, g0, g1, y, z. (In the following
discussion, we write out only the part of the symbolic store that
is relevant to the discussion.) Let the (partial) initial symbolic
store and path condition be:

σ0 = {inpA= α,g0= γ}, π0 = True

When a branching statement is reached (e.g., line 2 in
Figure 1), the engine uses the current path condition to decide
which path of execution to follow. If the engine has current
path condition π and is at a branch statement with the boolean
condition b, and if π → b, the then branch is taken and the

111

path condition is updated: π = π ∧ b. Otherwise, if π →¬b,
the else branch, if present, is taken and the path condition
is updated: π = π ∧¬b. If neither implication holds, then both
paths must be explored in turn. In our example, the engine
will explore the two paths from line 1 to line 6, resulting in
the following two symbolic stores and path conditions:

1) σ6 = {inpA= α,g0= γ,y= α}, π6 = True∧ γ == 1
2) σ6 = {inpA= α,g0= γ,y= 0}, π6 = True∧ γ == 0

This example is simple, but in practice, path conditions
quickly become complex, involving hundreds of terms and
complex constraints in the theories necessary to express all
Verilog operators.

At each branch point, the number of paths to explore
doubles. This is the path explosion problem, and the result is
that not all paths can feasibly be explored. Typically heuristics
are used to guide the exploration toward paths that will
maximize coverage or depth, or path-merging strategies are
used to reduce the number of paths at the expense of less
precise analysis [6], [18], [35].

C. Symbolic Execution Trees

A trace, τ , of symbolic execution is a sequence
of symbolic store and path condition pairs,
τ = ⟨(σ0,π0),(σi,πi),(σ j,π j), . . . ,(σn,πn)⟩, where the
subscripts indicate the line of code associated with the
symbolic state and path condition, and 0 < i < j < n.1 The
complete symbolic execution of the RTL produces a tree of
traces, T , as seen, for example, in Figure 2b. A path through
the tree from the root node to a leaf node is a symbolic
execution trace τ .

Each node (σi,πi) in the tree is associated with a line
of code in the RTL. More than one node in the tree will
be associated with the same line of code. For example, in
Figure 2b there are two distinct nodes associated with line
9, representing the two paths that can be taken to arrive at
that line. These two nodes will necessarily have unique path
conditions, the conjunction of which will be unsatisfiable.

D. Multiple Clock Cycles

The symbolic execution of a hardware design corresponds to
a single clock cycle. Every path through the tree from the root
node nr = (σ0,π0) to a leaf node nl = (σn,πn) corresponds to
a realizable step of the design from one state to the next. If nr
corresponds to a reachable state of the design (e.g., the reset
state) that can be reached in k clock cycles, then nl corresponds
to a reachable state of the design that can be reached in k+1
clock cycles. The path condition associated with a leaf node
nl can be viewed as a predicate describing the (concrete) input
values that would drive execution down the current path.

1The engine considers the subset of Verilog that uses only statically
bounded loops and unrolls loops before execution, so that the engine never
executes line i after line j, i < j.

(a) Control flow graph (b) Full tree of paths

(c) Trees of paths to be independently explored
under piecewise composition

Fig. 2: Piecewise Composition

E. Comparison with Symbolic Simulation

Symbolic simulation is a well-established technique in hard-
ware testing and verification [9], [10], [12], [13], [34], [37].
Conceptually, symbolic simulation and symbolic execution are
closely related. In both, symbols are used in place of concrete
values for input or state variables. The symbolic values prop-
agate as execution proceeds, and variables in the design take
on symbolic expressions as values. Both techniques generalize
testing, symbolic execution in the software domain [33], and
symbolic simulation in the hardware domain [43].

A key difference in the two techniques, however, is in how
branch points are handled. In symbolic execution, execution
proceeds separately down each path following the branch
point, with the path condition π keeping track of the conditions
associated with the current path of execution. In symbolic
simulation, however, there is no notion of separate paths and
there is no path condition. Instead, branch points are captured
as conditional assignments to variables. For example, for the
code in Figure 1, as before, the value of y at the end of
symbolically simulating the code fragment would be2:

y := ite(γ,α,0)
:= (γ ∧α)∨ (¬γ ∧0)
:= γ ∧α

The value of each output variable is a symbolic expression
capturing the complete dataflow path from the inputs. How-
ever, without the separation of paths, the symbolic expression
for variables becomes complex; this complexity is the limiting
factor for symbolic simulation and is managed by initializing
control variables to concrete values, a reasonable constraint for
many functional verification tasks (e.g., [31]). For example, g0
would be given a concrete value, rather than the symbolic γ .

2ite is the if-then-else operator.

112

In contrast, symbolic execution separates paths and uses
the path condition to store the constraints along the current
path. As a result, control signals can by made symbolic
without adding complexity to the symbolic expressions for
each variable. Symbolic control signals allow for verifying a
series of control-flow dependent properties without modifying
the verification environment. For example, in our evaluation,
the same environment set-up was used to verify all properties
of a given design: the design was started in its initialized
state, all input variables were made symbolic, and the desired
property was checked.

While the limiting metric for symbolic simulation is the
complexity of each variable’s symbolic expression, the limiting
metric for symbolic execution is the number of paths to
explore. In this paper we present a technique to reduce the
number of explorations needed.

F. Comparison with Bounded Model Checking

In bounded model checking the initial state of the system
and the transition relation of the system are formally defined
in a logic system, typically a subset of first-order logic [14],
[15]. The reachable states of the system are computed up to
a bound and checked against a desired property. Techniques
such as IC3 [26] can allow for unbounded proofs of a property.

Prior work has reported that symbolic execution is at times
able to find security property violations that model checking
does not (see Section VI). In addition, in recent years, the
hardware security community has turned its attention to ana-
lyzing how information flows through a design [4], [27], [29].
Doing so requires reasoning about hyperproperties [16], which
requires self-composition in model checking [24], adding to
the complexity of the verification task.

Symbolic execution, on the other hand, is suited to
information-flow analysis, as the symbolic state σ and path
condition π provide precise tracking of information flow from
reset to the current execution point. A number of recent
papers have explored the use of symbolic execution to analyze
information flow through a hardware design [6], [25], [41].

G. Symbolic Simulation, Model Checking, Symbolic Execution

We do not advocate replacing either symbolic simulation
or model checking with symbolic execution. Rather, it has
become clear in recent years that symbolic execution is a
valuable tool to add to the formal verification toolbox, es-
pecially when it comes to security verification tasks [6], [21],
[25], [40]. We present an algorithmic technique to improve the
performance of symbolic execution for hardware designs.

III. PIECEWISE COMPOSITION

In conventional symbolic execution, each line of code is
potentially visited multiple times, once for each path explored.
Our approach is to aggressively decompose the design into in-
dependent blocks, symbolically explore each block once, then
use an SMT solver to compose path conditions and symbolic
stores from each block. This strategy is made possible by
the inherent modular nature of hardware designs, and lets us

leverage the relative speed of modern SMT solvers compared
to the cost of symbolically executing lines of code.

While the number of paths in the full symbolic execution
tree is exponential in the number of branches in the design,
the engine explores a number of paths exponential in only
the number of branches in any single independent block and
polynomial in the number of blocks.

A. Motivating Example

Figure 1 shows a snippet with two always blocks and
branch points at lines 2 and 9. The corresponding control
flow graph with an arbitrary ordering of the always blocks
is given in Figure 2a, and the tree of paths through the
design is given in Figure 2b. With conventional symbolic
execution, each of the four root-to-leaf paths in Figure 2b is
symbolically executed. This is the strategy taken by current
approaches (e.g., [8], [25], [48]) that translate a hardware
design into a C++ representation and then use the KLEE
symbolic execution engine [11]. The two subtrees rooted at
a node labeled 9 represent repeated work. For each subtree,
the symbolic execution engine is exploring the same paths
through the block starting at line 9.

The branching condition and assignments in lines 2–5 are
independent of the branching condition and assignments in
lines 9–12. Regardless of which path is taken at the first branch
(line 2), the symbolic execution starting at the second branch
point (line 9) will produce the same sub-tree. The feasibility
of the second condition will be the same, and updates to the
symbolic state will be the same. For example, let the initial
symbolic store and path condition be:

σ0 = {inpA= α,g0= γ0,inpB= β ,g1= γ1}
π0 = True.

After symbolically executing the path in which both
branches are taken (nodes ⟨2,3,9,10⟩ in the symbolic exe-
cution tree), the symbolic store and path condition would be:

σ2,3,9,10 =

{inpA= α,g0= γ0,inpB= β ,g1= γ1,y := α,z := β}
π2,3,9,10 = γ0 ∧ γ1.

Whereas, for the path in which the first branch is not taken,
but the second one is (⟨2,5,9,10⟩), the symbolic store and
path condition would be:

σ2,5,9,10 =

{inpA= α,g0= γ0,inpB= β ,g1= γ1,y := 0,z := β}
π2,5,9,10 = ¬γ0 ∧ γ1.

In both paths, the updates to z are the same, despite the
different updates to y.

B. Piecewise Composition

With piecewise composition, the engine explores indepen-
dent blocks of the RTL separately, producing independent
trees of path fragments. In the above example, piecewise
composition results in the two trees shown in Figure 2c.

113

The engine now explores the second if-else block only
once. Continuing with our example, piecewise composition
will separately explore the two always blocks, producing the
following four path fragments with associated path conditions
and (partial) symbolic stores:

⟨2,3⟩ : σ2,3 = {y := α}, π2,3 = γ0

⟨2,5⟩ : σ2,5 = {y := 0}, π2,5 = ¬γ0

⟨9,10⟩ : σ9,10 = {z := β}, π9,10 = γ1

⟨9,12⟩ : σ9,12 = {z := 0}, π9,12 = ¬γ1

To find full paths through the design and to successfully
find assertion violations, all realizable combinations of path
fragments are composed with the help of an SMT solver. For
example, to realize path ⟨2,5,9,10⟩, the engine queries the
SMT solver to find whether the two path fragments, ⟨2,5⟩
and ⟨9,10⟩ can be joined: isSAT(y= 0∧¬γ0∧y= β ∧γ1). In
this simple example, all four combinations of path fragments
are possible, but in general that will not always be the case.

Piecewise composition will ultimately be constructing the
same path conditions as conventional symbolic execution. The
difference is in repeated work during the path exploration.
Looking again at Figure 2c, The conventional approach will
execute the following paths and their corresponding lines of
code: ⟨2,3,9,10⟩, ⟨2,3,9,12⟩, ⟨2,5,9,10⟩, ⟨2,5,9,12⟩. Lines
2-3, 2-5, 9-10 and 9-12 are all explored twice. Piecewise
composition will explore the following path fragments and cor-
responding lines of code, each only once: ⟨2,3⟩, ⟨2,5⟩, ⟨9,10⟩,
⟨9,12⟩. With this small example, piecewise composition is able
to cut the path exploration workload in half. As the size of the
design grows, the number of paths to explore with piecewise
composition will be exponential only in terms of the number
of branch points in a given always block and linear in the
number of always blocks. We examine this more closely in
the complexity analysis in Section III-D.

A conventional symbolic execution engine will query the
SMT solver at branch 9 twice, once for path ⟨2,3,9⟩ and once
for path ⟨2,5,9⟩. These queries are checking for feasibility
of the branching condition at line 9 in the RTL. Piecewise
composition will only query the solver for the branch on
line 9 once. Piecewise composition will then require queries
for all four complete paths through the design: ⟨2,3,9,10⟩,
⟨2,3,9,12⟩, ⟨2,5,9,10⟩, ⟨2,5,9,12⟩. These queries are ensur-
ing that the accumulated path conditions are satisfiable and the
execution path is realizable. In this small example, we do not
reduce our SMT solving workload, but as the design becomes
more complex piecewise composition yields a slight reduction
in queries performed as we reduce the amount of redundant
branch points explored. We evaluate the impact of piecewise
composition both on lines of code explored and SMT queries
in Section VI.

C. Comparison with Backtracking and Caching

Piecewise composition shares some similarities with back-
tracking and caching, two techniques often used in software
symbolic execution engines (e.g., KLEE [11], Angr [32]). But,

there are key differences. Backtracking reduces repeated work
by maintaining state at each point in a path and allowing
two paths with a shared prefix to reuse the saved state. For
example, If path ⟨2,3,9,10⟩ has been explored, then when
the engine explores path ⟨2,3,9,12⟩, backtracking allows the
engine to reuse the saved state at point 9 and continue ex-
ploration from there. Backtracking prevents re-exploring path
⟨2,3⟩ for each of ⟨9,10⟩ and ⟨9,12⟩; piecewise composition
also prevents this re-exploration. However, with backtracking,
paths ⟨9,10⟩ and ⟨9,12⟩ will be re-explored to create the paths
starting with prefix ⟨2,5⟩; this re-exploration is prevented by
piecewise composition.

Caching queries reduces the time spent in the SMT solver
by reusing the results from prior queries. Caching queries is
a technique orthogonal to piecewise composition. Using the
two techniques together could further reduce runtime.

D. Complexity Analysis

We separately compute the lines of code visited by the
engine during symbolic execution and the number of queries
to the solver for both the baseline implementation and the
implementation that uses piecewise composition to develop a
theoretical understanding of the benefits of piecewise compo-
sition.

We perform the analysis with the following Verilog design
parameters and assumptions:

• b: The maximum number of branch points in any one
always block. All branch points are assumed to have at
most two branches. Case statements can be rewritten to
use only 2-branch conditionals.

• N: The number of sequential-logic always blocks.
• c: The maximum number of lines of code after any branch

point until either the next branch point or an exit point.
In other words, the maximum number of lines of code in
any basic block.

• Assumption 1: We assume that all loops are unrolled.
• Assumption 2: We approximate combinational logic with

a fixed constant for both the baseline and piecewise com-
position approaches. We do this because the piecewise
composition technique is only applicable to sequential
always blocks. The underlying implementation strat-
egy used by Sylvia to ensure clock-cycle accuracy with
combinational logic statements results in each block of
combinational logic being executed twice per clock cycle
in the worst case (see Section IV-A for more details).

When we use the baseline approach, the symbolic execution
of a design is represented by a single binary tree (as in
Figure 2b). To simplify the analysis, we assume a perfect
binary tree in which every interior node has two children and
all leaf nodes are at the same level. This assumption only holds
in practice if every branch point in the code is reachable along
every path, which in general is not the case. Our analysis,
therefore, provides a loose upper bound on complexity; a
tighter bound may be possible.

114

When we use piecewise composition, the symbolic execu-
tion of a design is represented by N binary trees, one for each
sequential-logic always block (as in Figure 2c).

1) Baseline: Lines of Code Symbolically Executed
Every node in the tree is visited once per path it belongs

to.

bN(2bN)︸ ︷︷ ︸
(a)

+cbN(2bN)︸ ︷︷ ︸
(b)

(1)

(a) Visit and execute each branch point (bN) once per path
it is part of (2bN)

(b) Visit and execute the c lines of code in the basic block of
either the right or left branch for each branch point (bN),
once per path (2bN).

The time complexity for executing the design symbolically
using the baseline implementation is O(cbN2bN). As the
design size grows, the number of lines of code explored is
growing exponentially with bN, the total number of branch
points in the entire design.

2) Baseline: SMT Queries
Every branching node in the tree generates one query per

visit, and is visited once per path it belongs to.

bN(2bN)︸ ︷︷ ︸
(a)

(2)

(a) Visit each branch point (bN) once per path (2bN) it is part
of, and each visit generates one query.

The time complexity for querying the SMT solver under the
baseline implementation is O(bN2bN).

3) Piecewise Composition: Lines of Code Symbolically Ex-
ecuted

Every node in every tree is visited once per path it belongs
to.

bN(2b)︸ ︷︷ ︸
(a)

+cbN(2b)︸ ︷︷ ︸
(b)

(3)

(a) For each tree (N), visit and execute each branch point (b)
once per path it is part of (2b)

(b) For each tree (N), visit and execute the c lines of code in
the basic block of either the right or left branch for each
branch point (b), once per path (2b).

The time complexity for executing the design symbolically
using piecewise composition is O(cbN2b). Compared with
the baseline implementation, piecewise composition drops the
exponential factor N and explores each unique path fragment
once.

4) Piecewise Composition: SMT Queries
In addition to the queries for each branching node visited,

one query is generated for every combination of paths, one
from each tree, in order to recreate the full root-to-leaf paths.

bN(2b)︸ ︷︷ ︸
(a)

+(2b)N︸ ︷︷ ︸
(b)

(4)

(a) For each tree (N), visit each branch point (b) once per
path it is part of, and each visit generates one query.

(b) Generating each path through the full design requires one
query. Each of N trees has 2b paths, and all combinations
need to be combined.

The time complexity for querying the SMT solver using
piecewise composition is O(2bN). In the limit, there is a slight
advantage in the number of SMT queries compared to the
baseline implementation, and in practice we do see less time
spent in the solver (see Figure 3).

IV. A SYMBOLIC EXECUTION ENGINE WITH PIECEWISE
COMPOSITION

We introduce Sylvia, a symbolic execution engine im-
plementing piecewise composition. Importantly, Sylvia op-
erates directly over the Verilog RTL without translating to
C or compiling down to the netlist. This allows for greater
human-readability of any found assertion violations. Sylvia
is cycle accurate. We assume no combinational latches, no
asynchronous resets, and always blocks are conditioned on
input clocks. These assumptions are in keeping with prior work
in this area [6].

The core data structures Sylvia builds and uses are the
Verilog AST and control-flow graphs (CFG). Sylvia constructs
one CFG per always block. The symbolic execution trees
described in the preceding sections are useful as a conceptual
model of symbolic execution, but in practice the engine
executes over the basic blocks of statements that are collected
in each CFG. A single execution path in Sylvia is encoded as
a combination of individual paths through the set of CFGs.

The engine achieves piecewise composition by decomposing
a design into partitions: one partition to contain all com-
binational logic in the design, one partition for all register
declarations, and a set of N partitions, one per always
block, to handle the sequential logic in the design. Each
partition is symbolically explored once per clock cycle, with
the exception of the combinational logic partition, discussed
next in Section IV-A.

Each of the N sequential always block partitions are
explored independently of the other always blocks, and the
exploration produces a set of path fragments. The complete ex-
ploration of the full design produces N sets, one per always
block. The set of full root-to-leaf symbolic execution paths
through the design is formed by taking the cross-product of
the N sets of path fragments. The SMT solver is used to ensure
only those combinations that are sound – that correspond to
true paths through the design – are kept.

A. Combinational Logic

The engine will check for any combinational latches, and
if any appear, will exit with an error. Otherwise, Sylvia first
symbolically executes each statement in the combinational

115

logic partition and then begins to execute the control flow
paths through each always block. As each always block is
executed the engine keeps track of a dirty bit for each signal,
which gets set to 1 when the signal is updated within that
particular clock cycle. The intuition here is that if one of
the combinational logic dependencies becomes dirty during
the symbolic execution of the always block, we need to
re-evaluate the corresponding combinational assign. Once
a path has been completed, every assign statement in the
combinational logic partition for which the right-hand side
involves a dirty signal is re-evaluated. In the worst case, this
means each statement in the combinational logic partition
may be symbolically executed twice. During this re-evaluation,
the engine continues to track when signals become dirty and
propagate updates as needed to ensure clock-cycle accuracy.

B. Sequential Logic

Each sequential always block is explored independently.
This approach is sound if the always blocks are truly
independent – the path condition and symbolic state of the
various paths through one block are the same regardless of
the paths taken through other blocks. In the following we
discuss the issue of independence in more detail. Consider
two sequential always blocks, B0 and B1, both triggered on
the same edge of the input clock signal.

1) Independence
In the simplest case, none of the variables that appear in B0

appear in B1. The two blocks are independent and, within a
single clock cycle, the execution of one block has no bearing
on the execution of the second block. The two blocks can
be explored separately and their paths can be composed in
any order. This case is rare, however, as an input reset signal
typically appears in all or most blocks.

2) Read-read dependence
In the next case, the same variable may appear in a branch

condition or right-hand side of an assignment in both B0
and B1. The two blocks can still be explored separately and
their paths can be composed in any order. However, some
combinations of paths may not be feasible, as variables that
appear in branch conditions in both blocks, say b0 and b1,
respectively, will preclude the combination of paths from B0
in which b0 holds with paths from B1 in which b1 holds when
b0 ∧b1 is unsatisfiable.

3) Read-write dependence
In the next case, a variable may appear in a branch condition

or on the right-hand side of an assignment in B0 and on the
left-hand side of an assignment in B1. When non-blocking
assignments are used, updates to variables in B1 take effect in
the next clock-cycle, whereas reads and conditional branches
in B0 use values set in the previous clock cycle. The symbolic
execution engine keeps the appropriate value and there is no
conflict. The two blocks can be explored separately and their
paths can be composed in any order. Sylvia does not support
the use of blocking assignments within sequential always
blocks.

4) Write-write dependence
In the final case, variables appear on the left-hand side of an

assignment in both always blocks. This violates best practice
in Verilog design. The symbolic execution engine will check
for any instances of write-write dependence, and if any appear
will exit with an error.

C. Further Optimizations

1) Repeat Submodules
When the modules are duplicate instantiations of the same

module there is room for reduction in the total search space.
The idea is similar in spirit to piecewise composition; the
engine explores each submodule once for each path. Then
instead of re-exploring again for each repeat instantiation, the
engine merges in the symbolic store and path condition for
the given root-to-leaf path using SMT queries.

2) Cone of Influence Analysis
This optimization prunes the exploration space at the block

level. The symbolic execution engine will read in the expres-
sions supplied in the assertions, perform a dependency analysis
over the signals in the assertions and then complete an AST
traversal to determine which blocks read from or write to the
signals of interest or their dependencies. After this initial pass,
the engine will only explore blocks that involve the signals of
interest or their dependencies.

V. IMPLEMENTATION

Sylvia3 is built in python 3.8 and implements the Verilog
semantics according to the IEEE 1364-2005 standard. We use
the pyVerilog library to build the Verilog AST, networkX to
manage graph search and traversal, and the Z3 python API
for SMT solving. The engine reads in a design, including the
assertions written according to the SystemVerilog 1800-2017
standard, and outputs replayable counterexamples.

VI. EVALUATION

We evaluate Sylvia over five open-source designs to study
its viability as a platform for the verification of hardware
designs. Our evaluation considers the following questions:
1) How well does piecewise composition counter the path
explosion problem? 2) What effect do piecewise composition
and the optimizations described in Section IV-C have on
performance? 3) Does our engine produce assertion violations
with replayable counter-examples for vulnerable designs?

A. Dataset and Experimental Setup

We collected five designs and 84 security critical assertions.
The first three designs and associated assertions came from the
Security Property/Rule Database available on TrustHub [22],
[23]. These are an enhanced version of the Serial Peripheral
Interface available on Motorola’s MC68HC11 family of CPUs;
openMSP430, a synthesizable 16-bit microcontroller core
compatible with Texas Instruments’ MSP430 microcontroller
family; and a CrypTech True Random Number Generator

3Sylvia is fully open-source and can be accessed at https://github.com/
kakiryan/Sylvia

116

https://github.com/kakiryan/Sylvia
https://github.com/kakiryan/Sylvia

(TRNG). For each of these designs, the database included 9,
2, and 2 security properties, respectively.

The fourth design is the buggy PULPissimo SoC used
in a recent Hack@DAC competition [1]. Using the English
description of the properties, as well as the walkthrough of
the test-case generation in the RTL-ConTest paper [40] we
developed 26 assertions for use with our tool.

The fifth design is the OR1200 processor core. We
collected 30 security-critical bugs from two prior papers,
SPECS [28] and SCIFinder [49] and 70 security assertions
from SPECS [28], Security Checkers [7], SCIFinder [49], and
Transys [50].

The experiments are performed on a machine with an Intel
Xeon E5-2620 V3 12-core CPU (2.40GHz, a dual-socket
server) and 62G of available RAM.

B. Mitigation of Path Explosion

For each design we compare the average number of lines of
code and branch points visited to find an assertion violation
both with and without piecewise composition. Table I has the
results. The number of paths in a design will not change,
but the amount of work to realize a path does. Piecewise
composition reduces the number of lines of code visited (i.e.,
reduces redundant visits to the same line of code) by 92%–
99% and branch points visited by 64%–99%.

To gain a more complete picture, we symbolically explore
all paths through the small MC68HC11 SPI. This design has
15 always blocks and 1459 possible paths. These results
are reported in Table II. Without piecewise composition more
than 90k lines of code and more than 7k branch points are
explored. With piecewise composition, the engine needs to
explore roughly only 7% of those 90k lines of code and only
4% of those 7k branch points.

The benefits of piecewise composition come from the pres-
ence of composable always blocks. We report on the number
and dependency type (Section IV-B) of these structures in our
benchmarks in Table III. As expected, all always blocks
have at most read-write dependencies, allowing them to be
composed.

C. Effects of Optimizations

Figure 3 shows the impact of piecewise composition on
the average number of SMT queries and average time spent
in the SMT solver for each design. One concern might be
that the win in minimizing redundant explorations comes at
the expense of exploding SMT solver work. However, the
opposite occurs. Reducing the number of paths explored also
reduces the number of queries to the solver overall; remember
that during exploration, the solver is queried at each branch
point. With piecewise composition turned on there was an 18%
decrease, on average, in the number of SMT queries and a 21%
decrease in the amount of time spent solving.

In Table IV we measure runtime for four cases: Baseline,
with no optimizations enabled; Piecewise, with piecewise
composition enabled, Repeat, with repeated modules explored
only once; and COI, with cone-of-influence analysis completed

(a) Solver Time

(b) SMT Queries

Fig. 3: Effects of Optimizations on Solver Time and Number
of SMT Queries

before exploration. Each case is cumulative, for example, in
the Repeat case, the Piecewise optimization is enabled as well.
For each design we take the average when looking for each
assertion. For all but the smallest design, Baseline could not
reliably complete exploration within 30 minutes at which point
we stopped searching. Table IV shows the results. Overall, the
optimizations decrease the engine’s runtime by 95-99%.

D. Finding Assertion Violations

To evaluate the engine’s ability to find assertion violations,
we run a set of experiments in which we have ground-truth
knowledge of the (minimum) number of violations in each
design. In these experiments, symbolic execution begins in
the reset state with all input signals made symbolic, and
execution continues until an assertion violation is found. All
counterexamples generated by our engine were successfully
replayed in simulation starting from the reset state using
Vivado. Table V summarizes the results.

The engine finds 25 of the 31 bugs in the Hack@DAC SoC.
The organizers of Hack@DAC report finding 6 and 15 bugs
using the commercial tools Cadence SPV and Cadence FPV,
respectively [1]. The engine finds 29 of the 30 bugs in the
OR1200. The bug missed does not a have a property in our
dataset that covered it.

117

Design Baseline Piecewise Composition Percent Decrease

LoC branch points LoC branch points LoC branch points
explored explored explored explored explored explored

OR1200 54018 7803 881 45 98% 99%
Hack@DAC 493032 15093 3525 276 99% 98%
MC68HC11 SPI 2093 158 174 57 92% 64%
openMSP430 15293 377 489 68 97% 82%
CrypTech TRNG 8930 421 336 91 96% 78%

TABLE I: Average Impact of Piecewise Composition on Path Explosion

Configuration LoC branch points paths
explored explored completed

Baseline 90706 7380 1459
Piecewise Composition 6783 323 1459

TABLE II: Full Exploration of MC68HC11 SPI Design

The engine is consistently able to find vulnerabilities that
both commercial and open-source model checking tools are
unable to find. Table VI summarizes how Cadence and Sym-
biYosys [2], a symbolic model checking engine built on top
of Yosys, fared in finding the same known vulnerabilities.4

At the time of writing we don’t know why the model
checking tools were unable to find all the assertion violations
and further investigation is warranted. We do not believe
that it is the result of a theoretical limitation of bounded
model checking or the strength of the algorithms used by
the underlying proof engines. More likely, our hypothesis
is that there are some abstractions introduced to manage
complexity that cause the property violations to be missed.
The properties we are searching for are specifying system level
behavior and in some cases have been automatically generated.
The complexity inherent to these types of security properties
compared to typical functional correctness properties may
make it more difficult for a traditional formal verification
approach like model checking to find the violations.

We set the bound for the model checking tools to be 5
clock cycles over the minimum bounds needed to find the
violation, and let the tools run to completion. Our results align
with results reported by the authors of performing comparable
experiments [40] [48] and [19] and match those of the authors
of the TrustHub designs and properties that we were using for
evaluation.

We demonstrate how our approach allows search to scale
more efficiently over multiple clock cycles compared to Sym-
biYosys in Figure 4. We take the MSP430 design and embed
properties into the design that require an increasing number
of cycles to produce a counterexample. SymbiYosys begins by
outperforming our tool in terms of speed – it takes Symbiyosys
under half a second to complete 4 cycles while we take around
3 seconds. As the complexity of the search space grows,
piecewise composition scales more manageably.

4The numbers in the Cadence column are pulled from the literature [1],
[23], [40], [48]. Our license does not allow for head-to-head comparisons.

Fig. 4: Scaling Search Over Multiple Cycles

E. Comparison to Current State of the Art

Coppelia is a tool that performs symbolic execution over
the C++ model of a Verilog hardware design. In comparison
to Coppelia [48], we see significant performance gains. On
average, Coppelia takes 4 minutes and 12 seconds to find
the same known security vulnerabilities in the OR1200 that
our tool is able to find in 25.22 seconds. The authors report
that most (62%) of exploits in their experiments are generated
within 15 minutes. However, several (7%) are found within 2–
4 hours. Symbolic execution with piecewise composition, by
contrast, finds the same 7% of exploits in under two minutes.

The authors of RTLConTest [40], a concolic execution
engine, report that it takes around an hour and 40 minutes
to complete on the PULPissimo SoC, which is a modified
version of the HACK@DAC 2018 design. Once they perform
the concolic execution and generate the tests, it takes 10
seconds on average to produce a counterexample. They find
14 out of the 31 bugs while our engine is able to find 25.
Our tool performs the complete end-to-end symbolic execution
workflow to generate counterexamples in 81.83 seconds, on
average.

VII. RELATED WORK

Symbolic Simulation Of the papers presented in Sec-
tion II-E, we note the early work implementing symbolic
simulation at the RT level [34] that introduces a path-merging
approach for handling and mitigating the complex queries
characteristic of symbolic simulation. A more recent project
is the Rosette/Racket solver-aided programming platform [45],

118

Design LoC Always Blocks Branch Points % Independent % Read-Read % Read-Write % Composable

OR1200 30611 405 976 6.81% 40.98% 52.21% 100%
Hack@DAC 96444 650 4452 12.89% 42.33% 44.78% 100%
MC68HC11 SPI 527 14 43 21.45% 34.89% 44.66% 100%
openMSP430 9154 144 316 15.34% 27.27% 57.39% 100%
CrypTech TRNG 5926 54 309 8.21% 32.31% 59.48% 100%

TABLE III: Logical Structure of Benchmarks

Design Baseline Piecewise Redund COI Overall

runtime runtime % dec runtime % dec runtime % dec % dec
(sec) (sec) (sec) (sec)

OR1200 timeout (1800) 52.47 97.08% 37.56 21.31% 25.22 12.56% 98.60%
Hack@DAC timeout (1800) 174.24 90.32% 121.94 28.34% 81.83 16.62% 95.45%
MC68HC11 962 17.53 98.18% 14.30 19.93% 0.07 99.19% 99.99%
openMSP430 timeout (1800) 37.65 97.91% 23.14 38.55% 0.73 96.83% 99.96%
CrypTech TRNG timeout (1800) 14.92 99.17% 12.08 19.15% 0.09 99.19% 99.99%

TABLE IV: Average Effect of Optimizations on Runtime

Design # Bugs # Bugs
Found

Avg
Time
(sec)

Max
Clock
Cycles
Taken

Hack@DAC 31 25 81.83 4
OR1200 30 29 25.22 5
MC68HC11 9 9 0.07 3
openMSP430 2 2 0.73 2

TABLE V: Finding Known Bugs: Runtime Performance

Design # Bugs Our
Engine

Cadence SymbiYosys

OR1200 30 29 18 18
Hack@DAC 31 25 21 16
MC68HC11 9 9 8 5
openMSP430 2 2 2 1

TABLE VI: Finding Known Bugs: Comparison to Model
Checking

whose use is demonstrated for verification in Notary [5]. Both
works, like all symbolic simulation, merge symbolic states
after each branch point, and require constraining the control-
flow with concrete inputs to manage expression complexity.

Model Checking As discussed in Section II-F, model
checking is a mature tool widely used in industry and research.
SymbiYosys [2] is a formal verification engine for Verilog that
operates at the netlist level. We compare to this tool in our
evaluation (Section VI). Symbolic Quick Error Detection [20],
[38] is a technique involving self-consistency checks that has
been used to find bugs in open-source RISC-V processors and
uses the CoSA model checker [39].

Symbolic and Concolic Execution Symbolic execution and
the related technique of concolic execution are emerging from
the academic research community as useful techniques for the
security verification of hardware designs [8], [25], [40], [47],

[48]. However, many of these papers rely on first translating
Verilog to C++ and using KLEE [11], a tool written for, and
fine-tuned for, the symbolic execution of software programs.

Fuzzing Fuzzing has also been shown to be a useful
technique for finding security vulnerabilities in SoCs and CPU
designs. RFUZZ is a coverage-directed fuzz tester for circuits
that presents a hardware-specific coverage metric called mux
control coverage [36]. DifuzzRTL is an RTL fuzzing tool used
to find unknown security bugs that measures coverage based
on control registers rather than multiplexors’ control signals to
improve efficiency and scalability [30]. A recently developed
Hardware Fuzzing Pipeline translates the RTL to a software
model to improve scalability in bug finding via fuzzing [46].

VIII. CONCLUSION

We have presented piecewise composition, a technique for
countering the path explosion problem in symbolic execution.
We implemented Sylvia, a symbolic execution engine using
the technique and evaluated the engine on five open-source
designs. The engine reduces redundant work by 98%–99%
compared to conventional symbolic execution, improves over-
all performance and successfully finds assertion violations.

IX. ACKNOWLEDGMENTS

We would like to thank Sayak Ray and the anonymous
reviewers for their insightful comments and suggestions. This
material is based upon work supported by the National Science
Foundation under Grant No. CNS-1816637 and Grant No.
CNS-2247754, and by a Meta Security Research Award.
Any opinions, findings, conclusions, and recommendations
expressed in this paper are solely those of the authors.

REFERENCES

[1] “Hack@DAC 2018 SoC,” https://github.com/seth-lab-tamu/
hackdac-2018-soc, accessed: 2022-02-15.

[2] “SymbiYosys,” https://github.com/YosysHQ/sby, accessed: 2022-11-21.
[3] “Voss II,” https://github.com/TeamVoss/VossII, accessed: 2022-11-21.

119

https://github.com/seth-lab-tamu/hackdac-2018-soc
https://github.com/seth-lab-tamu/hackdac-2018-soc
https://github.com/YosysHQ/sby
https://github.com/TeamVoss/VossII

[4] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register Transfer
Level information Flow Tracking for Provably Secure Hardware De-
sign,” in DATE, 2017, pp. 1691–1696.

[5] A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, and N. Zeldovich,
“Notary: A Device for Secure Transaction Approval,” in 27th
Symposium on Operating Systems Principles (SOSP). New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3341301.3359661

[6] A. Athalye, M. F. Kaashoek, and N. Zeldovich, “Verifying Hardware
Security Modules with Information-Preserving Refinement,” in OSDI.
USENIX Association, 2022.

[7] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Security Checkers:
Detecting processor malicious inclusions at runtime,” in HOST, 2011.

[8] N. Bruns, V. Herdt, and R. Drechsler, “Processor Verification using
Symbolic Execution: A RISC-V Case-Study,” 2023. [Online]. Available:
https://agra.informatik.uni-bremen.de/doc/konf/2023 DATE NB.pdf

[9] R. E. Bryant, “Symbolic Simulation—Techniques and Applications,”
in Proceedings of the 27th ACM/IEEE Design Automation Conference,
ser. DAC ’90. New York, NY, USA: Association for Computing
Machinery, 1991, p. 517–521. [Online]. Available: https://doi.org/10.
1145/123186.128296

[10] R. E. Bryant, D. L. Beatty, and C.-J. H. Seger, “Formal Hardware
Verification by Symbolic Ternary Trajectory Evaluation,” in ACM/IEEE
DAC, 1991.

[11] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems
Programs.” in OSDI, vol. 8, 2008, pp. 209–224.

[12] S. Chakraborty, Z. Khasidashvili, C.-J. H. Seger, R. Gajavelly, T. Hal-
dankar, D. Chhatani, and R. Mistry, “Symbolic Trajectory Evaluation for
Word-Level Verification: Theory and Implementation,” Form. Methods
Syst. Des., vol. 50, no. 2–3, p. 317–352, Jun. 2017.

[13] K. Claessen and J.-W. Roorda, “An Introduction to Symbolic Trajectory
Evaluation,” in Formal Methods for Hardware Verification, M. Bernardo
and A. Cimatti, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 56–77.

[14] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking
Using Satisfiability Solving,” vol. 19, no. 1, p. 7–34, 2001.

[15] E. M. Clarke, “Model Checking,” in Foundations of Software Technology
and Theoretical Computer Science, S. Ramesh and G. Sivakumar, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 54–56.

[16] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” J. Comput.
Secur., vol. 18, no. 6, pp. 1157–1210, Sep. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1891823.1891830

[17] C. N. Coelho and H. D. Foster, Assertion-Based Verification. Boston,
MA: Springer US, 2004, pp. 167–204.

[18] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on Firmware:
Finding Vulnerabilities in Embedded Systems Using Symbolic Execu-
tion,” in USENIX Security Symposium, 2013.

[19] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi, H. Khattri,
J. M. Fung, A.-R. Sadeghi, and J. Rajendran, “HardFails: Insights
into Software-Exploitable Hardware Bugs,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 213–230. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/dessouky

[20] M. R. Fadiheh, J. Urdahl, S. S. Nuthakki, S. Mitra, C. Barrett, D. Stoffel,
and W. Kunz, “Symbolic Quick Error Detection Using Symbolic Initial
State for Pre-Silicon Verification,” in Design, Automation & Test in
Europe (DATE), 2018, pp. 55–60.

[21] M. R. Fadiheh, A. Wezel, J. Muller, J. Bormann, S. Ray,
J. M. Fung, S. Mitra, D. Stoffel, and W. Kunz, “An Exhaustive
Approach to Detecting Transient Execution Side Channels in
RTL Designs of Processors,” IEEE Transactions on Computers,
vol. 72, no. 1, pp. 222–235, jan 2023. [Online]. Available:
https://doi.org/10.1109%2Ftc.2022.3152666

[22] N. Farzana, F. Farahmandi, and M. M. Tehranipoor, “SoC Security
Properties and Rules,” IACR Cryptol. ePrint Arch., vol. 2021, p. 1014,
2021.

[23] N. Farzana, F. Rahman, M. Tehranipoor, and F. Farahmandi, “SoC Secu-
rity Verification using Property Checking,” in 2019 IEEE International
Test Conference (ITC), 2019, pp. 1–10.

[24] B. Finkbeiner, M. N. Rabe, and C. Sánchez, “Algorithms for Model
Checking HyperLTL and HyperCTL,” in Computer Aided Verification,
D. Kroening and C. S. Păsăreanu, Eds. Cham: Springer International
Publishing, 2015, pp. 30–48.

[25] F. Fowze, M. Choudhury, and D. Forte, “EISec: Exhaustive Information
Flow Security of Hardware Intellectual Property Utilizing Symbolic
Execution,” in Asian Hardware Oriented Security and Trust Symposium
(AsianHOST). IEEE Xplore, 2022.

[26] A. Goel and K. Sakallah, “Model Checking of Verilog RTL Using
IC3 with Syntax-Guided Abstraction,” in NASA Formal Methods, J. M.
Badger and K. Y. Rozier, Eds. Cham: Springer International Publishing,
2019, pp. 166–185.

[27] M. Goli and R. Drechsler, “VIP-VP: Early Validation of SoCs Infor-
mation Flow Policies using SystemC-based Virtual Prototypes,” in 2021
Forum on specification & Design Languages (FDL), 2021, pp. 1–8.

[28] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “SPECS: A
Lightweight Runtime Mechanism for Protecting Software from Security-
Critical Processor Bugs,” in ASPLOS, ser. ASPLOS ’15. New York,
NY, USA: ACM, 2015, p. 517–529.

[29] W. Hu, A. Ardeshiricham, M. S. Gobulukoglu, X. Wang, and R. Kastner,
“Property Specific Information Flow Analysis for Hardware Security
Verification,” in ICCAD, ser. ICCAD ’18. New York, NY, USA:
Association for Computing Machinery, 2018.

[30] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “DifuzzRTL:
Differential Fuzz Testing to Find CPU Bugs,” in 42nd IEEE S&P. IEEE,
2021, pp. 1286–1303.

[31] R. Kaivola and N. B. Kama, “Timed Causal Fanin Analysis for
Symbolic Circuit Simulation,” in Formal Methods in Computer-
Aided Design (FMCAD), 2022, pp. 99–107. [Online]. Available:
https://repositum.tuwien.at/handle/20.500.12708/81329

[32] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K. Cha,
“Testing Intermediate Representations for Binary Analysis,” in Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2017. IEEE Press, 2017, p. 353–364.

[33] J. C. King, “Symbolic Execution and Program Testing,” Commun. ACM,
vol. 19, no. 7, p. 385–394, Jul. 1976.

[34] A. Kölbl, J. Kukula, and R. Damiano, “Symbolic RTL Simulation,”
in Proceedings of the 38th Design Automation Conference (IEEE Cat.
No.01CH37232), 2001, pp. 47–52.

[35] S. Krishnamoorthy, M. S. Hsiao, and L. Lingappan, “Tackling the Path
Explosion Problem in Symbolic Execution-Driven Test Generation for
Programs,” in 2010 19th IEEE Asian Test Symposium, 2010, pp. 59–64.

[36] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “RFUZZ:
Coverage-Directed Fuzz Testing of RTL on FPGAs,” in ICAAD, 2018,
pp. 1–8.

[37] W. K. Lam, Hardware Design Verification: Simulation and Formal
Method-Based Approaches (Prentice Hall Modern Semiconductor De-
sign Series). USA: Prentice Hall PTR, 2005.

[38] F. Lonsing, K. Ganesan, M. Mann, S. S. Nuthakki, E. Singh, M. Srouji,
Y. Yang, S. Mitra, and C. Barrett, “Unlocking the Power of Formal
Hardware Verification with CoSA and Symbolic QED: Invited Paper,” in
2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2019, pp. 1–8.

[39] C. Mattarei, M. Mann, C. Barrett, R. G. Daly, D. Huff, and P. Hanrahan,
“CoSA: Integrated Verification for Agile Hardware Design,” in 2018
Formal Methods in Computer Aided Design (FMCAD), 2018, pp. 1–5.

[40] X. Meng, S. Kundu, A. K. Kanuparthi, and K. Basu, “RTL-ConTest:
Concolic Testing on RTL for Detecting Security Vulnerabilities,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 3, pp. 466–477, 2022.

[41] N. Moroze, A. Athalye, M. F. Kaashoek, and N. Zeldovich, “rtlv:
push-button verification of software on hardware,” in Workshop on
Computer Architecture Research with RISC-V (CARRV), 2021. [Online].
Available: https://vm-web.pdos.csail.mit.edu/papers/rtlv:carrv21.pdf

[42] R. Mukherjee, D. Kroening, and T. Melham, “Hardware Verification
Using Software Analyzers,” in 2015 IEEE Computer Society Annual
Symposium on VLSI, 2015, pp. 7–12.

[43] C.-J. H. Seger and R. E. Bryant, “Formal Verification by Symbolic
Evaluation of Partially-Ordered Trajectories,” Formal Methods in
System Design, vol. 6, no. 2, p. 147–189, Mar 1995. [Online].
Available: https://doi.org/10.1007/BF01383966

[44] L. Shen, D. Mu, G. Cao, M. Qin, J. Blackstone, and R. Kastner,
“Symbolic Execution Based Test-patterns Generation Algorithm for
Hardware Trojan Detection,” Comput. Secur., vol. 78, pp. 267–280,
2018.

[45] E. Torlak and R. Bodik, “A lightweight symbolic virtual machine
for solver-aided host languages,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and

120

https://doi.org/10.1145/3341301.3359661
https://agra.informatik.uni-bremen.de/doc/konf/2023_DATE_NB.pdf
https://doi.org/10.1145/123186.128296
https://doi.org/10.1145/123186.128296
http://dl.acm.org/citation.cfm?id=1891823.1891830
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://doi.org/10.1109%2Ftc.2022.3152666
https://repositum.tuwien.at/handle/20.500.12708/81329
https://vm-web.pdos.csail.mit.edu/papers/rtlv:carrv21.pdf
https://doi.org/10.1007/BF01383966

Implementation, ser. PLDI ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 530–541. [Online]. Available:
https://doi.org/10.1145/2594291.2594340

[46] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo, and
M. Hicks, “Fuzzing Hardware Like Software,” in USENIX ’22). Boston,
MA: USENIX Association, Aug. 2022, pp. 3237–3254.

[47] H. Witharana, Y. Lyu, and P. Mishra, “Directed Test Generation for
Activation of Security Assertions in RTL Models,” ACM Trans. Des.
Autom. Electron. Syst., vol. 26, no. 4, jan 2021.

[48] R. Zhang, C. Deutschbein, P. Huang, and C. Sturton, “End-to-End

Automated Exploit Generation for Validating the Security of Processor
Designs,” in Proceedings of the International Symposium on Microar-
chitecture (MICRO). IEEE/ACM, 2018.

[49] R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton, “Identifying
Security Critical Properties for the Dynamic Verification of a Processor,”
in ASPLOS, ser. ASPLOS ’17. New York, NY, USA: ACM, 2017, p.
541–554.

[50] R. Zhang and C. Sturton, “Transys: Leveraging Common Security
Properties Across Hardware Designs,” in Proceedings of the Symposium
on Security and Privacy (S&P). IEEE, 2020.

121

https://doi.org/10.1145/2594291.2594340

Formal Methods in Computer-Aided Design 2023

Binary Decision Diagrams on Modern Hardware
Samuel Pastva and Thomas Henzinger

Institute of Science and Technology Austria
Klosterneuburg, 3400 Austria

Email: samuel.pastva@ist.ac.at,tah@ist.ac.at

Abstract—Binary decision diagrams (BDDs) are one of the
fundamental data structures in formal methods and computer
science in general. However, the performance of BDD-based
algorithms greatly depends on memory latency due to the reliance
on large hash tables and thus, by extension, on the speed
of random memory access. This hinders the full utilisation of
resources available on modern CPUs, since the absolute memory
latency has not improved significantly for at least a decade.

In this paper, we explore several implementation techniques
that improve the performance of BDD manipulation either
through enhanced memory locality or by partially eliminating
random memory access. On a benchmark suite of 600+ BDDs
derived from real-world applications, we demonstrate runtime
that is comparable or better than parallelising the same opera-
tions on eight CPU cores.

Index Terms—binary decision diagram, symbolic algorithm,
hash table, cache.

I. INTRODUCTION

Binary decision diagrams (BDDs) [9] (or more specifically,
reduced ordered binary decision diagrams (ROBDDs)) are one
of the fundamental data structures in computer science. They
are directed acyclic graphs representing Boolean functions,
often exponentially more succinct compared to Boolean ex-
pressions or function tables [34].

They have a wide range of applications in formal verifica-
tion [1], [10], [12], [14], [20], [43], satisfiability checking [22],
[24], hardware design [26], [27], [44], test design [37], di-
alectical frameworks [16], and optimisation [7]. They are the
building blocks for the so-called symbolic algorithms that
are, among other applications, used for exploration of large
graphs suffering from exponential state-space blow-up [3],
[5], [6], [28], [45]. Many extensions of BDDs exist that
attempt to improve their succinctness, typically at the cost
of more complex manipulation algorithms. One example are
zero-suppressed decision diagrams [32], but a more exhaustive
summary of known BDD variants can be found in [2].

There are implementations of BDDs that rely on shared-
memory [41] and distributed-memory [35] parallelism, exter-
nal memory [38] and even GPUs [42]. Furthermore, variable
ordering within the BDD has a strong impact on its succinct-
ness and has been an intense subject of optimisation [18], [21].

In this paper, we tackle another important aspect of BDD
implementation. In general, it is known that operations on
BDDs are bottlenecked by memory latency due to their
extensive use of large hash tables [8].

This is an unfortunate bottleneck on modern hardware, since
the absolute memory latency has not improved for at least the

last 15 years [13]. Memory capacity, memory bandwidth, the
number of CPU cores, as well as their width and frequency
has grown significantly. However, the memory latency on a
CPU bought today (i.e. 2023) is essentially the same as on
the one bought in 2006 [13].

In this paper, we demonstrate that as a result, a modern CPU
(2020) is in fact worse at BDD manipulation compared to its
legacy (2014) counterpart once the problem size grows beyond
the last-level cache (typically L3 cache). To address this
problem, we propose an alternative data structure that replaces
one of the underlying hash tables (node uniqueness table). We
also devise additional criteria to reduce the amount of memory
accesses performed during BDD manipulation. In the end,
we observe that our approach to BDD manipulation indeed
improves the performance on a modern CPU significantly, to
an extent comparable with parallelisation on 8 CPU cores.

Finally, note that this is not the first attempt to design
a more cache friendly BDD implementation. In [15], the
authors propose to use a more cache-friendly hashing scheme
called Hopscotch hashing. However, the paper also proposes
fundamentally different BDD manipulation algorithms (based
on BFS, not DFS), incorporates parallelism, a novel GC
algorithm, and a number of other experimental optimizations.
The work demonstrates an improvement over existing BDD
packages, but does not show whether the improvement is due
to improved cache friendliness or due to the fundamentally
different algorithm. Meanwhile, [29] proposes to order the
BDD nodes chronologically: i.e. the BDD node must appear in
memory after both of its child nodes (this is trivially satisfied
by the DFS post-order in which nodes are typically generated).
This assumption then partially eliminates memory lookups that
would be necessary with arbitrary node order. An improvement
in runtime is demonstrated, but we are not aware of any
modern work that uses this technique (the original paper is
now 25 years old). Furthermore, we are not aware of any
work that would directly measure the extent to which BDD
operations are bottlenecked by memory or attempt to control
for this aspect in the measurements.

A. Paper structure

First, Section II recalls the definition of ROBDDs and of
the APPLY algorithm which ROBDDs use to perform logical
transformations. Section III then describes our benchmark
scenario involving a modern and a legacy CPU, together with
the set of tested BDD operations and packages.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 20 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_20
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_20
https://creativecommons.org/licenses/by/4.0/

v2

v3v3

10

a1

a3a2

fA = v2 ⇔ v3

v1

v2

10

b1

b2

fB = v1 ∨ v2

a1, b1

a1,1a1, b2

a2,1 a3,1a2,0

0,1 1,1

A×∧ B

v1

v2v2

v3v3

10

fC = fA ∧ fB

Fig. 1. Illustration of ROBDDs over the set V = {v1, v2, v3}. Solid edges represent the high successor while dashed edges represent the low successor. Left
to right: ROBDDs of two simple functions fA = v2 ⇔ v3 and fB = v1 ∨ v2. The product graph for the operation APPLY∧(a1, b1). The resulting ROBDD
for the function fC = fA ∧ fB .

Subsequently, Section IV-A demonstrates that for suffi-
ciently large problem instances, the performance of a typical
BDD package is in fact worse on the modern CPU. In
Section IV-B, we then observe that BDD nodes with in-degree
one are significantly over-represented in a typical BDD.

Using this observation, we define a new node table with
improved memory locality (Section IV-C) and formulate a
simple rule that eliminates a portion of redundant accesses
to the operations cache (Section IV-D). Finally, we test the
performance of this new approach in Section IV-E.

Due to the nature of this work, we also provide a repro-
ducibility artefact1 which contains all benchmark data and
code, as well as the raw results for each experiment. To keep
the main paper concise, some of the more low-level parts of the
methodology and results are only available within the artefact.

II. PRELIMINARIES

Since there are already many excellent texts describing
BDDs in detail, we only introduce the terminology and no-
tation relevant for this paper. An interested reader is further
referred for example to Chapter 7 of [14].

Notation: We assume V is a finite set of Boolean variable
symbols. We also use 1 and 0 interchangeably with true and
false when appropriate.

A. Binary decision diagrams

A binary decision diagram (BDD) B is a directed acyclic
graph with a single root node (denoted root(B)) and two
terminal nodes 0 and 1. We write B to mean either the
BDD itself or the set of its nodes when the distinction is
clear from context. Each non-terminal node x ∈ B is labelled
with a variable var(x) ∈ V . Furthermore, each such x ∈ B
has exactly two successor nodes denoted low(x) and high(x)
(corresponding to the choice of var(x) = 0 and var(x) = 1
respectively). A simple example is given in Fig. 1, left.

We assign a Boolean function fx : {0, 1}V → {0, 1} to each
x ∈ B s.t. fx = (var(x)∧fhigh(x))∨(¬var(x)∧flow(x)), with
f0 = false and f1 = true . In other words, every valuation of

1https://doi.org/10.5281/zenodo.7958052

variables from V determines a path from x to either 0 or 1,
corresponding to the output of the function fx.

Now, let us assume there is some total ordering on the
variables V . We say that a BDD B is ordered (OBDD) when
var(low(x)) > var(x) and var(high(x)) > var(x) for every
non-terminal x ∈ B (we also assume var(0) and var(1) are
values greater than any v ∈ V). For example, in Fig. 1, the
variable ordering is v1 < v2 < v3.

Finally, we say that B is reduced (ROBDD) when: (a) there
is no vertex x such that low(x) = high(x), and (b) there are
no two vertices x and y such that var(x) = var(y), low(x) =
low(y), and high(x) = high(y). These two requirements can
be also interpreted as “reduction rules” that describe how to
transform an OBDD into an ROBDD. In the following, we
assume all BDDs are ordered and reduced, we thus use the
terms BDD and ROBDD interchangeably.

B. The APPLY algorithm

Given a fixed ordering of variables V , each Boolean function
f : {0, 1}V → {0, 1} has a unique corresponding ROBDD [9].
We also have an algorithm that, given two ROBDDs A and
B, computes ROBDD C of the function fC = fA ⋆ fB where
⋆ is some binary Boolean operator. In the worst case, this
APPLY algorithm operates in O(|A| · |B|) time. However, the
complexity for practical BDDs is typically much smaller than
this upper bound.

In Algorithm 1, we give a recursive formulation of this
APPLY procedure. In practice, one often replaces the recursion
with a loop and an explicit stack to avoid overflow and
to eliminate function call overhead. The APPLY algorithm
also relies on two core data structures which are typically
implemented using hash tables.

First is the node table (also called unique table) accessed
using the ENSURE NODE(v, l, h) procedure. This function
searches the node table for a node x with var(x) = v,
low(x) = l, and high(x) = h. If such node is found, its
identifier x is returned. When no such node exists, a new node
is created and its identifier is returned.

Second is the cache table responsible for memorisation of
already computed results. This table is often implemented as a

123

https://doi.org/10.5281/zenodo.7958052

1 Function APPLY⋆(xA ∈ A, xB ∈ B)
2 if xA ⋆ xB ∈ {0,1} then return xA ⋆ xB ;
3 if let xC ← CACHE(xA, xB) then return xC ;
4 v ← min(var(xA), var(xB));
5 (lA, hA)← (xA, xA);
6 if v = var(xA) then
7 (lA, hA)← (low(xA), high(xA));
8 (lB , hB)← (xB , xB);
9 if v = var(xB) then

10 (lB , hB)← (low(xB), high(xB));
11 l← APPLY⋆(lA, lB);
12 h← APPLY⋆(hA, hB);
13 xC ← ENSURE NODE(v, l, h) if l ̸= h else l;
14 CACHE(xA, xB)← xC ;
15 return xC ;

Algorithm 1: BDD APPLY algorithm parametrised by a
binary Boolean operator ⋆.

leaky hash table which overwrites values when hash collision
occurs. Such implementation is correct (if a value is missing,
it is simply recomputed), but depending on the number of
collisions, it may exceed the O(|A| · |B|) time complexity.
This introduces a possible trade-off between running time and
memory consumption.

Finally, let us observe that for every operation
APPLY⋆(root(A), root(B)), there is a tighter complexity
metric given by the number of unique (xA, xB) pairs
reachable from (root(A), root(B)) by APPLY⋆. We call this
set of tuples the product graph of APPLY⋆(root(A), root(B))
and denote it A×⋆B. Note that the size of this product graph
depends on ⋆, because some operations can short-circuit the
condition on Line 2 even when one of the arguments is not
a terminal node (e.g. xA ∧ 0 = 0). We then observe that the
complexity of the APPLY algorithm is c · |A ×⋆ B| for some
constant c, assuming the calls to CACHE and ENSURE NODE
are O(1) and that CACHE is not leaky. Observe that for the
example in Fig. 1, we have |A| · |B| = 20, but |A×∧ B| = 8.

III. BENCHMARK METHODOLOGY AND HARDWARE

Due to the practical nature of this paper, we must thoroughly
disclose what benchmarks are performed and how we measure
the performance of BDD packages on our hardware.

A. Benchmark BDDs

Many authors test the performance of BDDs on pathological
worst case scenarios like the multiplier circuit or the n-queens
problem [11], [33]. While this certainly reveals some perfor-
mance characteristics of the implementation, it is susceptible
to over-fitting of a particular pattern of BDD operations. To
mitigate this issue, we derive a large benchmark dataset based
on real-world problems from model verification in systems
biology, scaling from simple BDDs to millions of nodes.

Specifically, we use the tool AEON [4] which performs
exhaustive formal analysis of Boolean networks, simple logical
models of asynchronous biological processes. We then take

the 20 largest models from the Biodivine Boolean Models
(BBM) dataset [36], ranging from 100 to 300 variables (and
consequently, 2100−300 states).

We use AEON to compute the BDD representations of
a set of network fixed-points and a set of reachable states
based on a predefined initial state for each model. These are
tasks that are also commonly performed by formal methods
tools in computer science and are not specific to Boolean
networks or systems biology. For each computation, we save
every intermediate BDD smaller than ten million nodes into
a separate file. If two different BDDs of equivalent size are
encountered, we only retain the latest BDD. This generates a
large dataset of realistic BDDs of increasing size.

Now, our goal is to define a set of benchmarks which cover
the space of admissible BDD operations over these real-world
BDDs as uniformly as possible. Each BDD B can be assigned
a bucket b(B) = log10(|B|) (the “order of magnitude” of the
size of B). We then sample pairs of BDDs A, B (w.l.o.g.
we assume |A| ≥ |B|) and compute the BDD C = A ∧ B.
Such benchmark triple (A,B,C) is then assigned into a bucket
triple (b(A), b(B), b(C)). For each bucket triple, we save the
first five unique benchmarks. The sampling stops once no new
viable benchmark is found in the last 100 samples.

In our case, this process yields 629 benchmark instances
using 963 unique BDDs. The final number of triples for each
combination of buckets is summarized in Fig. 2. While the re-
sult does not cover every theoretically admissible combination
of BDD sizes, it still covers a wide range of possible BDD op-
erations. When presenting results for individual benchmarks,
these are typically sorted by the size of the product graph
A ×∧ B, as this gives a good approximation of the expected
complexity of the BDD operation.

Finally, note that for the sake of simplicity, our tests only
cover the conjunction (∧) operator. However, we have no
reason to believe that there are significant differences in
performance compared to other Boolean operators once the
size of the product graph is taken into account. As such, we
prioritize a wider coverage of different BDD sizes to testing
more Boolean operators.

B. Hardware configuration
To compare “modern” and “legacy” CPUs, we consider the

following two platforms:
• 4-core Intel i7-4790 (released in 2014) with 32GB of

DDR3-1600 memory at CAS latency of 9 cycles.
• 8-core AMD Ryzen 5800X (year 2020) with 128GB of

DDR4-3200 memory at CAS latency of 18 cycles.
These are both very common CPUs from their respective

generations. They are paired with the maximum amount of
memory available on that platform at the top speed officially
supported by the manufacturer2. Furthermore, notice that the

2The data rate is maximal supported on both CPUs. However, in terms
of latency, the DDR3 configuration is slightly worse than the best official
JEDEC configuration (9 cycles instead of 8 for DDR3-1600), while the DDR4
configuration is slightly better than the best official JEDEC configuration (18
cycles instead of 20 for DDR4-3200). Hence the modern system even has a
small advantage compared to the officially claimed “best” configurations.

124

|A| |B| |A ∧B|
101 102 103 104 105 106 107 108 109

101 101 5 5 − − − − − − −
102 101 1 5 5 − − − − − −
102 102 0 5 5 5 − − − − −
103 101 0 0 5 5 − − − − −
103 102 5 0 5 5 1 − − − −
103 103 5 0 5 5 0 0 − − −
104 101 0 0 1 5 5 − − − −
104 102 4 0 5 5 5 1 − − −
104 103 5 0 5 5 4 0 0 − −
104 104 5 0 5 5 5 3 0 0 −
105 101 0 0 0 0 5 4 − − −
105 102 0 0 5 5 5 5 1 − −
105 103 5 0 5 5 5 5 0 0 −
105 104 5 0 5 5 5 5 4 0 0
105 105 5 0 2 5 5 5 5 1 0
106 101 0 0 0 0 5 5 5 − −
106 102 1 0 5 5 5 5 5 0 −
106 103 5 0 5 5 5 5 4 1 0
106 104 5 0 5 5 5 5 5 0 0
106 105 5 0 1 5 5 5 5 1 1
106 106 5 0 4 4 5 5 5 5 0
107 101 0 0 0 0 0 1 5 2 −
107 102 5 0 5 5 5 5 5 0 0
107 103 5 0 5 5 5 5 5 1 1
107 104 5 0 5 5 5 5 5 1 1
107 105 5 0 0 5 5 5 5 5 0
107 106 5 0 0 0 5 5 5 5 5
107 107 5 0 0 1 3 5 5 5 5

Fig. 2. The distribution of the 629 benchmarks within buckets of exponentially
increasing size. Dashes indicate combinations that are provably impossible.

effective latency of both memory configurations is the same:
the DDR4 configuration has twice the CAS latency, but also
twice the data rate of the DDR3 configuration3.

All automated overclocking features were disabled on both
CPUs to improve consistency between runs and we did not
observe any thermal throttling. Furthermore, we assume that
no other programs were using a significant amount of re-
sources during measurements. This is critical due to the fact
that multiple CPU cores compete for the shared L3 cache.

Finally, as a sanity check, some tests were also repeated on a
similar server hardware (Intel Xeon E7-8860; released in 2011,
and AMD EPYC 7713; released in 2021) yielding comparable
results. However, since we did not have exclusive access to
these machines and thus could not prevent measurement noise
caused by sharing resources with other software, we focus on
the numbers obtained for the “desktop” platforms.

C. BDD packages and the benchmark harness

Our implementation is built using the Rust programming
language. In several instances, we use unsafe operations in
Rust to remove unnecessary array bounds check in the core
algorithm. Aside from these instances, the memory safety of
the implementation has been validated by the Rust compiler.
Testing was performed using Debian 12 with gcc 12.2.0

3Currently, the fastest officially supported memory configuration in con-
sumer CPUs is roughly DDR5-5600 CL32 (faster configurations do exist but
require CPU overclocking and are typically not feasible with high amounts
of memory). Unfortunately, we did not have access to such configuration.
However, its effective latency is again very similar to our tested scenarios.

and rustc 1.71.0. Each measurement was performed over
at least three runs. When we observed standard deviation
higher than 5% of the average, we repeated the experiment
up to ten times to improve reliability. However, this was only
rarely necessary. Due to this low run-to-run variance, we only
report the average runtime for each experiment.

Aside from our purpose-built implementation, we consider
the following three BDD packages:

• cudd 3.0 [39] as one of the best known BDD pack-
ages. While originally designed over 25 years ago, CUDD
is still one of the most widely used BDD packages.

• sylvan [41] is one of the first BDD packages to demon-
strate practical multi-core scalability. When presenting
results, we suffix its name with the number of employed
cores (e.g. sylvan-4).

• lib-bdd of the tool AEON [4] is an example of a
“naive” BDD implementation: it uses hash tables pro-
vided by Rust’s standard library and generally does not
implement any advanced features like variable reordering.

To compare performance, we focus on individual BDD
operations, i.e. on the individual runs of the APPLY algorithm
with the conjunction (∧) operator. For each package we
prepared a test harness where the runtime of the operation
is isolated from other overhead such as package initialization
and loading of test BDDs into memory. Where applicable, we
disable garbage collection or dynamic variable reordering, as
it is not relevant for our testing.

Furthermore, the performance of BDD packages often
strongly depends on the initial size of the node and cache
table [40]. While the packages can grow these data structures
dynamically, the combination of the problem size and the
growth rate can influence runtime significantly [40].

To reduce the impact of this variable on the final runtime,
we allow each package to pre-allocate as much memory as
possible during initialization (not counted towards the total
runtime)4. While this can impact performance on smaller
BDDs, it seems necessary to allow each package to reach its
full potential on larger benchmarks and is outright mandatory
in some instances.5 Furthermore, this models the situation
where our single benchmarked BDD operation is part of a
larger symbolic computation which amortizes the allocation
of the necessary data structures across many operations.

Finally, when reporting the average value for additive
metrics (like runtime), this stands for the standard arithmetic
mean. Meanwhile, for multiplicative metrics (like speed-up),
this corresponds to the geometric mean which is more appro-
priate in such instances. We also use internal CPU performance
counters to measure executed instructions per clock and L3

4Package lib-bdd cannot perform any pre-allocation and thus its memory
allocation counts towards the total runtime. Also note that while each package
is allowed to reserve and initialize as much memory as needed, it can still
choose to initially use a smaller portion and grow the hash tables gradually.
In particular, sylvan grows the hash table utilization gradually, while cudd
always uses the whole table from the start.

5In cudd, the growth is extremely slow beyond the first few gigabytes of
memory, making it practically unusable unless we explicitly override the table
sizes to reserve as much memory as necessary beforehand.

125

APPLY product graph |A×∧ B|
lib-bdd ■ / cudd ▲ / sylvan-1 •

sp
ee

d-
up

on
m

od
er

n
C

PU

104 105 106 107 108 109
1
4×

1
2×

1×

2×

4×

Fig. 3. The speed-up in runtime of the modern vs. the legacy system. Speed-
up greater than 4× is truncated to 4×. Points below the red line represent
slow-down instead of speed-up. Points to the right of the vertical line represent
200 largest benchmark instances. Note that both axis are logarithmic.

cache miss ratio. However, their usage has negligible impact
on runtime.6

IV. ALGORITHMS AND RESULTS

We structure this section as follows: First, we present
several empirical findings about BDDs and the current APPLY
implementations. Based on these findings, we then propose
a variant of the node and cache table which should help
improve performance on modern CPUs. Finally, we evaluate
these claims empirically on our benchmark dataset.

A. Comparing modern and legacy systems

While it is generally known that the performance of BDD
operations is bottlenecked by the memory latency, it is useful
to demonstrate the extent of this problem. To do so, we
benchmarked each BDD package on both the legacy and
the modern system, calculating the relative speed-up achieved
by the modern system. Note that for this test, we used the
same pre-allocation settings on both systems and excluded six
benchmarks that we could not reliably complete on the legacy
system due to insufficient memory. The results of this analysis
are presented in Fig. 3.

If we consider the full benchmark suite, the results appear
to be largely positive: For lib-bdd and sylvan-1, two
packages that gradually increase their table sizes with bench-
mark size, we see 1.52× and 1.78× average improvement,
respectively. Only for cudd, which was instructed to use the
maximal table size for each benchmark due to issues with
table growth, we actually observe a slow-down of 0.69×.
However, once we focus on the 200 largest benchmarks, every
package is actually slower compared to the legacy system: a
lib-bdd operation is 0.88× slower on a modern system,

6Performance counters are thread-local and thus could not be reliably used
for the multithreaded BDD package sylvan, even with one worker.

cudd operation is 0.77× slower, and a sylvan-1 operation
is even 0.61× slower.

From Fig. 3, it is clear that small benchmarks benefit the
most from the modern CPU (except for cudd), which aligns
with our assumption that additional L3 cache on the modern
CPU improves BDD performance. In case of cudd, the reason
for the poor performance on the smaller problem instances is
the table growth setting: When the hash tables grow gradually,
they maintain high density and thus utilise the available cache
lines well. However, when the table is set to its maximal size
from the start, it is very sparse for small problems. As such,
each cache line will typically store only one element, making
it much less effective. Intuitively, for this cudd configuration,
every benchmark behaves like a “large” benchmark and it
further amplifies the difference in practical latency of the
modern and legacy system.

Also note that the relatively good results of lib-bdd
compared to the other packages can be primarily attributed
to its naive architecture: Each BDD operation in lib-bdd
performs more instructions to accomplish the same task com-
pared to the other packages (evidence for this is given in
the subsequent text), which leaves the CPU more headroom
for optimization and reordering while waiting for memory. In
other words, lib-bdd achieves the best speed-up on large
problems because it is the slowest, most inefficient package
with the most space to improve.

To support these claims experimentally, we use CPU per-
formance counters to measure the number of CPU cycles, ex-
ecuted instructions, L3 cache references and L3 cache misses
for each benchmark. Interestingly, both cudd and lib-bdd
seem to perform approx. 22 L3 cache references for each node
of the APPLY product graph on average. This number is also
independent on the size of the product graph. Similarly, the
absolute number of executed instructions per product graph
node is also largely constant, but here cudd is consistently
almost 2× better than lib-bdd. Both implementations thus
perform as expected: their complexity in terms of instructions
is in fact c · |A×∧ B|, with ccudd < clib-bdd.

However, for the 200 largest problem instances, the average
IPC (instructions per cycle) of both implementations is very
low: 0.35 for cudd and 0.85 for lib-bdd7. This is because
both implementations miss almost 40% of the L3 cache
requests while an L3 cache reference occurs on average every
14 (cudd) and 32 (lib-bdd) instructions.

In theory, the modern CPU can achieve up to 4 IPC,
and we actually observed 3.49 IPC on some small problem
instances. At the same time, the worst IPC observed on the
large benchmarks was just 0.18. Intuitively, this means that
for the larger problem instances, the CPU is utilizing less
than 10% of its available compute resources. Furthermore, the
results indicate that any speed-up between the modern and the
legacy system occurs for problem instances that fit into (or are
close to) the available L3 cache.

7Note that higher IPC generally does not guarantee higher performance.
While lib-bdd achieves higher IPC, it also performs more instructions and
is overall 0.84× slower than cudd in these tests.

126

1 2 3 4 ≥ 5

0

0.2

0.4

0.6

0.8

1

vertex in-degree

fr
ac

tio
n

of
al

l
ve

rt
ic

es

Fig. 4. The in-degree distribution within the BDDs of our benchmark dataset
larger than 1000 nodes. Each box plot summarises the proportion of vertices
with the corresponding in-degree across all available benchmark BDDs. Last
box plot covers all in-degrees greater than or equal to five.

B. In-degree distribution in BDDs

Next we state a very simple but powerful observation: Due
to each non-terminal node having exactly two outgoing edges,
a BDD B has 2·(|B|−2) edges. Furthermore, each node aside
from root has at least one incoming edge. As such, for every
node with in-degree k > 2, we expect to have k − 2 nodes
with only one incoming edge. This leads us to an intuitive
hypothesis that single-parent nodes are greatly overrepresented
among BDD nodes.

We can easily verify that this property holds in our bench-
mark dataset. In Fig. 4, we show the portion of nodes for
individual in-degrees, cutting off at ≥ 5 incoming edges. As
expected, our observations strongly resemble an exponential
distribution: if we draw a random BDD node, there is roughly
a 70% chance the node has a single parent, 20% chance it has
two parents, 3% chance of it having three parents, and so on.

C. Parent-local node table design

We can now use the previous claim to design a new node
table which is simpler and more cache friendly than current
implementations. For simplicity, we assume that the node table
stores entries in a continuous array, with new entries simply
added to the end of the node list. This mirrors the assumption
form [29], but as we later show, the node ordering is not a strict
requirement for our approach. To resolve an ENSURE NODE
query, each node maintains a pointer structure akin to a prefix
trie consisting of a subset of its parent nodes.

We know that due to the in-degree distribution, the vast
majority of such tries will only store a handful of elements.
Furthermore, due to the recursive nature of APPLY, whenever
ENSURE NODE(v, l, h) is executed, it is likely that the entries
for nodes l and h are still in the CPU cache.

The pseudocode for this approach is given in Algorithm 2.
Here, CREATE allocates a new table slot for the given node
and returns the slot identifier. MSB stands for most significant
bit, and ROTATE ONE is a simple single-bit left rotation. Ex-
pression node(t) is a shorthand for (var(t), low(t), high(t)).

Finally, for each node x, we introduce three additional
identifiers which are all initialised to nil and stored together

1 Function ENSURE NODE(v, l, h)
2 (cmax, cmin)← (max(l, h),min(l, h));
3 hash← HASH(v, cmin);
4 t← parent(cmax);
5 if t is nil then
6 x← CREATE(v, l, h);
7 parent(cmax)← x;
8 return x;
9 loop

10 if (v, l, h) = node(t) then return t;
11 msb← MSB(hash) ; // msb ∈ {0, 1}
12 hash← ROTATE ONE(hash);
13 if nextmsb(t) is nil then
14 x← CREATE(v, l, h);
15 nextmsb(t)← x;
16 return x;
17 else
18 t← nextmsb(t);

Algorithm 2: The ENSURE NODE procedure that resolves
node duplicates through a parent-local trie.

with the node data in the node table: parent(x), next0(x),
and next1(x). Here, parent(x) is the reference to the root
of the prefix trie. This trie then references all nodes where x
is the maximal child (see Lines 2-4). Subsequently, next0(x)
and next1(x) reference the “successor” nodes within the trie.
Which successor is taken depends on the MSB prefix of the
node hash (see Lines 11-12).

We’d like to highlight several properties of Algorithm 2:
• We choose cmax to store the node because it avoids ter-

minal nodes, which typically have very high in-degrees.
However, other suitable conditions could be considered,
as long as they only depend on the values (v, l, h).

• We do not include cmax in the node hash. Furthermore,
the hash need not be truncated to a specific node table
length, which further simplifies the hash function8.

• Consequently, our HASH function is a simple multiplica-
tive hash (v xor cmin)·p where p is a large prime number
and the multiplication is natively truncated to 64 bits.

• If the table grows such that it needs to be completely re-
allocated, the existing nodes can be simply copied: there
is no need to relocate nodes or recompute hashes.

To test the viability of this approach in practice, we prepare
a simple benchmark that recreates all of our test BDDs one-
by-one: first in a standard hash map with quadratic probing
and a fast industry-standard hash function, and then in our
parent-local node table. The nodes are created in DFS post-
order, i.e. in the same order as within the APPLY algorithm.
Averaging all BDDs, the parent-local table is 2.38× faster.
However, on BDDs with at least one million nodes, the parent-

8Note that internally, a x mod y operation (except for x mod 2k)
translates to division, which is still a relatively costly operation even on
modern CPUs. A single division instruction may require as many CPU cycles
as the whole ENSURE NODE method if the required data is present in cache.

127

local approach is even 4.08× faster than the standard hash
table, with an L3 cache miss rate of just 18% vs. 27% for the
standard hash table. Keep in mind that these results do not
account for the rest of the APPLY algorithm. We will revisit
this aspect in further experiments.

D. Excluding single-parent tasks from CACHE

Unfortunately, we cannot apply the same principle to the
CACHE table, because its entries (i.e. the nodes of the product
graph A×⋆B) are queried in DFS pre-order, unlike the output
BDD nodes which are queried in DFS post-order. This means
that when we first query a particular entry (xA, xB), we do
not have any information about its child nodes yet.

However, the observation about the number of single parent
nodes nevertheless applies to the product graph as well. That
is, for the majority of (xA, xB) pairs explored by the APPLY
algorithm, there is a single parent (yA, yB) through which
(xA, xB) is discovered.

Proposition 1: Let (xA, xB) be a node of the product graph
A×⋆ B such that it has a single parent node (yA, yB). Then
it is unnecessary to store the result for (xA, xB) in CACHE as
long as (yA, yB) is saved properly.

Intuitively, every time (xA, xB) is visited by the APPLY
algorithm, it is through the node (yA, yB). As such, once the
result for (yA, yB) is saved in the cache, (xA, xB) is never
visited again. Consequently, due to the distribution of node
in-degrees, we know that the majority of nodes in the product
graph do not actually need to be stored in CACHE.

However, this proposition does not tell us how to detect
these “redundant” cache entries. Furthermore, detecting all
such entries appears to be a hard problem: when a product
graph node is first visited, we do not know if it can be visited
again from some other source. If we mistakenly exclude it
from CACHE, it could result in re-computation of a non-trivial
portion of the product graph.

Proposition 2: Assume xA has a single parent in BDD A
and xB has a single parent in BDD B. Then (xA, xB) has a
single parent in any product graph A×⋆ B.

While this certainly does not cover all redundant entries,
such observation gives us a way of eliminating at least some of
the redundant work. To implement it, we only need to maintain
a simple 2-bit {0, 1,many} parent counter for each BDD node.
It is then easy to verify the conditions of our proposition during
each CACHE access and to skip any unnecessary queries.

In our benchmark dataset, this criterion leads to an average
22% reduction in the number of product graph nodes stored
in CACHE. However, we should note that this method is quite
uneven: the eliminated node ratio ranges from more than 90%
to less than 1% depending on the BDD. Nevertheless, due to its
low overhead, we still consider it a worthwhile improvement.

In the future, it is possible to explore additional heuristics
that eliminate a higher percentage of single-parent nodes from
the operations cache.

Other cache table considerations: Aside from the afore-
mentioned improvements, we use a relatively standard cache
table design: (1) we overwrite results on collision; (2) we grow

APPLY product graph |A×∧ B|
cudd ▲ / sylvan-8 •

sp
ee

d-
up

on

104 105 106 107 108 109
1
4×

1
2×

1×

2×

4×

8×

16×

32×

Fig. 5. The speed-up in runtime of our implementation compared to cudd
and sylvan-8, truncated to 32×. Points below the red line represent slow-
down instead of speed-up. Points to the right of the vertical line represent
200 largest benchmark instances. Note that both axis are logarithmic.

the table in exponents of two once the number of insertions
exceeds the current length; (3) to determine the cache slot,
we use log2(length) most significant bits of the same prime
multiplicative hash as for the node table, but the input is a
single integer concatenation of xA and xB .

Note that when this hash is truncated to the same bit-
length as the input, it is in fact perfect: it maps each input
to a unique output [31]9. As such, we only need to save
the hash of (xA, xB) instead of the whole key. This does
not necessarily reduce memory consumption, but there is no
need to recompute the hash during table growth. Furthermore,
when the table grows, this hash has a very predictable node
placement since the new slot is a single-bit extension of the
previous slot. Consequently, similar to the node table, growing
the cache is essentially a memory copy operation.

E. Performance evaluation

1) State-of-the-art BDD packages: To evaluate the perfor-
mance of this approach, we compare the implementation to
the cudd and sylvan-8 runtime on our modern CPU (we
omit lib-bdd as it is largely superseded by at least one
of the methods on every benchmark). The effective speed-
up is shown in Fig. 5. If we focus on the 200 largest
benchmarks, our implementation achieves on average a 3.70×
speed-up compared to cudd and 5.69× speed-up compared to
sylvan-8. However, we see that especially for sylvan, the
improvements are diminishing as the benchmark size grows.

Therefore, we also investigate the 10 largest benchmarks.
Here, sylvan-8 is sometimes faster than our implementa-
tion, however our method is still on average 1.03× as fast
as sylvan-8. Note that these are tasks that all consume
at least 16 GBs and sometimes more than 32 or 64 GBs

9This hash is similar and often confused with the notorious Knuth
multiplicative hash [25] and the so-called binary multiplicative hash [17].
However, these do not use a prime as the multiplier and are consequently not
perfect [30].

128

APPLY product graph |A×∧ B|

sp
ee

d-
up

on
m

od
er

n
C

PU

104 105 106 107 108 109
1
4×

1
2×

1×

2×

4×

Fig. 6. The speed-up in runtime on the modern vs. the legacy system for
our implementation. Points below the red line represent slow-down instead
of speed-up. Points to the right of the vertical line represent 200 largest
benchmark instances. Note that both axis are logarithmic.

of system memory over hundreds of millions of product
graph nodes. This means that our implementation is better on
small and medium tasks while achieving roughly comparable
performance on very large tasks.

Furthermore, note that our implementation is always faster
than sylvan-4 (not shown in the figure), and on average
1.5× faster on the 10 largest tasks. We also note that in our
testing, sylvan-4 was on average 2.27× (up to 3.9×) faster
and sylvan-8 on average 3.22× (up to 6.3×) faster than
sylvan-1 for the 200 largest benchmarks. While this is not
perfect scaling, it appears to be roughly in line with previous
reported results for sylvan [41].

We also investigated the performance counters to explain
this improvement. For the 200 largest instances, we see
average IPC of 1.26 (as opposed to cudd’s 0.35), while the
L3 cache miss rate is only 27% compared to cudd’s 40%.
Furthermore, our implementation needs on average only 12 L3
cache references per product graph node compared to cudd’s
21, and the number of instructions executed between such
references increased to 42 from 14 on average. In other words,
our implementation performs more work with fewer requests
to the main memory, just as we were trying to achieve. For
the top 10 benchmarks, these numbers are less ideal, with just
0.73 IPC and 32% cache miss rate, but this is still quite enough
to achieve a sizeable improvement over cudd.

2) Modern hardware: Next, we investigate whether we
achieved our initial goal. That is, whether we improved the
scalability of the BDD APPLY algorithm on modern hardware.
As such, we repeat the experiment from Section IV-A with our
new implementation. The results are shown in Fig. 6, which
is directly comparable to Fig. 3.

Here, we see that the speed-up is again diminishing with
growing BDD size. However, we also see that the overall
improvement is greater and more predictable compared to the
other implementations. In particular, while we see a slight
slow-down in some of the experiments, it is generally within

the 5% measurement noise tolerance established earlier. For
the whole dataset, we see an average speed-up of 1.72×, which
is comparable to lib-bdd and sylvan-1. However, for the
200 largest benchmarks, we still have a speed-up of 1.26×, as
opposed to slow-down for lib-bdd (0.88×) and sylvan-1
(0.61×). Finally, zooming in on the 10 largest benchmarks,
we have a small average slow-down of 0.95×, which is again
(barely) within our 5% measurement tolerance.

3) Memory consumption and memory layout: Due to the
prototype nature of our implementation, we have not thor-
oughly evaluated the memory consumption yet. However, we
observed no significant differences between the packages when
the memory was limited to 32GB. Specifically, each package
ran out of memory on roughly the same handful of largest
benchmark problems. We thus do not consider out method to
be significant advantaged nor disadvantaged in this regard.

Finally, we should stress that in the presented setting,
our method supersedes [29]. It benefits from the temporal
ordering of BDD nodes, but further reduces the number of
necessary memory accesses and collisions through the use of
the prefix trie. However, while our method also benefits when
the in-memory ordering of BDD nodes matches the temporal
ordering, the in-memory ordering is not strictly required: as
opposed to [29], the critical aspects of the temporal ordering
are essentially stored in the prefix tries.

This begs the question: How important is the in-memory
node ordering for our method? To test this, we prepared an
experiment where we compare our method on BDDs pre-
processed with three possible in-memory orderings: DFS pre-
order, DFS post-order, and randomly shuffled.

We find that when comparing pre-order and post-order, pre-
order is slightly faster, but the difference is < 5% and dimin-
ishes with increasing benchmark size. However, comparing
post-order and shuffled node ordering, we observe that post-
order is on average 26% faster, and almost 40% faster for the
200 largest benchmarks. However, this lead then diminishes
for the largest 10 queries, where it is less than 10%, suggesting
that the ordering is the most important for medium-sized
BDDs that are “close” to the L3 cache capacity.

Hence we see that the improvements of our method are not
completely dependent on the in-memory layout of the BDD
nodes. The method is still better than sylvan-4, but not
as good as sylvan-8 for the largest benchmarks. However,
the choice of memory ordering does measurably influence
the outcome. Consequently, this information can inform the
implementation of garbage collection algorithms for BDDs.
It is not uncommon for garbage collection methods to reorder
objects to improve memory locality [23]. Our results thus show
this to be an important consideration for BDDs.

V. CONCLUSION

In this paper, we demonstrated the impact of memory
latency on the performance of BDD packages. Specifically,
we show that a more “modern” CPU does not necessarily
guarantee improved performance once the size of the problem
no longer fits into the L3 cache of the CPU.

129

We then proposed improvements to the node and cache table
used within the APPLY algorithm with the goal of increasing
locality and reducing the number of memory accesses overall.
We demonstrate that with these improvements, our implemen-
tation significantly outperforms classical BDD packages like
cudd, and is better or comparable to parallelization of the
same task to 8 CPU cores using the package sylvan. Impor-
tantly, we also show that it is the only implementation in our
testing that exhibits a consistent improvement in performance
when comparing a modern and a legacy CPU.

However, we should stress that the results of this paper
do not argue against parallelization of BDD operations. We
simply use parallelism as a meaningful comparison that gives
an alternative way of speeding up BDD operations. In fact,
we believe that similar performance benefits can also translate
to parallel BDD algorithms if appropriate data structures are
developed based on our observations.

Additionally, we should note that the presented approach
does not in any way prevent dynamic variable reordering: to
swap two adjacent variables, we can swap the BDD nodes
in-place, such as in [19]. We then update the parent-local
trie for each affected node accordingly. This requires a delete
operation on the trie structure, but such operation does not
differ from deletion on normal tries.

Finally, we observe that latest hardware developments open
new interesting propositions for improving BDD performance.
First, several new CPUs utilize silicon die stacking or other
advanced packaging techniques to significantly increase the
L3 cache capacity or add another layer of L4 cache.

Second, we are currently experiencing a resurgence of task-
specific hardware in the field of statistical machine learning
and a great increase in capabilities of field programmable gate
arrays (FPGAs). Perhaps an in-hardware APPLY implementa-
tion tuned for out-of-order exploration of the product graph
can be designed such that it sufficiently hides the large latency
of modern random access memory.

ACKNOWLEDGMENTS

This work was supported by the European Union’s Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No. 101034413 and the
“VAMOS” grant ERC-2020-AdG 101020093.

REFERENCES

[1] Ehab Al-Shaer and Saeed Al-Haj. Flowchecker: Configuration analysis
and verification of federated openflow infrastructures. In Proceedings of
the 3rd ACM workshop on Assurable and usable security configuration,
pages 37–44, 2010.

[2] Junaid Babar, Gianfranco Ciardo, and Andrew Miner. CESRBDDs:
binary decision diagrams with complemented edges and edge-specified
reductions. International Journal on Software Tools for Technology
Transfer, 24(1):89–109, 2022.

[3] Jiřı́ Barnat, Jakub Chaloupka, and Jaco Van De Pol. Distributed
algorithms for SCC decomposition. Journal of Logic and Computation,
21(1):23–44, 2011.

[4] Nikola Beneš, Luboš Brim, Jakub Kadlecaj, Samuel Pastva, and David
Šafránek. AEON: attractor bifurcation analysis of parametrised Boolean
networks. In Computer Aided Verification: 32nd International Confer-
ence, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings,
Part I 32, pages 569–581. Springer, 2020.

[5] Nikola Beneš, Luboš Brim, Samuel Pastva, and David Šafránek. Com-
puting bottom SCCs symbolically using transition guided reduction. In
Computer Aided Verification: 33rd International Conference, CAV 2021,
Virtual Event, July 20–23, 2021, Proceedings, Part I 33, pages 505–528.
Springer, 2021.

[6] Nikola Beneš, Luboš Brim, Samuel Pastva, and David Šafránek. Sym-
bolic coloured SCC decomposition. In Tools and Algorithms for the
Construction and Analysis of Systems: 27th International Conference,
TACAS 2021, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg,
March 27–April 1, 2021, Proceedings, Part II 27, pages 64–83. Springer,
2021.

[7] David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John
Hooker. Decision diagrams for optimization, volume 1. Springer, 2016.

[8] Karl S Brace, Richard L Rudell, and Randal E Bryant. Efficient imple-
mentation of a BDD package. In Proceedings of the 27th ACM/IEEE
design automation conference, pages 40–45, 1991.

[9] Randal E Bryant. Graph-based algorithms for Boolean function manip-
ulation. Computers, IEEE Transactions on, 100(8):677–691, 1986.

[10] Randal E Bryant. Binary decision diagrams and beyond: Enabling tech-
nologies for formal verification. In Proceedings of IEEE International
Conference on Computer Aided Design (ICCAD), pages 236–243. IEEE,
1995.

[11] Luigi Capogrosso, Luca Geretti, Marco Cristani, Franco Fummi, and
Tiziano Villa. HermesBDD: A multi-core and multi-platform binary
decision diagram package. arXiv preprint arXiv:2305.00039, 2023.

[12] Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and
Alexander Svozil. Symbolic time and space tradeoffs for probabilistic
verification. In 2021 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–13. IEEE, 2021.

[13] ChipsAndCheese. AMD’s 7950X3D: Zen 4 gets VCache. https:
//chipsandcheese.com/2023/04/23/amds-7950x3d-zen-4-gets-vcache/,
Apr 2023. Accessed: 2023-05-01.

[14] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick
Bloem, et al. Handbook of model checking, volume 10. Springer, 2018.

[15] Mahmoud Elbayoumi, Michael S Hsiao, and Mustafa ElNainay. A
novel concurrent cache-friendly binary decision diagram construction
for multi-core platforms. In 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1427–1430. IEEE, 2013.

[16] Stefan Ellmauthaler, Sarah Alice Gaggl, Dominik Rusovac, and Jo-
hannes P Wallner. Representing abstract dialectical frameworks with
binary decision diagrams. In Logic Programming and Nonmonotonic
Reasoning: 16th International Conference, LPNMR 2022, Genova, Italy,
September 5–9, 2022, Proceedings, pages 177–189. Springer, 2022.

[17] Jeff Erickson. Algorithms. 2019.
[18] Eric Felt, Gary York, Robert Brayton, and Alberto Sangiovanni-

Vincentelli. Dynamic variable reordering for BDD minimization. In
Proceedings of EURO-DAC 93 and EURO-VHDL 93-European Design
Automation Conference, pages 130–135. IEEE, 1993.

[19] Masahiro Fujita, Yusuke Matsunaga, and Taeko Kakuda. On variable
ordering of binary decision diagrams for the application of multi-level
logic synthesis. In Proceedings of the European Conference on Design
Automation., pages 50–54. IEEE, 1991.

[20] Daochuan Ge, Meng Lin, Yanhua Yang, Ruoxing Zhang, and Qiang
Chou. Quantitative analysis of dynamic fault trees using improved
sequential binary decision diagrams. Reliability Engineering & System
Safety, 142:289–299, 2015.

[21] Justin E Harlow III and Franc Brglez. Design of experiments in
BDD variable ordering: Lessons learned. In Proceedings of the 1998
IEEE/ACM international conference on Computer-aided design, pages
646–652, 1998.

[22] Tobias Heß, Chico Sundermann, and Thomas Thüm. On the scalability
of building binary decision diagrams for current feature models. In
Proceedings of the 25th ACM International Systems and Software
Product Line Conference-Volume A, pages 131–135, 2021.

[23] Xianglong Huang, Stephen M Blackburn, Kathryn S McKinley, J Eliot B
Moss, Zhenlin Wang, and Perry Cheng. The garbage collection advan-
tage: Improving program locality. ACM SIGPLAN Notices, 39(10):69–
80, 2004.

[24] Martin Jonáš and Jan Strejček. Solving quantified bit-vector formulas
using binary decision diagrams. In Theory and Applications of Sat-
isfiability Testing–SAT 2016: 19th International Conference, Bordeaux,
France, July 5-8, 2016, Proceedings 19, pages 267–283. Springer, 2016.

130

https://chipsandcheese.com/2023/04/23/amds-7950x3d-zen-4-gets-vcache/
https://chipsandcheese.com/2023/04/23/amds-7950x3d-zen-4-gets-vcache/

[25] Donald Ervin Knuth. The art of computer programming, volume 3:
Sorting and searching, volume 3. Pearson Education India, 1973.

[26] Lukas Kohutka and Peter Pistek. Faster synthesis of combinational
logic based on multiplexer trees and binary decision diagrams. In
2014 IEEE 12th IEEE International Conference on Emerging eLearning
Technologies and Applications (ICETA), pages 239–244. IEEE, 2014.

[27] Jitendra Kumar, Yukio Miyasaka, Asutosh Srivastava, and Masahiro
Fujita. Formal verification of integer multiplier circuits using binary
decision diagrams. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2022.

[28] Casper Abild Larsen, Simon Meldahl Schmidt, Jesper Steensgaard,
Anna Blume Jakobsen, Jaco van de Pol, and Andreas Pavlogiannis.
A truly symbolic linear-time algorithm for SCC decomposition. In
Tools and Algorithms for the Construction and Analysis of Systems:
29th International Conference, TACAS 2023, pages 353–371. Springer,
2023.

[29] David E Long. The design of a cache-friendly BDD library. In Proceed-
ings of the 1998 IEEE/ACM international conference on Computer-aided
design, pages 639–645, 1998.

[30] Memotut. Multiplicative hash is not perfect. https://memotut.com/en/
aeefa085417b7134f793/.

[31] Mercari. Knuth multiplicative hash is the least complete hash func-
tion. https://engineering.mercari.com/blog/entry/2017-08-29-115047/,
Oct 2017. Accessed: 2023-05-01.

[32] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in
combinatorial problems. In Proceedings of the 30th International Design
Automation Conference, pages 272–277, 1993.

[33] AMY Miyasaka and M Fujita. A simple BDD package without variable
reordering and its application to logic optimization with permissible
functions. In Proc. Int. Workshop Log. Synth, pages 1–8, 2019.

[34] Jim Newton and Didier Verna. A theoretical and numerical analysis of
the worst-case size of reduced ordered binary decision diagrams. ACM
Transactions on Computational Logic (TOCL), 20(1):1–36, 2019.

[35] Wytse Oortwijn, Tom van Dijk, and Jaco van de Pol. Distributed binary
decision diagrams for symbolic reachability. In Proceedings of the 24th
ACM SIGSOFT International SPIN Symposium on Model Checking of
Software, pages 21–30, 2017.

[36] Samuel Pastva, David Safranek, Nikola Benes, Lubos Brim, and Thomas
Henzinger. Repository of logically consistent real-world boolean net-
work models. bioRxiv, pages 2023–06, 2023.

[37] Itai Segall, Rachel Tzoref-Brill, and Eitan Farchi. Using binary decision
diagrams for combinatorial test design. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, pages 254–
264, 2011.

[38] Steffan Christ Sølvsten, Jaco van de Pol, Anna Blume Jakobsen, and
Mathias Weller Berg Thomasen. Adiar binary decision diagrams in
external memory. In Tools and Algorithms for the Construction and
Analysis of Systems: 28th International Conference, TACAS 2022, pages
295–313. Springer, 2022.

[39] Fabio Somenzi. CUDD: CU decision diagram package release 3.0.0.
URL: http://vlsi. colorado. edu/fabio/CUDD, 4(3), 2015.

[40] Tom van Dijk, Ernst Moritz Hahn, David N Jansen, Yong Li, Thomas
Neele, Mariëlle Stoelinga, Andrea Turrini, and Lijun Zhang. A compar-
ative study of BDD packages for probabilistic symbolic model checking.
In Dependable Software Engineering: Theories, Tools, and Applications:
First International Symposium, SETTA 2015, Nanjing, China, November
4-6, 2015, Proceedings 1, pages 35–51. Springer, 2015.

[41] Tom Van Dijk and Jaco Van de Pol. Sylvan: multi-core framework
for decision diagrams. International Journal on Software Tools for
Technology Transfer, 19:675–696, 2017.

[42] Miroslav N Velev and Ping Gao. Efficient parallel gpu algorithms
for BDD manipulation. In 2014 19th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 750–755. IEEE, 2014.

[43] Alexander Von Rhein, Sven Apel, and Franco Raimondi. Introducing
binary decision diagrams in the explicit-state verification of Java code.
In Proc. Java Pathfinder Workshop, volume 82, page 2, 2011.

[44] Liudong Xing, Ola Tannous, and Joanne Bechta Dugan. Reliability
analysis of nonrepairable cold-standby systems using sequential bi-
nary decision diagrams. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 42(3):715–726, 2011.

[45] Yang Zhao and Gianfranco Ciardo. Symbolic computation of strongly
connected components and fair cycles using saturation. Innovations in
Systems and Software Engineering, 7:141–150, 2011.

131

https://memotut.com/en/aeefa085417b7134f793/
https://memotut.com/en/aeefa085417b7134f793/
https://engineering.mercari.com/blog/entry/2017-08-29-115047/

Formal Methods in Computer-Aided Design 2023

Proofs for Incremental SAT with Inprocessing
Benjamin Kiesl-Reiter

Amazon Web Services
Munich, Germany

Email: benkiesl@amazon.com

Michael W. Whalen
Amazon Web Services and University of Minnesota

Minneapolis, MN, United States
Email: mww@amazon.com

Abstract—Incremental SAT solvers are automated-reasoning
tools that efficiently solve sequences of related logic problems,
making them a go-to tool for inherently incremental applications
such as model checking, planning, or test generation. Recent
advances in incremental solving using inprocessing have led
to substantial performance improvements, but it has remained
unclear how the resulting solvers could produce verifiable proofs
of unsatisfiability. Here we provide a simple approach that
enables inprocessing solvers to produce proofs for incremental
results. The approach extends the standard DRAT format with
clause restoration steps. These are later removed during post-
processing, yielding a standard DRAT proof. Our empirical
evaluation shows that our approach is sound and efficient. Proofs
can be generated much faster compared to re-solving a problem
non-incrementally, but the resulting proofs tend to be larger.
Nevertheless, even when taking proof checking into account,
our approach is still slightly faster on average. In addition, our
technique has the advantage of guaranteeing proof production
whereas the non-incremental approach can time out on hard
problems.

Index Terms—Automated reasoning, SAT solving, incremental
solving, proof.

I. INTRODUCTION

Incremental SAT solving is a key technique for the formal
analysis of software and hardware. Instead of solving each in-
put problem independently, an incremental SAT solver retains
state between solver calls, allowing it to rely on previously
learned information when faced with new problems. This reuse
of learned information can dramatically boost performance
for applications that produce sequences of closely related
SAT problems, such as automated planning [1], lazy SMT
solving [2], test-case generation [3], [4], and bounded model
checking [5]–[7].

In practice, a user of an incremental SAT solver initializes
the solver and provides it with an initial input formula.
After solving the formula, the user can then extend the
formula before sending another solve request to the solver.
The resulting extend-and-solve loop can be repeated arbitrarily
many times until eventually the user decides to release the
solver. While this incremental feature makes solvers efficient
and easy-to-use, the formula modifications performed between
solver calls add an additional layer of complexity that can
render several commonly-used reasoning techniques unsound.
In particular, many preprocessing and inprocessing techniques
that are crucial to the performance of non-incremental solvers
cannot be used straightforwardly in an incremental context.

This is a pity since inprocessing-based solvers have won the
top spots in the yearly SAT competitions since 2020 [8].

To harvest at least some of the performance gains offered
by inprocessing techniques, several ways of using them in a
restricted way have been suggested in the literature [6], [7],
[9]. In 2019, a breakthrough was made by Fazekas, Biere,
and Scholl [10], who introduced a calculus that allows the
unrestricted use of inprocessing techniques during incremental
solver runs, given that additional reasoning steps—so-called
clause restorations—are performed ahead of the runs. The
implementation of their approach on top of the award-winning
SAT solver CaDiCaL [11] has led to impressive performance
gains, showing that inprocessing and incremental solving can
coexist in practice.

One key capability of non-incremental solving, however,
has still failed to enter the picture—proof. While virtually all
modern non-incremental solvers can produce independently
verifiable proofs of unsatisfiability (usually in the DRAT
format [12] required by SAT competitions), it has remained
unclear how an incremental solver with unrestricted inpro-
cessing could produce such proofs. In this paper, we address
this issue by presenting a surprisingly simple approach for
extracting a verifiable DRAT proof from an incremental solver
relying on the calculus by Fazekas et al. [11]

Our approach requires a solver to augment its proof trace
with additional proof steps whenever it performs clause
restorations. Once the solver finishes, we transform the aug-
mented proof trace into a verifiable DRAT proof. The key idea
is to remove deletions from the proof corresponding to clauses
that need to be restored. To demonstrate the feasibility of our
approach in practice, we modified the solver CaDiCaL and
implemented our proof-transformation algorithm as a separate
tool. The resulting version of CaDiCaL is thus the first in-
cremental SAT solver that combines unrestricted inprocessing
with proof production.

Despite the theoretical simplicity of our approach, its actual
implementation required us to make several careful changes
to the solver, which we explain in detail. This should provide
solver developers with sufficient background to implement our
approach on top of other solvers. We performed an evaluation
with 300 benchmarks from the 2017 Hardware Model Check-
ing competition [13], demonstrating that the overhead of our
approach is small and that all resulting proofs can be verified
with the existing proof checker DRAT-trim [14].

The main contributions of this paper are as follows:

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_21 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0003-3522-3653
https://orcid.org/0000-0003-3824-1435
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_21
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_21
https://creativecommons.org/licenses/by/4.0/

• An approach for extracting verifiable DRAT proofs from
an incremental SAT solver that performs unrestricted
inprocessing.

• Implementation on top of the SAT solver CaDiCaL.
• Empirical evaluation on a comprehensive benchmark set,

demonstrating the feasibility of our approach.
The rest of this paper is structured as follows. In Section II,

we present the background required to understand the rest
of the paper. In Section III, we describe the general prob-
lem of producing proofs for incremental SAT solving with
inprocessing. In Section IV, we present our algorithm for
generating proofs and establish its soundness before discussing
implementation details in Section V. Finally, we present the
results of our empirical evaluation in Section VI and conclude
with a summary and an outlook for future work in Section VII.

II. BACKGROUND AND RELATED WORK

We first cover basics of SAT solving before giving a high-
level overview of the relationship between incremental SAT
solving and inprocessing.

A. SAT Solving Basics

The Boolean satisfiability problem (SAT) asks whether
a formula of propositional logic can be satisfied by some
assignment of truth values (true and false) to its variables.
An overview can be found in [15].

As is common in practical SAT solving, we concern our-
selves with formulas in conjunctive normal form (CNF).
Formulas are built from literals, which are either variables
(x) or their negations (x̄). These are called positive literals
and negative literals respectively. We write var(l) to refer to
the variable of the literal l (var(x) = x and var(x̄) = x).
The complement l̄ of a literal l is defined as l̄ = x̄ if l = x
and as l̄ = x if l = x̄. A clause is a finite disjunction of
literals of the form (l1 ∨ l2 ∨ · · · ∨ ln). A formula is a finite
conjunction of clauses of the form C1 ∧ C2 ∧ ... ∧ Cm. For
example, (x̄ ∨ y ∨ z) ∧ (y ∨ z̄) ∧ (x) is a formula with three
clauses, where the last clause is called a unit clause because
it contains only one literal. Formulas can be viewed as sets of
clauses, which can be viewed as sets of literals.

A truth assignment (or assignment for short) is a function
from a set of variables to the truth values 1 (true) and 0 (false).
A literal is satisfied by an assignment α if l is positive and
α(var(l)) = 1 or if l is negative and α(var(l)) = 0. A literal
l is falsified by α if l̄ is satisfied by α. An assignment α can be
viewed as the set {l | l is satisfied by α} of literals. A clause
is satisfied by an assignment if the assignment satisfies at least
one of its literals. A formula is satisfied by an assignment if
the assignment satisfies all of its clauses.

A formula is satisfiable if there exists an assignment that
satisfies it, otherwise it is unsatisfiable. Two formulas are logi-
cally equivalent if they are satisfied by the same assignments;
they are equisatisfiable if they are either both satisfiable or
both unsatisfiable.

Incremental SAT. An incremental SAT problem is a se-
quence ⟨∆0, A0⟩, . . . , ⟨∆n, An⟩ of pairs, where each ∆i is

DIMACS

p cnf 4 8
1 -2 0

2 -4 0
1 2 4 0
-1 -3 0
1 -3 0
-1 3 0
1 3 -4 0
1 3 4 0

DRAT

-3 0
1 2 0
-1 0
-3 0
1 0

d 1 2 0
0

Fig. 1. DIMACS formula and corresponding proof in DRAT format.

a set of clauses and each Ai is a set of literals called
assumptions. In each solving phase i ∈ 0, . . . , n, the task
is to determine satisfiability of the union of the first i sets
of clauses under the single set Ai of assumptions, i.e., to
determine satisfiability of ∆0 ∪ · · · ∪∆i ∪ {(l) | l ∈ Ai}.

File Formats and Proofs. In non-incremental SAT, formulas
are typically specified in the DIMACS format. DIMACS
files feature a header of the form ‘p cnf #variables
#clauses’ followed by a list of clauses. Each clause is
represented by a list of integers, with a 0 denoting the end of
a clause. For example, the clause (x1∨ x̄2∨x3) is represented
as ‘1 -2 3 0’. An example formula in DIMACS format is
given in Fig. 1.

The current standard format for proofs is DRAT (short for
Deletion Resolution Asymmetric Tautology) [12]. A DRAT
file specifies a sequence of proof statements, which are
either clause additions or clause deletions. Formally, a
DRAT proof of a formula F can be seen as a sequence
⟨s1, C1⟩, . . . , ⟨sm , Cm⟩, where each si ∈ {a, d} and each Ci

is a clause. A proof of F gives rise to an accumulated formula
as follows (where F0 := F):

Fi =

{︄
Fi−1 ∪ {Ci} if si = a

Fi−1 \ {Ci} if si = d

Each added clause Ci must have the RAT property [16] with
respect to Fi−1. RAT (short for Resolution Asymmetric Tautol-
ogy) is a non-monotonic syntactic property that is checkable
in polynomial time and that guarantees that the clause addition
preserves satisfiability. Further details of RAT are not essential
to our paper, we refer the interested reader to [16] for more
information.

Deletions can remove arbitrary clauses from the accumu-
lated formula; they clearly preserve satisfiability. A valid
DRAT proof of unsatisfiability ends with the addition of the
empty clause. Because the empty clause is trivially unsatis-
fiable (and since each proof step preserves satisfiability) the
unsatisfiability of the original formula F can be concluded.
DRAT has a plain-text format and a more compact binary
format. An example plain-text DRAT proof is given in Fig. 1
(note that deletions are preceded by a d symbol whereas
additions are not preceded by any symbol; a 0 marks the end
of a statement).

Example 1. The DRAT proof on the right of Fig. 1 is a proof of
the DIMACS file on the left. It derives all clauses from earlier

133

clauses via a RAT derivation step. For example, the first line
of the DRAT proof, clause -3, can be derived using resolution
(which satisfies RAT) from the fourth and fifth clauses of the
DIMCAS file: -1 -3 and 1 -3. Similarly, the next clause
1 2 can be derived via resolution from the second and third
clauses: 2 -4 and 1 2 4. The remaining clauses can be
derived via similar resolution steps. The deletion step d 1
2 removes the clause 1 2 from the accumulated formula,
reducing the proof search space. As the derivation ends with
the empty clause, unsatisfiability of the original formula is
proved.

B. Inprocessing in Incremental SAT Solving

Inprocessing in SAT relies on adding and deleting redun-
dant clauses both before and during solving. A clause C
is considered redundant with respect to a formula F if F
and F ∧ C are equisatisfiable. An overview of common
inprocessing techniques is given in [8]. In practice, solvers
often delete clauses that are not implied but still redundant.
When it comes to clause additions, however, they usually
only add clauses that are implied (clauses that are not im-
plied are only learned by special techniques like extended
resolution [17], blocked-clause addition [18], and satisfaction-
driven clause learning [19], which most solvers don’t use
by default). Fazekas et al. [10] have recently presented a
calculus to capture the inner workings of modern incremental
SAT solvers. Intuitively, a solver whose solving process can
be expressed by the calculus is guaranteed to return correct
results. We refer the interested reader to the paper for details.
Since our work builds on their results, we give a high-level
overview here.

The calculus consists of seven derivation rules that operate
over triples ⟨φ, ρ, σ⟩, where φ is called the set of irredundant
clauses, ρ is the set of redundant clauses, and σ is the so-
called reconstruction stack, which we describe in detail later.

Most practical techniques in non-incremental SAT solving
without inprocessing are captured by four derivation rules
called LEARN−, STRENGTHEN, FORGET, and DROP.1 In-
tuitively, the calculus starts out with all input clauses in
the irredundant set φ and adds new implied clauses to the
redundant set ρ via the LEARN− rule. Clauses from the
redundant set ρ can be moved to the irredundant set φ via the
unconditional STRENGTHEN rule. The FORGET rule enables
the unconditional deletion of clauses from ρ, and the DROP
rule enables the deletion of clauses from φ if they are implied.

The calculus contains three more rules—WEAKEN+,
ADDCLAUSES, and RESTORE—that enable the sound com-
bination of inprocessing and incremental solving. These three
rules interact with the reconstruction stack σ, which in practice
is a crucial ingredient for solvers that perform non-trivial
preprocessing or inprocessing. Formally, the reconstruction
stack is a sequence (ω1 : C1), . . . , (ωn : Cn), where each Ci a
clause and each ωi is a set of literals (called the witness) such

1The minus symbol in the rule LEARN− and the plus symbol in the later
rule WEAKEN+ are used because the rules are modified versions of rules
LEARN and WEAKEN from an earlier calculus described in [16].

that Ci ∩ ωi ̸= ∅; (ωi : Ci) is also called a witness-labeled
clause.

Using the WEAKEN+ rule, clauses of the irredundant set φ
can be removed if they are determined to be equisatisfiability-
redundant. When such clauses are deleted during solving,
however, the solver might later find an assignment that satisfies
the resulting formula but not the deleted clauses. To efficiently
recover a satisfying assignment of the original formula, the
solver stores these clauses on the reconstruction stack to
later perform model reconstruction. When performing model
reconstruction, the solver starts with the assignment α and
iterates over the reconstruction stack in reverse order, checking
for each witness-labeled clause (ω : C) whether C is satisfied
by α. If C is satisfied, it can be skipped, otherwise α is
modified by making all literals in ω true (denoted by α ◦ ω).

Formally, the reconstruction function R, which maps an
assignment and a reconstruction stack to a new assignment, is
defined as follows (ϵ denotes the empty sequence; concatena-
tion of sequences σ and σ′ is denoted by σ · σ′):

R(α, ϵ) = α,

R(α, σ · (ω : C)) =

{︄
R(α, σ) if α(C) = 1

R(α ◦ ω, σ) otherwise

Since C ∩ ω ̸= ∅, making ω true also makes C true, but
the solver must ensure that making ω true does not falsify
any of the other clauses. For non-incremental SAT solving,
all state-of-the-art inprocessing techniques generate witness-
labeled clauses in such a way that this is guaranteed, and in
most cases (like bounded variable elimination [20], pure-literal
elimination, or blocked-clause elimination [21]), ω consists of
only a single literal.

When incremental solving comes into play, however, things
get tricky because the deletion of non-implied clauses can
weaken a formula. The naive addition of clauses later on
during incremental calls can then lead to unsound results.
This observation led Fazekas et al. to the introduction of the
rules ADDCLAUSES and RESTORE in their calculus. Before
explaining the two rules, we give an example to illustrate the
problem.

Example 2 (from [10]). Consider the Boolean formula F =
(a∨b)∧(ā∨b̄). This formula is clearly satisfiable, and there are
inprocessing techniques (e.g., blocked-clause elimination) that
would delete the clause (ā∨ b̄) to obtain F ′ = (a∨ b), which
is also satisfiable. Now, assume that at the next incremental
call, the unit clauses (a) and (b) are added. The formula F ∧
(a) ∧ (b) = (a ∨ b) ∧ (ā ∨ b̄) ∧ (a) ∧ (b) is then unsatisfiable
whereas F ′ ∧ (a) ∧ (b) = (a ∨ b) ∧ (a) ∧ (b) is satisfiable.
The deletion of (ā ∨ b̄) thus weakened the formula too much,
leading to unsound results.

The key insight for incremental solving from [10] is that
whenever a new set ∆i of clauses is added to the problem
at an incremental solver call, the solver can ensure soundness
by moving some of the previously-deleted clauses back from
the reconstruction stack σ to the set φ of irredundant clauses.

134

1: function RESTOREADDCLAUSES(∆: clauses, σ: stack)
2: (ω1 : C1), . . . , (ωn : Cn) := σ
3: for i from 1 to n do
4: if exists l ∈ ωi where l̄ occurs in ∆ then
5: ∆ := ∆ ∪ {Ci}, σ := σ \ (ωi : Ci)

6: return ⟨∆, σ⟩

Fig. 2. Algorithm RestoreAddClauses to restore clauses.

This process is called clause restoration, and it is based on
the notion of a clean clause.

Definition 1 (Clean Clause [10]). A clause C is clean with
respect to a sequence of witness-labeled clauses σ if for all
(ω : C ′) ∈ σ, we have that {l̄ | l ∈ C} ∩ ω = ∅.

A clause is thus clean with respect to σ if it does not contain
the negations of literals that serve as witnesses in σ. Cleanli-
ness of a clause ensures that whenever model reconstruction
takes place at the end of incremental solving, the truth of clean
clauses is not affected because making a witness ω true cannot
falsify clean clauses.

Given that satisfiability is preserved for clean clauses, when
we add a set ∆ of new clauses, we must ensure that they
are clean with respect to the current reconstruction stack. The
ADDCLAUSES rule thus has the precondition that only clean
clauses can be added. Taken at face value, this would seem to
make it very difficult to perform inprocessing with incremental
solving: what if we need to add clauses that are not clean?
This situation is where the RESTORE rule comes into play. The
RESTORE rule allows moving a clause from the reconstruction
stack back to the set of irredundant clauses as long as the
clause is clean with respect to the subsequent portion of the
reconstruction stack:

⟨φ, ρ, σ · (ω : C) · σ′⟩
RESTORE: (C is clean w.r.t. σ′)

⟨φ ∧ C, ρ, σ · σ′⟩
Thus, whenever we want to add unclean clauses at an

incremental solver call, we can turn them into clean clauses
by first restoring all labeled clauses of the reconstruction
stack that would make them unclean. This is achieved with
the algorithm RestoreAddClauses [10] shown in Fig. 2.
The algorithm iterates over the stack starting at the bottom,
continuously restoring clauses that would prevent cleanliness
of the new clauses. To make sure that the precondition of
the RESTORE rule (C is unclean w.r.t. σ′) is fulfilled, it also
restores clauses that would prevent cleanliness of previously
restored clauses.

With this background, we can now state the problem we are
trying to solve.

III. PROBLEM STATEMENT

The work in [10] presents a sound calculus for solvers to
perform incremental solving with inprocessing, but it does not
define how a solver based on that calculus could efficiently
produce an independently-checkable proof. This is also the
reason why the SAT solver CaDiCaL, which in [10] was

augmented with the RestoreAddClauses algorithm, does
not produce valid proofs when using inprocessing during
incremental solving.

Our goal is to obtain a valid DRAT proof from a solver
based on the incremental inprocessing calculus in [10]. The
calculus requires that all clauses derived by a solver are
implied. Strictly speaking, this would allow the addition of
implied clauses that do not necessarily have the RAT property.
In practice, however, all state-of-the-art CDCL solvers derive
only clauses with the so-called RUP (short for Reverse Unit
Propagation) property—a simpler property guaranteeing that
the clauses are implied and have the RAT property (see [22],
[23] for details on RUP). Hence, we require that solvers derive
clauses with the RUP property, meaning that our approach
applies to virtually all existing solvers. RUP is monotonic: If
a clause has the RUP property with respect to a formula F , it
also has it with respect to each superset of F .

Proof checkers for DRAT require as input both a for-
mula and a corresponding proof. We produce proofs in
such a way that they can be checked against the formula
consisting of all incrementally added clauses, plus a unit
clause for each literal in the final assumption. More formally,
let ⟨∆0, A0⟩, . . . , ⟨∆n, An⟩ be an unsatisfiable incremental
problem. We then produce a DRAT proof of the formula
∆0 ∪ · · · ∪∆n ∪ {(l) | l ∈ An}.

The four derivation rules LEARN−, STRENGTHEN, FOR-
GET, and DROP can be accommodated in a straightforward
way in DRAT: LEARN− corresponds to a clause addition
(of the learned clause), STRENGTHEN is not reflected in the
proof (as DRAT does not distinguish between redundant and
irredundant clauses), and both FORGET and DROP correspond
to clause deletions in DRAT.

Applications of ADDCLAUSES don’t need to be represented
in the proof trace because we simply consider all clauses that
are added incrementally part of the initial formula. Thus, in
the DRAT proof trace, everything that was derived using these
clauses can still be derived because they are part of the proof’s
accumulated formula.

The problem is how to express applications of WEAKEN+

and corresponding applications of RESTORE. One option is
to represent WEAKEN+ by clause deletion. However, if we
then naively express RESTORE by clause addition, we run into
soundness problems. Specifically, a clause that had the RAT
property at the point of WEAKEN+/deletion (which is the case
for most clauses deleted during practical inprocessing) might
not have the RAT property at the point of restoration anymore.
This would render the clause addition in the proof invalid.
Intuitively, this is because the RAT property is influenced by
additions and deletions happening between a clause’s initial
deletion and its restoration. For readers familiar with the de-
tails of the RAT property, the following example demonstrates
this on a concrete formula:

Example 3. Consider the formula (x̄ ∨ y) ∧ (x ∨ z̄) ∧ (ȳ ∨
z) ∧ (x̄ ∨ z). The clause (ȳ ∨ z), which has the RAT property
(as an interested reader might convince themselves of) can be

135

deleted and put on the reconstruction stack. The clause (x̄∨z)
can be subsequently deleted because it has the RAT property
with respect to the remaining clauses. We end up with the
formula (x̄∨y)∧ (x∨ z̄). Now assume that we want to restore
the clause (ȳ ∨ z), e.g., because we want to solve under the
assumption (y). If we tried to add the clause to a DRAT proof,
the proof would become invalid because (ȳ∨z) does not have
the RAT property with respect to the remaining formula—the
clause (x ∨ z̄) was crucial for establishing the RAT property,
but it has been deleted.

Because solvers can use restored clauses to derive further
clauses, the restored clauses need to enter the accumulated
formula of the proof, otherwise those derivations become
invalid. We thus need another way to express RESTORE in
a DRAT proof.

IV. ALGORITHM FOR PROOF PRODUCTION

To handle applications of RESTORE in DRAT proofs and
thus support proofs for incremental solving with inprocessing,
we propose the following approach:

• We first produce an augmented proof trace (which itself
is not a valid DRAT proof) where all applications of
WEAKEN+ are logged as deletions and all applications
of RESTORE are logged with a new dedicated proof rule.

• In a post-processing step, we then make use of the
restoration information to convert the augmented proof
trace into a valid DRAT proof.

The idea is surprisingly simple: Instead of trying to add
restored clauses to the proof via clause additions, we act as if
they hadn’t been deleted in the first place.

Specifically, whenever a solver applies the RESTORE rule to
restore a clause C from the reconstruction stack, we add to the
proof trace a novel statement of the form ⟨r, C⟩. The resulting
augmented proof trace is a sequence ⟨s1, C1⟩, . . . , ⟨sm, Cm⟩,
where each si ∈ {a, d, r} and each Ci is a clause. Similar to a
normal DRAT proof trace, we define an accumulated formula
as follows:

F0 = clauses in the original problem

Fi =

{︄
Fi−1 ∪ {Ci} if si ∈ {a, r}
Fi−1 \ {Ci} if si = d

Given that, as assumed earlier, all clauses derived by the
solver are RUP (and thus RAT) clauses with respect to the
accumulated formula, this holds for all clause additions in the
augmented proof as well. Only the clause restorations are not
justified, but we deal with them during post-processing.

The post-processing, which we describe in detail below, is
formalized via the post-processing function Φ, which takes

as arguments an augmented proof trace P together with an
(initially empty) set R of restored clauses.

Φ(ϵ, R) = ϵ

Φ(P · ⟨s, C⟩, R) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ(P,R) · ⟨a, C⟩ if s = a

Φ(P,R ∪ {C}) if s = r

Φ(P,R \ {C}) if s = d ∧ C ∈ R

Φ(P,R) · ⟨d, C⟩ if s = d ∧ C ̸∈ R

Intuitively, Φ traverses the augmented proof trace in reverse
order, statement by statement. When the algorithm encounters
a clause addition, it simply adds it to the new proof trace.
When it encounters a clause restoration, it adds the clause to
the set R but does not add anything to the new proof trace.
Finally, when it encounters a deletion, it checks whether the
deleted clause is contained in R, and if so, removes the deleted
clause from R without changing the proof trace, otherwise it
just adds the deletion to the new proof trace. The resulting
proof trace is a subsequence of the original proof P .

Example 4. Consider the augmented proof trace P = ⟨a, x∨
y⟩, ⟨d, y∨ z⟩, ⟨d, z̄ ∨u⟩, ⟨r, y∨ z⟩, ⟨a, x∨ ū⟩. At the beginning,
R := ∅. The post-processing function Φ traverses P in reverse
order, starting with ⟨a, x ∨ ū⟩, which it appends to the result
of the recursive call for the remainder of the list: Φ(⟨a, x ∨
y⟩, ⟨d, y∨z⟩, ⟨d, z̄∨u⟩, ⟨r, y∨z⟩, ∅)·⟨a, x∨ū⟩. It next encounters
the restoration ⟨r, y ∨ z⟩ and thus sets R := {y ∨ z} for the
recursive call. When it next encounters the deletion ⟨d, z̄∨u⟩,
it adds it to the processed proof because the clause is not in the
restore set R: Φ(⟨a, x∨y⟩, ⟨d, y∨z⟩, {y∨z})·⟨d, z̄∨u⟩, ⟨a, x∨
ū⟩. However, for the next deletion, ⟨d, y ∨ z⟩, the clause is
already in R. Thus the deletion is not added to the processed
proof but instead, the clause is removed from R. Finally, the
addition ⟨a, x∨y⟩ is also added to the processed proof, so we
end up with the proof ⟨a, x ∨ y⟩, ⟨d, z̄ ∨ u⟩, ⟨a, x ∨ ū⟩.

As we can see in Example 4, the clause (y ∨ z) was
restored during solving and thus ⟨r, y ∨ z⟩ was part of the
augmented proof trace. In the final proof trace, however, the
clause is never even deleted. Intuitively, the consequence for
the accumulated formula is that it always contains all the
clauses required to make further derivations. More specifically,
consider the augmented proof trace P and the processed
proof P ′, where the latter is a subsequence of the former.
If we compare the accumulated formulas of each proof after
any proof statement ⟨si, Ci⟩ contained in both P ′ and P ,
we observe that the accumulated formula with respect to P ′

contains all clauses of the accumulated formula with respect
to P .

Since we assume all added clauses are RUP (and thus RAT)
clauses, and since RUP is monotonic, we obtain a valid DRAT
proof in which all clause additions fulfill the RAT property.

V. IMPLEMENTATION

We implemented our approach on top of the incremental
inprocessing SAT solver CaDiCaL. In particular, we added

136

the capability to produce augmented proofs with restore state-
ments. As restorations only occur during incremental solving
with inprocessing, our changes to CaDiCaL do not impact
non-incremental solving. Additionally, we implemented proof
post-processing in a dedicated tool. The tool traverses a proof
backwards, printing all proof statements immediately (instead
of prepending them to an internal data structure) to keep the
memory requirements low. Since this leads to a reversed proof,
we reverse it again at the end to get a valid DRAT proof.
Our toolchain can produce DRAT proofs in both the plain-
text format and the binary format.

In order to obtain valid proofs, we made changes to CaD-
iCaL to maintain the invariant that each clause restoration is
preceded by a corresponding deletion. This invariant, which
we used when arguing about correctness of our approach, is
guaranteed to hold if a solver records all applications of the
WEAKEN+ rule as deletions in the proof. In practice, however,
there are additional subtleties that need to be taken care of to
make sure this is the case. We now explain the three most
important changes to CaDiCaL to provide solver developers
with guidance for implementing our approach on top of other
solvers.

A. Deletion of Binary Clauses

When CaDiCaL logically deletes a clause during solving,
it immediately marks the clause as deleted but only later,
during garbage collection, really removes it from memory.
For non-binary clauses, it logs a deletion statement to the
proof immediately after logical deletion. For binary clauses,
however, the deletion is only logged once the clause is really
removed during garbage collection. For binary clauses, this
could lead to the case where a clause is first marked deleted
and then restored, but the deletion is only logged in the
proof trace after restoration. The fix is simple: ensure garbage
collection is triggered before restoration; thus all deletions
occur in the proof before their corresponding restorations.

B. Proper Handling of Equivalent-Literal Substitution

CaDiCaL performs an inprocessing technique called
equivalent-literal substitution [24] (“decompose” in
CaDiCaL’s code). The technique identifies equivalent
literals in the binary implication graph of a formula and then
substitutes a single representative literal for each equivalence
class of literals. For example, if x and y are identified as
equivalent, CaDiCaL might replace all occurrences of y by x.
To later reconstruct a proper model for the removed literals,
CaDiCaL adds to the reconstruction stack an equivalence
(x̄ ∨ y) ∧ (x ∨ ȳ) for each removed y and representative x.
These clauses are never explicitly added or deleted and thus
they are not represented in the proof. However, as they are
on the reconstruction stack, CaDiCaL may restore them. To
deal with this situation, we add the equivalences to the proof
(which is allowed because they are trivially RUP) and then
immediately delete them again. This allows us to remove the
deletions during post-processing, ensuring proper derivation
of the equivalences in the proof.

C. Internal and External Representations of Literals

CaDiCaL maintains both an internal and an external rep-
resentation of literals, together with mappings between these
representations. This is because the solver sometimes removes
literals and then remaps the remaining ones to save mem-
ory (e.g., when performing equivalent-literal substitution as
above). This can lead to problems when restoring clauses. For
example, when a clause is restored and immediately simplified
(because some of its literals are falsified or satisfied at the
top level), the solver deletes the original clause and adds the
simplified clause to the proof. In particular, the solver first
maps the restored clause to an internal representation before
remapping it to an external representation when performing
the deletion—this “round trip” can lead to a different external
representation than the one originally deleted. In our imple-
mentation, we modified the corresponding code to ensure that
the deleted and restored clauses match in the proof.

VI. EVALUATION

To evaluate our approach in practice, we plugged our
proof-producing version of CaDiCaL into CaMiCaL [10],
a SAT-based bounded model checker that runs on AIGER
models [25] used in the hardware model checking competition
(HWMCC) [13]. Following the experiment in [10], we ran
CaMiCaL on the 300 models of the single safety property
track of HWMCC’17 [13], up to bound 1000 with a time
limit of 3600 seconds per model. In [10], it was shown that
on these models, enabling inprocessing with clause restoration
leads to a significant performance improvement compared to
disabling inprocessing or running it only in a restricted way,
e.g., by freezing [6] certain variables.

We ran our experiments on an Amazon EC2 m5d.metal
instance, which has an AWS-custom Intel Xeon Scalable
(Skylake) processor with 96 vCPUs, 384 GiB memory, and
four 900 GB SSDs, running Amazon Linux 2. We ran 24
benchmark processes in parallel.

Our primary goal was to demonstrate that our approach pro-
duces valid DRAT proofs. For each model of the benchmark
set, we performed a CaMiCaL run and generated a DRAT
proof for the highest unsatisifiable bound solved by CaMiCaL
within the time limit. This means that for unsatisfiable prob-
lems, we took the highest solved bound whereas for satisfiable
problems, we took the second highest solved bound (as it
yields an UNSAT result). There were four problems that were
satisfiable at the first bound and another two problems for
which CaMiCaL timed out while attempting to solve the first
bound, leaving 294 problems with an UNSAT result.2

To check the correctness of the resulting DRAT proof for
each problem, we extracted from CaMiCaL a DIMACS file in-
cluding all clauses that were added incrementally to CaDiCaL
during solving as well as unit clauses for the assumptions
of the final unsatisfiable call (i.e., one unit clause per as-
sumption). We then passed the DIMACS file together with

2The problems satisfiable at the first bound are 6s389b02.aig, bob-
miterbm1or.aig, bobsynth13.aig, and bobtuint24.aig; the problems for which
CaMiCaL timed out at the first bound are 6s128.aig and 6s398b09.aig.

137

0 1000 2000 3000 4000 5000 6000 7000
Size of Unprocessed Proof Trace (MB)

0

100

200

300

400

500

600

Pr
oo

f R
ec

on
st

ru
ct

io
n

Ti
m

e
(s

)

Fig. 3. Proof Reconstruction Time vs. Size of Proof Trace.

0 500 1000 1500 2000 2500 3000 3500
Total Solving Time (s)

0

100

200

300

400

500

600

Pr
oo

f R
ec

on
st

ru
ct

io
n

Ti
m

e
(s

)

Fig. 4. Proof Reconstruction Time vs. Total Solving Time.

the corresponding DRAT proof—obtained by post-processing
the original proof trace with our tool—to the proof checker
DRAT-trim [12]. For all 294 problems, DRAT-trim confirmed
that the proofs were correct.

To get an idea of the overhead introduced by our post-
processing approach, we measured the time spent on post-
processing as compared to solving. On average, the overhead
of post-processing was 5.3% of the actual solving time (i.e.,
the time spent inside the SAT solver, not the whole time spent
by the model checker). The time to post-process is linear in the
size of the proof trace, as shown in Fig. 3. The figure shows
that our implementation takes a little more than a minute to
post-process 1 GB of proof. While fast, the overhead varies
considerably between problems, as the proof size is not a
function of the solving time, i.e., two solver runs that take
the same time might produce proofs of different sizes, as is
illustrated in Fig. 4.

Next, we present performance measurements from our ex-
periments to give an indication of the performance of our
approach as compared to an alternate approach to generating
a proof by solving the corresponding bound with CaDiCaL
monolithically from scratch using non-incremental solving

1000 2000 3000 4000 5000 6000 7000
Proof Reconstruction Time (s)

1000

2000

3000

4000

5000

6000

7000

Si
ng

le
-S

ho
t S

ol
vi

ng
 T

im
e

(s
)

Fig. 5. Proof Reconstruction vs. Single-Shot Solving.

with proof generation enabled. For example, if CaMiCaL was
able to solve n bounds of an incremental problem, we take the
propositional formula corresponding to bound n and solve it
non-incrementally with a new CaDiCaL instance that produces
a proof. We then compare the time it takes CaDiCaL to
produce that proof with the time it takes to post-process the
incremental proof with our approach, to see which approach is
more efficient. In this experiment, we gave the non-incremental
CaDiCaL a timeout of 7200 seconds, i.e., twice the CaMiCaL
timeout. While we believe these numbers are informative, we
note that they are not representative for general incremental
SAT solving as they only apply to our restricted benchmark
set (which we chose primarily to demonstrate soundness, as it
triggers many clause restorations).

Fig. 5 compares the two approaches. Clearly, post-
processing an incremental proof trace is much more efficient
than re-solving a formula from scratch. In particular, there
were 13 instances for which CaDiCaL timed out when trying
to solve them in a single shot. This is not a surprise: there
is no guarantee that a problem that is solvable incrementally
can also be solved in a single shot, whereas post-processing a
proof takes a small overhead that can be estimated based on
the size of the unprocessed proof trace.

The results are less clear when we consider the sum of time
spent on post-processing/single-shot solving and on checking
the resulting proofs. For this comparison, we excluded the
13 instances for which CaDiCaL timed out when solving
them in a single shot; Fig. 6 shows the results. Although our
approach is 13% faster on average, there are several problems
where the monolithic approach is faster. One reason for this
is that incremental proofs are usually larger than the ones
produced by single-shot solving, as illustrated in Fig. 7. To
summarize, on the models of the single safety property track
of HWMCC’17, post-processing incremental proofs is faster
than producing proofs from scratch in a single shot, with the
latter carrying the risk of timeouts. On the flip side, if single-
shot solving succeeds, it tends to produce shorter proofs, which
can in turn be checked faster.

138

1000 2000 3000 4000 5000 6000 7000
Proof Reconstruction + Proof Checking (s)

1000

2000

3000

4000

5000

6000

7000
Si

ng
le

-S
ho

t S
ol

vi
ng

 +
 P

ro
of

 C
he

ck
in

g
(s

)

Fig. 6. Proof Reconstruction vs. Single-Shot Solving (incl. Checking).

10 2 10 1 100 101 102 103 104

Size of Incremental Proof (MB)

10 2

10 1

100

101

102

103

104

Si
ze

 o
f S

in
gl

e-
Sh

ot
 P

ro
of

 (M
B)

Fig. 7. Proof Size: Incremental vs. Single-Shot Solving (log scale).

VII. CONCLUSION AND FUTURE WORK

We have presented an efficient approach to generate proofs
for inprocessing incremental solvers based on the calculus
from [10]. We augment the DRAT [12] proof format by
adding restore steps to the proof. These steps can be effi-
ciently removed during post-processing, yielding a standard
DRAT proof. We implemented the approach on top of the
CaDiCaL [26] solver and demonstrated its soundness and
efficiency against the benchmark suite from HWMCC’17 [13].
For these benchmarks, proof generation adds 2.9% average
overhead to solving. Post-processing adds 5.3% average over-
head.

We compared our approach to a monolithic one in which
we solved the final formula in a single shot and generated
proofs during this step. If solving times are compared, our
approach is faster, as it does not require a “from scratch” solve
of the entire problem. As our incremental proofs are larger
than the DRAT proofs generated by the monolithic solve, the
picture including proof-checking times is mixed. Although our
approach is faster on average when measuring the sum of
solving plus proof checking times, there are examples where
the situation is reversed.

There are two important advantages of our approach vs. re-
solving the final problem monolithically. First, it always yields
a solution, whereas the monolithic approach sometimes times
out on our benchmark set. Second, it provides a foundation
that can be adapted in future work towards efficiency and
robustness improvements for inprocessing incremental solvers
as discussed in the following.

When the LRAT support for CaDiCaL described in a future
paper [27] is integrated into the main repository, we will con-
vert the augmented DRAT format to LRAT (the deletions and
restorations are the same). In the results in [27], converting,
trimming, and checking proofs is approximately 5.5x faster
than for DRAT; this will lower the overhead for proof checking
in our approach relative to the solving time for the monolithic
problem. We also plan to examine how to use augmented
proof traces to migrate state of incremental solvers, extending
the work from [28] to support incremental use-cases. By
combining the migration approach with our proof approach,
we can migrate solver state between multiple platforms and
later combine the resulting incremental proof fragments. This
support allows us to better utilize cloud resources and build
solvers that can be restarted after machine failures. Finally, we
can adapt our approach for use in distributed incremental solv-
ing, as was earlier demonstrated for monolithic solving [29].

REFERENCES

[1] S. Gocht and T. Balyo, “Accelerating SAT based planning with
incremental SAT solving,” in Proceedings of the Twenty-Seventh
International Conference on Automated Planning and Scheduling,
ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017,
L. Barbulescu, J. Frank, Mausam, and S. F. Smith, Eds. AAAI Press,
2017, pp. 135–139. [Online]. Available: https://aaai.org/ocs/index.php/
ICAPS/ICAPS17/paper/view/15580

[2] R. Sebastiani, “Lazy satisability modulo theories,” J. Satisf. Boolean
Model. Comput., vol. 3, no. 3-4, pp. 141–224, 2007. [Online].
Available: https://doi.org/10.3233/sat190034

[3] P. Mishra and M. Chen, “Efficient techniques for directed test
generation using incremental satisfiability,” in Proceedings of the 2009
22nd International Conference on VLSI Design, ser. VLSID ’09.
USA: IEEE Computer Society, 2009, p. 65–70. [Online]. Available:
https://doi.org/10.1109/VLSI.Design.2009.72

[4] A. Yamada, T. Kitamura, C. Artho, E.-H. Choi, Y. Oiwa, and A. Biere,
“Optimization of combinatorial testing by incremental sat solving,” in
2015 IEEE 8th International Conference on Software Testing, Verifica-
tion and Validation (ICST), 2015, pp. 1–10.

[5] A. Biere, “Bounded model checking,” in Handbook of Satisfiability
- Second Edition, ser. Frontiers in Artificial Intelligence and
Applications, A. Biere, M. Heule, H. van Maaren, and T. Walsh,
Eds. IOS Press, 2021, vol. 336, pp. 739–764. [Online]. Available:
https://doi.org/10.3233/FAIA201002

[6] N. Eén and N. Sörensson, “Temporal induction by incremental SAT
solving,” Electron. Notes Theor. Comput. Sci., vol. 89, no. 4, pp. 543–
560, 2003. [Online]. Available: https://doi.org/10.1016/S1571-0661(05)
82542-3

[7] S. Kupferschmid, M. Lewis, T. Schubert, and B. Becker, “Incremental
preprocessing methods for use in BMC,” Formal Methods Syst.
Des., vol. 39, no. 2, pp. 185–204, 2011. [Online]. Available:
https://doi.org/10.1007/s10703-011-0122-4

[8] A. Biere, M. Järvisalo, and B. Kiesl, “Preprocessing in SAT solving,”
Handbook of Satisfiability, vol. 336, pp. 391–435, 2021.

[9] A. Nadel, V. Ryvchin, and O. Strichman, “Preprocessing in incremental
SAT,” in Theory and Applications of Satisfiability Testing - SAT
2012 - 15th International Conference, Trento, Italy, June 17-20, 2012.
Proceedings, ser. Lecture Notes in Computer Science, A. Cimatti and
R. Sebastiani, Eds., vol. 7317. Springer, 2012, pp. 256–269. [Online].
Available: https://doi.org/10.1007/978-3-642-31612-8_20

139

https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15580
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15580
https://doi.org/10.3233/sat190034
https://doi.org/10.1109/VLSI.Design.2009.72
https://doi.org/10.3233/FAIA201002
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1007/s10703-011-0122-4
https://doi.org/10.1007/978-3-642-31612-8_20

[10] K. Fazekas, A. Biere, and C. Scholl, “Incremental inprocessing in SAT
solving,” in Theory and Applications of Satisfiability Testing - SAT
2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal,
July 9-12, 2019, Proceedings, ser. Lecture Notes in Computer Science,
M. Janota and I. Lynce, Eds., vol. 11628. Springer, 2019, pp. 136–154.
[Online]. Available: https://doi.org/10.1007/978-3-030-24258-9_9

[11] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[12] M. J. H. Heule, “The DRAT format and drat-trim checker,” CoRR, vol.
abs/1610.06229, 2016. [Online]. Available: http://arxiv.org/abs/1610.
06229

[13] A. Biere, T. van Dijk, and K. Heljanko, “Hardware model checking
competition 2017,” in 2017 Formal Methods in Computer Aided
Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017, D. Stewart
and G. Weissenbacher, Eds. IEEE, 2017, p. 9. [Online]. Available:
https://doi.org/10.23919/FMCAD.2017.8102233

[14] N. Wetzler, M. J. Heule, and W. A. H. Jr., “DRAT-trim: Efficient
checking and trimming using expressive clausal proofs,” in Theory
and Applications of Satisfiability Testing - SAT 2014 - 17th
International Conference, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings,
ser. Lecture Notes in Computer Science, C. Sinz and U. Egly,
Eds., vol. 8561. Springer, 2014, pp. 422–429. [Online]. Available:
https://doi.org/10.1007/978-3-319-09284-3_31

[15] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds.,
Handbook of Satisfiability, ser. Frontiers in Artificial Intelligence
and Applications. IOS Press, 2009, vol. 185. [Online]. Available:
http://dblp.uni-trier.de/db/series/faia/faia185.html

[16] M. Järvisalo, M. J. Heule, and A. Biere, “Inprocessing rules,” in
Automated Reasoning - 6th International Joint Conference, IJCAR
2012, Manchester, UK, June 26-29, 2012. Proceedings, ser. Lecture
Notes in Computer Science, B. Gramlich, D. Miller, and U. Sattler,
Eds., vol. 7364. Springer, 2012, pp. 355–370. [Online]. Available:
https://doi.org/10.1007/978-3-642-31365-3_28

[17] G. Audemard, G. Katsirelos, and L. Simon, “A restriction of
extended resolution for clause learning SAT solvers,” in Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, M. Fox
and D. Poole, Eds. AAAI Press, 2010. [Online]. Available:
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1811

[18] O. Kullmann, “On a generalization of extended resolution,” Discret.
Appl. Math., vol. 96-97, pp. 149–176, 1999. [Online]. Available:
https://doi.org/10.1016/S0166-218X(99)00037-2

[19] M. J. H. Heule, B. Kiesl, M. Seidl, and A. Biere, “Pruning
through satisfaction,” in Hardware and Software: Verification and
Testing - 13th International Haifa Verification Conference, HVC
2017, Haifa, Israel, November 13-15, 2017, Proceedings, ser. Lecture
Notes in Computer Science, O. Strichman and R. Tzoref-Brill,
Eds., vol. 10629. Springer, 2017, pp. 179–194. [Online]. Available:
https://doi.org/10.1007/978-3-319-70389-3_12

[20] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June
19-23, 2005, Proceedings, ser. Lecture Notes in Computer Science,
F. Bacchus and T. Walsh, Eds., vol. 3569. Springer, 2005, pp. 61–75.
[Online]. Available: https://doi.org/10.1007/11499107_5

[21] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,” in
Tools and Algorithms for the Construction and Analysis of Systems,
16th International Conference, TACAS 2010, Held as Part of the
Joint European Conferences on Theory and Practice of Software,
ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, ser.
Lecture Notes in Computer Science, J. Esparza and R. Majumdar,
Eds., vol. 6015. Springer, 2010, pp. 129–144. [Online]. Available:
https://doi.org/10.1007/978-3-642-12002-2_10

[22] E. I. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability
for CNF formulas,” in 2003 Design, Automation and Test in
Europe Conference and Exposition (DATE 2003), 3-7 March 2003,
Munich, Germany. IEEE Computer Society, 2003, pp. 10 886–10 891.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/DATE.
2003.10008

[23] A. V. Gelder, “Verifying RUP proofs of propositional
unsatisfiability,” in International Symposium on Artificial
Intelligence and Mathematics, ISAIM 2008, Fort Lauderdale,
Florida, USA, January 2-4, 2008, 2008. [Online]. Avail-
able: http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_
0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf

[24] M. Heule, M. Järvisalo, and A. Biere, “Efficient CNF simplification
based on binary implication graphs,” in Theory and Applications of
Satisfiability Testing - SAT 2011 - 14th International Conference,
SAT 2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings, ser.
Lecture Notes in Computer Science, K. A. Sakallah and L. Simon,
Eds., vol. 6695. Springer, 2011, pp. 201–215. [Online]. Available:
https://doi.org/10.1007/978-3-642-21581-0_17

[25] A. Biere, T. van Dijk, and K. Heljanko, “Aiger 1.9 and beyond,” In-
stitute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstrasse 69, 4040 Linz, Austria, FMV Reports Series, 2011.

[26] A. Biere, “CaDiCaL at the SAT Race 2019,” in Proc. of SAT Race 2019
– Solver and Benchmark Descriptions, ser. Department of Computer
Science Series of Publications B, M. Heule, M. Järvisalo, and M. Suda,
Eds., vol. B-2019-1. University of Helsinki, 2019, pp. 8–9.

[27] F. Pollitt, M. Fleury, and A. Biere, “Efficient proof checking with lrat in
cadical (work in progress),” in 26th GMM/ITG/GI Workshop on Methods
and Description Languages for Modelling and Verification of Circuits
and Systems, MBMV 2023, Freiburg, Germany, March 23-23, 2023,
A. Biere and D. GroÃŸe, Eds. VDE, 2023, pp. 64–67, accepted.

[28] A. Biere, M. S. Chowdhury, M. J. Heule, B. Kiesl-Reiter, and
M. Whalen, “Migrating solver state,” in SAT 2022, 2022. [Online]. Avail-
able: https://www.amazon.science/publications/migrating-solver-state

[29] D. Michaelson, D. Schreiber, M. J. Heule, B. Kiesl-
Reiter, and M. Whalen, “Unsatisfiability proofs for dis-
tributed clause-sharing sat solvers,” in TACAS 2023,
2023. [Online]. Available: https://www.amazon.science/publications/
unsatisfiability-proofs-for-distributed-clause-sharing-sat-solvers

140

https://doi.org/10.1007/978-3-030-24258-9_9
http://arxiv.org/abs/1610.06229
http://arxiv.org/abs/1610.06229
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.1007/978-3-319-09284-3_31
http://dblp.uni-trier.de/db/series/faia/faia185.html
https://doi.org/10.1007/978-3-642-31365-3_28
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1811
https://doi.org/10.1016/S0166-218X(99)00037-2
https://doi.org/10.1007/978-3-319-70389-3_12
https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-642-12002-2_10
https://doi.ieeecomputersociety.org/10.1109/DATE.2003.10008
https://doi.ieeecomputersociety.org/10.1109/DATE.2003.10008
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
https://doi.org/10.1007/978-3-642-21581-0_17
https://www.amazon.science/publications/migrating-solver-state
https://www.amazon.science/publications/unsatisfiability-proofs-for-distributed-clause-sharing-sat-solvers
https://www.amazon.science/publications/unsatisfiability-proofs-for-distributed-clause-sharing-sat-solvers

Formal Methods in Computer-Aided Design 2023

Verified Encodings for SAT Solvers
Cayden R. Codel

Computer Science Department
Carnegie Mellon University

Pittsburgh, USA
ccodel@cs.cmu.edu

Jeremy Avigad
Department of Philosophy
Carnegie Mellon University

Pittsburgh, USA
avigad@cmu.edu

Marijn J. H. Heule
Computer Science Department

Carnegie Mellon University
Pittsburgh, USA

marijn@cmu.edu

Abstract—Satisfiability (SAT) solvers are versatile tools that
can solve a wide array of problems, and the models and proofs of
unsatisfiability emitted by SAT solvers can be checked by verified
software. In this way, the SAT toolchain is trustworthy. However,
many applications are not expressed natively in SAT and must
instead be encoded into SAT. These encodings are often subtle,
and implementations are error-prone. Formal correctness proofs
are needed to ensure that implementations are bug-free.

In this paper, we present a library for formally verifying SAT
encodings, written using the Lean interactive theorem prover.
Our library currently contains verified encodings for the parity,
at-most-one, and at-most-k constraints. It also contains methods
of generating fresh variable names and combining sub-encodings
to form more complex ones, such as one for encoding a valid
Sudoku board. The proofs in our library are general, and so this
library serves as a basis for future encoding efforts.

I. INTRODUCTION

Satisfiability (SAT) solvers are powerful and versatile tools.
They solve hardware and software verification tasks [1, 2],
they are used in satisfiability modulo theory solvers [3, 4], and
they are instrumental in resolving longstanding open problems
in mathematics [5, 6]. Impressed by their strength and utility,
Donald Knuth called SAT solvers a “killer app” [7].

Modern SAT solvers are also trustworthy. Since the SAT
problem is in NP [8], models can be efficiently checked. When
no model exists, solvers emit a certificate of unsatisfiability,
which is a step-by-step proof written in a formal proof
system [9, 10], the de facto standard being DRAT [11]. Proof
checkers can then check that the certificate is correct [12, 13].
Proof checkers are simple pieces of software; several checkers
have been formally verified [14–17].

Many applications are not expressed natively in SAT and
must instead be encoded into SAT. The challenge is that encod-
ings are often subtle, and so it is easy to make off-by-one errors
and other bugs when implementing an encoding. Detecting
errors in an encoded formula is even more challenging: in
extreme cases, encodings can contain hundreds of thousands
of variables and clauses. A single wrong variable or clause
can render the entire formula useless. One way to get rid of
bugs in encodings is to verify them in a proof assistant.

In this paper, we present a library for verifying SAT
encodings, written with the proof assistant Lean 3 [18]. So
far, we have verified encodings for the parity, at-most-one, and

This work was partially supported by the Hoskinson Center for Formalized
Mathematics and by NSF grant CCF-2108521.

at-most-k constraints. These encodings are common and are
used in applications such as cryptography [19, 20], haplotype
inference [21], and approximate model counting [22].

In addition to our correctness proofs, we discuss the
techniques we developed in our library. One major contribution
in our library is a way of introducing and managing fresh
variables, which are commonly used to minimize the number
of clauses in an encoding. Another contribution is a method of
composing constraints and encodings together to form more
complex ones while keeping correctness proofs short. We
demonstrate how these operations are used in an encoding
of Sudoku in Section VI.

II. PRELIMINARIES

Boolean variables range over the classical truth values true
(⊤) and false (⊥). Boolean literals are positive or negative
forms of boolean variables, written as x and x, respectively.
Truth assignments τ give truth values to sets of boolean
variables. When τ(x) = ⊤, then τ(x) = ⊥. If F is a
propositional formula that evaluates to true under τ , written
as τ(F) = ⊤, then we say that τ satisfies F . If there exists a
τ that satisfies F , then F is satisfiable.

Let vars(·) be the set of variables contained in a propositional
formula. We overload vars(·) for τ to mean the set of variables
that τ is defined over. If τ and τ ′ are truth assignments such that
vars(τ) ⊆ vars(τ ′) and τ(x) = τ ′(x) whenever x ∈ vars(τ),
then τ ′ extends τ .

Most modern SAT solvers only accept formulas in con-
junctive normal form (CNF). A formula is in CNF if it is
a conjunction of clauses, with each clause a disjunction of
literals. Unless otherwise noted, when we refer to a formula
F , we assume it is in CNF.

Any problem may admit many encodings. From a mathemati-
cal point of view, the choice of encoding doesn’t matter as long
as each is correct, but in practice, solvers perform better on
encodings with fewer variables and clauses [23, 24]. Generally,
compact encodings introduce fresh variables to reduce the
overall number of clauses, but at the cost of added complexity.

In this paper, we focus on encodings of n-ary boolean
constraints. Let X = x1, . . . , xn represent the inputs to an
n-ary boolean constraint C, and let F be any propositional
formula. When vars(F) ⊆ X , then F encodes C if and only
if it defines it: for every full assignment τ on X , we require

C(τ(x1), . . . , τ(xn)) ↔ τ(F) = ⊤.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 22 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0003-3588-4873
mailto:ccodel@cs.cmu.edu
https://orcid.org/0000-0003-1275-315X
mailto:avigad@cmu.edu
https://orcid.org/0000-0002-5587-8801
mailto:marijn@cmu.edu
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_22
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_22
https://creativecommons.org/licenses/by/4.0/

Yet F may use additional variables. The following definition
handles the more general case.

Definition 1 (Encoding a boolean constraint): Let C be a
boolean constraint, F be any propositional logic formula, and
X = x1, . . . , xn be variables representing the inputs to C.
Then F encodes C if and only if: for every assignment τ on
X , C(τ(x1), . . . , τ(xn)) if and only if F is satisfied by some
assignment that extends τ .

Using the language of quantified propositional logic, this
amounts to saying that C is defined by ∃y1, . . . , ym F , where
the yi are the additional variables appearing in F . It may help
to think of the yi as auxiliary objects that are required to satisfy
their descriptions in F .

In our library, an encoding function for a constraint C takes
an input list of boolean literals and returns an encoding for
C on those literals.1 An encoding function is correct for C if
the formulas it produces encode C on all valid inputs. We will
see in Section IV that this notion of correctness will need to
be augmented to account for fresh variable generation.

III. THE CONSTRAINTS AND THEIR ENCODINGS

We now discuss the constraints and encodings that appear
in our proof library and develop the intuition for why the
encodings are correct. These intuitions form the basis for the
correctness proofs presented in Section V.

A. The parity constraint

The n-ary parity constraint is encountered in problems from
a wide range of domains, such as cryptography [19, 20],
approximate model counting [22], the creation of matrix
multiplication schemes [25, 26], and the construction of set
membership filters [27]. Many encodings for this constraint
have been proposed [26, 28–30], and to the best of our
knowledge, these encodings remain unverified. In our library,
we prove the correctness of two particular encodings: the direct
encoding and a recursive encoding.

The parity constraint concerns the true-false parity of a
set of boolean variables. Let PARITY(X) be satisfied iff an
odd number of the xi are true. One way to write PARITY in
propositional logic is with the XOR (⊕) connective, where
x ⊕ y = ⊤ iff exactly one of x and y are true. We can thus
write PARITY(X) as x1 ⊕ · · · ⊕ xn.

The first encoding we examine is the direct (or naive)
encoding. Every boolean constraint has a direct encoding that
is essentially a spelled-out truth table. Direct encodings are
sometimes chosen because they are simple to implement, since
they don’t introduce fresh variables, but they often produce
formulas with many clauses, and so they are not preferred
on large inputs. In the case of the parity constraint, its direct
encoding produces a formula with 2n−1 clauses. Such a formula
quickly becomes intractable for solvers.

1It is convenient for encoding functions to accept lists of literals as input
rather than lists of variables since that allows the inputs to be negated. This is
useful when implementing several encodings, especially recursive ones.

Definition 2 (Direct encoding of PARITY): The direct
encoding of PARITY on boolean literals X = x1, . . . , xn is

DIRECTPARITY(X) =
⋀︂

even # of negations

(︃ n⋁︂
i=1

±xi

)︃
.

To see how the encoding works, consider any assignment τ
that does not satisfy PARITY. We know by the definition of
PARITY that an even number of the xi must be true under τ .
Since the direct encoding includes every clause with an even
number of negations, we can find the clause that negates exactly
those xi that are true under τ . That clause evaluates to false
under τ . Thus, the only truth assignments that satisfy every
clause are those that set an odd number of the xi to true, which
are precisely the assignments that satisfy PARITY.

The second encoding is a recursive one loosely based on the
Tseitin transformation [31]. The Tseitin transformation takes a
propositional logic formula F and produces an equisatisfiable
CNF formula that has length linear in the size of F by
recursively introducing fresh literals via if-and-only-if relations
with sub-formulas. This method of introducing fresh variables
is used in the recursive encoding.

We first fix a cutting number k ≥ 3 to determine how to
split x1 ⊕ · · · ⊕ xn into two sub-constraints. We then replace
the first k − 1 literals with a fresh literal and recurse:

Rk(X) = (PARITY(X[1,k)) ↔ y) ∧ (y ⊕Rk(X[k,n]))

= DIRECTPARITY(X[1,k), y) ∧ Rk(y,X[k,n]),

where we get the second line by rearranging the variables
(recall that a ↔ b is equivalent to a⊕ b) and by replacing the
left instance of the parity constraint with the direct encoding.

Note that because ⊕ is commutative, we have a choice of
where to place y in the recursive step. In practice, it is common
to place y in either the leftmost or rightmost position. Encodings
that use the former method are called linear; the latter, pooled.
We prove the more general result that the encoding is correct
for any permutation of xk, . . . , xn and y.

The choice of where to place y in the recursive transforma-
tion can have a big impact on solver performance. For example,
consider an assignment that satisfies the parity constraint but
falsifies the two clauses containing the literals x1 and xn in
both encodings. The linear encoding requires O(n) updates to
its fresh literals to make the formula evaluate to true, while
the pooled encoding only requires O(log n) updates [26].

The choice of cutting number is also critical for solver
performance. When k is larger, each encoding introduces fewer
fresh variables but at a cost of larger direct encoding sub-
formulas. Applications are known for which cutting numbers
of k = 4, 6, and 7 are optimal [22, 26, 28]. In our correctness
proof, the cutting number is arbitrary.

Definition 3 (Recursive encoding for PARITY): Fix k ≥ 3,
and let p be a function that permutes lists. Then the recursive
encoding for the PARITY on literals X = x1, . . . , xn is

Rk(X) = DIRECTPARITY(X[1,k), y) ∧ Rk(p(y,X[k,n])),

142

where y is fresh. When n ≤ k, the direct encoding is used
instead. The linear encoding places y in the leftmost position,
while the pooled encoding places y in the rightmost position.

Both encodings presented in this section encode the positive
form of the parity constraint. To encode its negation, which is
satisfied iff an even number of the xi are true, one can either
encode PARITY(x1, x2, . . . , xn) or introduce a fresh variable
z and add a unit clause to ensure that z is set to true in any
satisfying assignment: z ∧ PARITY(z, x1, . . . , xn).

B. The at-most-one constraint
Pseudo-boolean constraints appear in many applications for

the SAT and maximum satisfiability problems, from scheduling
to haplotype inference [21, 32–35]. One important class of
pseudo-boolean constraint is the cardinality constraint, which
can be written as

n∑︂
i=1

aixi ≤ k or
n∑︂

i=1

aixi ≥ k,

where k is a fixed constant, ai ∈ {±1}, and xi = 1 when
τ(xi) = ⊤ and xi = 0 otherwise. In our library, we assume
that all ai = 1, but we allow writing cardinality constraints in
terms of boolean literals, so the two systems are equivalent.

The at-most-one constraint (AMO) is an especially common
cardinality constraint. As its name indicates, it specifies that at
most one of the xi can evaluate to true. Many AMO encodings
have been proposed [36–40]. In our library, we prove the
correctness of the direct and sequential counter encodings.

Like for PARITY, the direct encoding for AMO is its CNF
definition. It consists of binary clauses (xi ∨ xj) that disallow
truth assignments that set both xi and xj to true. The encoding
produces

(︁
n
2

)︁
∈ O(n2) clauses and uses no fresh variables.

Definition 4 (Direct encoding of AMO): The direct encoding
of the AMO constraint on boolean literals X = x1, . . . , xn is

DIRECTAMO(X) =
⋀︂

1≤i<j≤n

(xi ∨ xj).

The sequential counter encoding [40] is a popular linear-
sized encoding. It produces 3n − 4 ∈ O(n) clauses and
introduces n − 1 signal variables that propagate the truth
value of any true xi to other signal variables to ensure that all
later xj remain false. Figure 1 shows the encoding under a
satisfying truth assignment.

Definition 5 (The sequential counter AMO encoding): The
sequential counter encoding for the AMO constraint on boolean
literals X = x1, . . . , xn is

SC(X) =

n−1⋀︂
i=1

(︃
(xi ∨ si) ∧ (si ∨ si+1) ∧ (si ∨ xi+1)

)︃
,

where the si are fresh and pairwise distinct.
In our library, we omit the clause (sn−1 ∨ sn) because sn

doesn’t appear in any other clause. Omitting the clause keeps
the number of signal variables at n− 1.

There are three kinds of clauses in the encoding. They are
logically equivalent to

(xi → si) ∧ (si → si+1) ∧ (si → xi+1).

x1

s1

x2

s2

x3

s3

x4

s4

. . .

. . .

Fig. 1. The sequential counter AMO encoding under a satisfying truth
assignment. Blue means the literal is true and red means the literal is false.
The hollow arrow heads indicate a negated implication. Notice how the signal
variables propagate that x2 is true, enforcing that all later xi must be false.

Writing the clauses like this makes it easier to see how the
encoding works. A true xi sets all following signal variables
to true, which then forces all following xj to false.

C. The at-most-k constraint

The sequential counter encoding can be generalized into an
encoding of the at-most-k constraint (AMK). It introduces a
(k + 1) × n matrix of signal variables and produces O(nk)
clauses. Clauses similar to those in the AMO encoding ensure
that the matrix tracks the cumulative number of the xi that are
true. A unit clause containing the last signal variable disallows
truth assignments that set more than k of the xi to true.

Let si, j be the signal variable on the ith row and jth column
of the matrix. The encoding ensures that si, j is set to true
when at least i of x1, . . . , xj are true. One can think of j as
defining the X[1,j] sub-array and i as the truth counter.

Definition 6 (The sequential counter AMK encoding): Let
k ≥ 2 be given. The sequential counter AMK encoding on
literals X = x1, . . . , xn is

SCk(X) =

⎛⎝ n⋀︂
j=1

(xj ∨ s1, j)

⎞⎠ ∧

⎛⎝k+1⋀︂
i=1

n−1⋀︂
j=1

(si, j ∨ si, j+1)

⎞⎠
∧

⎛⎝ k⋀︂
i=1

n−1⋀︂
j=1

(xj+1 ∨ si, j ∨ si+1, j+1)

⎞⎠ ∧ sk+1, n ,

where the si,j are fresh and pairwise distinct.
There are three types of clauses in the encoding. The first

two appear in the AMO encoding. The third kind, the ternary
clause, is logically equivalent to (xj+1 ∧ si, j) → si+1, j+1.
Whenever si, j is true, meaning that at least i of x1, . . . , xj

are true, and xj+1 is true, then si+1, j+1 is set to true. In other
words, the ternary clause propagates the truth counter up a row
in the signal variable matrix when a new xj+1 is set to true.

Figure 2 shows the encoding under a satisfying truth
assignment.

IV. LIBRARY FOR VERIFIED ENCODINGS

In this section, we present our library for verifying SAT
encodings. We used the interactive theorem prover Lean 3 [18]
(hereafter called Lean), and our library depends on Lean’s
community proof library mathlib [41]. Our library is open-
source, and all proofs and compilation instructions can be
found at the following URL:

143

https://github.com/leanprover-community/mathlib

x1

s1,1

s2,1

s3,1

x2

s1,2

s2,2

s3,2

x3

s1,3

s2,3

s3,3

x4

s1,4

s2,4

s3,4

. . .

. . .

. . .

. . .

Fig. 2. The sequential counter AMK (k = 2) encoding under a satisfying truth
assignment. Blue means that the literal is true and red means the literal is
false. Notice how x3 being true sets a new row in the signal variable matrix
to true. A unit clause containing the top-rightmost signal variable disallows
any assignment that sets the top row of the matrix to true.

https://github.com/ccodel/verified-encodings.

Lean’s axiomatic foundation is a dependent type theory with
inductive types and a type of propositions. While Lean’s core
logic is constructive, proofs in mathlib make use of classical
logic. Our proofs do not depend on the specifics of Lean beyond
basic facts on natural numbers, functions, lists, and sets.

Variable and theorem names in this paper may differ from
those in our library since they can be verbose or cryptic. This is
due to our following Lean’s naming convention. While we have
edited names for readability, we have hyperlinked definitions
and theorems to their counterparts in our library.

A. Library preliminaries

We start our tour of the proof library by covering the basic
objects and operations we use. Most definitions are natural and
correspond to general intuition about CNF formulas, clauses,
and truth assignments and the interactions between them.

To avoid using a specific type for boolean variables, we use
an arbitrary type V that is equipped with a computable test for
equality. Literals are a sum type that are either positive (Pos
v) or negative (Neg v). Truth assignments are functions from
V to bool. Clauses and CNF formulas are represented by lists
of literals and clauses, respectively.

We define operations on these types, such as evaluation and
vars(·), and we prove theorems about those operations. All the
operations in our library are computable, meaning that Lean
can execute them on explicit instances of clauses and formulas.
As an example, consider the evaluation of clauses under a truth
assignment τ and the statement that a clause evaluates to true
under τ it has some literal that evaluates to true under τ .

def eval (τ : assignment V) (c : clause V) :=
c.foldr (λ l b, b || l.eval τ) ff

theorem clause_eval_tt_iff {τ} {c} :
c.eval τ = tt ↔ ∃ l ∈ c, l.eval τ = tt

The foldr function folds a binary operation over the elements
of a list, and l.eval τ evaluates literal l under τ . True and
false in Lean are written as tt and ff, respectively.

(The expressions c.foldr and l.eval are in Lean’s
anonymous projection notation. Because Lean infers l
to have type literal, it interprets l.eval τ as
literal.eval l τ , inserting l as the first explicit ar-
gument of the correct type. Similarly, because the type
clause V reduces to list V, Lean interprets c.foldr
as list.foldr c. We use this notation often.)

One consequence of our decision to represent truth assign-
ments as maps from V to bool is that any assignment in our
library is a full assignment. However, we have defined in this
paper that assignments are (potentially) partial maps on sets
of variables. Having assignments be full maps makes it easier
to construct and combine them, but it adds a small amount of
overhead in correctness proofs to manage the sets on which
the assignments are “defined.” It also requires us to modify
some definitions in Section II. For example, instead of saying
that τ2 extends τ1, we say that τ2 agrees with τ1 on a specified
set of variables V (agree_on). Thus, when τ1 and τ2 agree
on the variables in a clause, a formula, etc., evaluation and
other operations are equivalent under the two assignments.

A common pattern in our library is to start with an
assignment τ1 that satisfies a property on a set of variables V ,
and then “extend” it to a new assignment by setting explicit
truth values for variables not in V . One way to construct such
assignments is to use aite (short for “assignment if-then-
else”). Then, as long as the object under consideration only
has variables in (or not in) V , the aite assignment can be
reduced back to one of τ1 or τ2.

def aite (V : finset V) (τ1 τ2) :=
λ v, if v ∈ V then τ1 v else τ2 v

theorem aite_pos {V} {v} :
v ∈ V → ∀ τ1 τ2, (aite V τ1 τ2) v = τ1 v

B. Fresh variable generation and management

Almost all compact SAT encodings introduce auxiliary or
fresh variables, which are variables that don’t appear in the
input. For mathematicians (and most computer scientists),
generating fresh variables is easy: one assumes that there exists
a set with enough fresh variables and that these variables can
be chosen at will. But we have no such a priori assumption
when we use Lean. So, we took inspiration from de Bruijn
indices [42] and gensym objects [43] (such as in Lisp) to
create our own gensym object that generates fresh variables.

In our library, a gensym object is a pointer n on the natural
number line and an injective function f : N → α for α an
arbitrary type. The gensym’s pointer starts by default at n = 0,
but it can be initialized to a higher value, perhaps to avoid
variables already present in a formula. The fresh operation
provides a fresh variable under f and an updated gensym
with an incremented pointer. Batches of fresh variables can be
acquired with nfresh. Because f is injective, the generated
variables are all distinct.

A useful notion for a gensym is its stock, the set of variables
the gensym can produce. The stock S of a gensym g with
offset n is S(g) := {x : α | ∃ d ∈ N, f(n+ d) = x}.

144

https://github.com/ccodel/verified-encodings
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/clause.lean#L69
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/clause.lean#L88
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/assignment.lean#L31
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/assignment.lean#L118
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/assignment.lean#L124
https://franz.com/support/documentation/10.1/ansicl/dictentr/gensym.htm
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/gensym.lean#L28
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/gensym.lean#L56
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/gensym.lean#L72

To ease proof burdens when proving encodings correct, we
provide lemmas that state how an updated gensym’s stock
and generated fresh variables relate to the original stock. For
example, here are two lemmas we use often.

lemma fresh_stock_subset (g : gensym V) :
g.fresh.2.stock ⊆ g.stock

lemma fresh_not_mem_fresh_stock (g) :
g.fresh.1 /∈ g.fresh.2.stock

The fresh operation returns a pair of a variable and an
updated gensym object. In Lean, the components of a pair
are accessed through the .1 and .2 notation, which are
abbreviations for .fst and .snd.

Sometimes it is more convenient to index into a gensym’s
stock rather than request fresh variables. The nth operation
takes a number i and returns the fresh variable that would
have been generated after i calls to fresh, but without
updating the gensym. Using nth makes proving correctness
more challenging, however, since many lemmas associated
with fresh cannot be applied to nth, so fresh is the
recommended operation.

An equivalent definition for gensym is to only manage
the injective function f , where calls to fresh would give
back f := (λn, f(n+ 1)). We chose the offset representation
because it is easier to reason about natural numbers in Lean
than anonymous lambda functions. For example, it is easy to
prove that g.nth i ̸= g.nth j when i ̸= j due to the
injectivity of f , whereas the proof for the alternate definition
would be a more roundabout induction proof.

C. Encodings and correctness

We now have enough tools and machinery at hand to discuss
how the encodings and their proofs of correctness appear in
our library. We start by defining when a formula encodes a
constraint. In our library, a constraint is a function from list
bool to bool. Using agree_on in place of assignment
extension, we represent Definition 1 like so:

def encodes (C) (F) (l : list (literal V)) :=
∀ τ, (C.eval τ l = tt) ↔ ∃ σ, F.eval σ = tt

∧ (agree_on τ σ (vars l))

Encoding functions take lists of literals to CNF formulas. In
our library, we require a gensym to generate fresh variables,
so we add the gensym as an explicit input and output.

def enc_fn (V : Type*) := list (literal V) →
gensym V → cnf V × gensym V

The definition of correctness follows naturally from the one
in Section II: that for any input list of literals l, the resulting
formula produced by the encoding function encodes the
constraint on l. We must also add the assumption that the
variables in l and the stock of the provided gensym are
disjoint, ensuring that the fresh variables are actually fresh.

def is_correct (C) (e : enc_fn V) :=
∀ {|l|} {|g|}, disjoint (vars l) g.stock →
encodes C (e l g).1 l

Often, proving correctness is insufficient. Many encodings
are comprised of sub-encodings, and to prove that these
composite encodings are correct, we need to know that the
sub-encoding functions “play nice” with the gensym object as
it passes from one to the next. Otherwise, the combination of
two encoding functions may result in unexpected behavior. For
example, fresh variables could be taken from the gensym’s
stock without updating the gensym, leading to variable clash
when sub-formulas are combined.

To solve this problem, we introduce a notion of well-
behavedness. Intuitively, an encoding function is well-behaved
if the variables of its formulas either come from its input list
l or from the gensym’s stock, and its output gensym is
updated to avoid those fresh variables. All the encodings in
this paper are well-behaved.

def is_wb (e : enc_fn V) := ∀ {|l|} {|g|},
disjoint (vars l) g.stock →
(e l g).2.stock ⊆ g.stock ∧
(e l g).1.vars ⊆ (vars l) ∪
(g.stock \ (e l g).2.stock)

Well-behaved encoding functions can be combined together
safely. We define an append operation, written as ++, to run
one encoding function and then the other on the same list of
input literals. If each well-behaved encoding function encodes
a constraint, then their combination is also well-behaved and
encodes the boolean-AND of the two constraints.

def append (e1 e2) : enc_fn V := λ l g,
let ⟨F1, g1⟩ := e1 l g in
let ⟨F2, g2⟩ := e2 l g1 in ⟨F1 ++ F2, g2⟩

We also define a fold operation that folds append over a list
of encodings from left to right in the natural way. Analogous
append and fold operations are defined for constraints as
well, where append is the boolean-AND of the outputs.

V. PROVING THE ENCODINGS CORRECT

In this section, we present the correctness proofs for the
encodings we presented in Section III. The proofs generally
follow the intuition of correctness given with the definition of
the encodings, but we report challenges, quirks, or surprises.

A. The parity encodings

We represented PARITY by folding ⊕ (written as bxor in
Lean) across the input. A lemma states that the constraint is
satisfied iff an odd number of inputs are true.

def parity := λ l, l.foldr bxor ff
lemma parity_eq_bodd : parity.eval τ l =

bodd (clause.count_tt τ l)

We implemented the direct encoding by adding either x1 or
its negation to each of the 2n−1 (ordered) clauses on x2, . . . , xn.
The proof of correctness is short (only about 30 lines) and
proceeds along the already given intuition: By specifying that
all clauses in the encoded formula have an even number
of negations, any falsifying assignment for PARITY has a
corresponding clause in the formula that it does not satisfy.

145

https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/gensym.lean#L207
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/gensym.lean#L217
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/gensym.lean#L260
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L233
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L29
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L237
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L243
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L183
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L221
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L73
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L113
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/parity/parity.lean#L23
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/parity/parity.lean#L50

The recursive encoding and its correctness proof are more
interesting. In Lean, we take a cutting number k and a
permutation function p and implement the encoding recursively.

def recursive_parity {k} (hk : k ≥ 3) {p}
(hp : ∀ l, perm l (p l)) : enc_fn V

| l g := if l.length ≤ k then
direct_parity l g else
let ⟨y, g1⟩ := g.fresh in
let ⟨lhd, ltl⟩ := l.split (k - 1) in
let ⟨Frec, g2⟩ := recursive_parity (
p (Pos y :: ltl)) g1 in

⟨(direct_parity (lhd ++ [Neg y]) g1).1
++ Frec, g2⟩

The perm relation specifies whether two lists are permutations
of each other. The split operation returns two halves of the
list, split at the specified index.

The proof of correctness proceeds by strong induction
on the input list l. Let τ be the truth assignment in the
encodes judgment. The reverse direction (that if there exists
an assignment σ that agrees with τ on the variables in l and
satisfies the encoded formula, then τ satisfies PARITY) is almost
trivial. Applying the correctness proof for the direct encoding
and the induction hypothesis on the recursive sub-formula gives
two satisfied PARITY constraints. Dropping the fresh variable
y in both gives a single satisfied PARITY constraint.

The forward direction is more involved. To use the induction
hypothesis, we must show that PARITY(y,X[k,n]) is satisfied
under some truth assignment. We construct such a truth
assignment ν by extending τ to include a truth value for
the fresh variable y. If PARITY(X[k,n]) is satisfied under τ ,
then y is set to false in ν, and true otherwise. The induction
hypothesis on the sub-formula returns an assignment σ that
satisfies the sub-formula and that agrees with ν on {y}∪X[k,n].
Combining σ with τ on X[1,k) via aite finishes the proof.

The general takeaway is that for recursively-defined encod-
ings, the proof of correctness proceeds by (strong) induction
on the input list and requires the explicit setting of truth
values for one or more variables in an extended assignment,
especially among the fresh variables. Lemmas that manipulate
and reduce aite constructions are helpful, but the management
of hypotheses about set membership ultimately remains tedious.

B. The at-most encodings

We defined the AMK constraint with Lean’s list.count
operation, which counts the number of elements in a list that
match a given element. The AMO constraint is amk 1. The
at-least-k constraint ALK and the at-least-one constraint alo
are defined analogously.

def amk (k : nat) := λ l, l.count tt ≤ k

We implemented the direct encoding for AMO as a recursive
function. Because the direct encoding doesn’t require any
fresh variables, we defined a base function direct_amo’
to produce the formula. The actual encoding function passes
the gensym through untouched.

def direct_amo’ : list (literal V) → cnf V
| [] := []

| (lit :: ls) := (ls.map (λ m,
[lit.flip, m.flip])) ++ (direct_amo’ ls)

The correctness proof is straightforward and proceeds by
relating both the AMO constraint and the clauses in the direct
encoding to the truth value of any two elements in distinct
positions in the list via a distinct proposition we defined.

def distinct {α} (a1 a2 : α) (l : list α) :=
∃ (i j : nat) (Hi : i < l.length)
(Hj : j < l.length), i < j ∧
l.nth_le i Hi = a1 ∧ l.nth_le j Hj = a2

We now discuss the sequential counter encodings, starting
with the AMO encoding. Unlike for the recursive encoding
for PARITY, the AMO encoding isn’t inherently recursive,
but the three clauses have the same form for each i, so a
recursive implementation is possible. However, a non-recursive
implementation may allow for lemmas that better capture the
global behavior of the signal variables. We implemented both
a recursive and non-recursive encoding function in our library
to compare the proof efforts of the two methods.

The non-recursive sc_amo uses three helper functions that
each generate one of the three types of clauses. We provide
one of them, xi_to_si, below as an example. We omit the
cases where the input list has cardinality at most one.

def sc_amo : enc_fn V
| l g := let n := length l in

⟨join (map_with_index (λ idx lit,
xi_to_si g n idx lit ++
si_to_next_si g n idx ++
si_to_next_xi g idx lit) l),

(g.nfresh (n - 1)).2⟩

def xi_to_si (g) (n i : nat) (lit) : cnf V :=
if i < n - 1 then
[[lit.flip, Pos (g.nth i)]] else []

The function map_with_index applies a function to
each element in a list along with its index in the list. We
use map_with_index to access the corresponding signal
variable for each literal in l. The function join flattens a list
of lists into a single list.

In the recursive implementation sc_rec, we generate a
fresh signal variable y at each recursive level. We also generate
a second fresh variable z since we need to produce a clause
with two adjacent signal variables, but the gensym given to
the recursive call is the one that was produced by a single call
to fresh. We once again omit the trivial cases.

def sc_rec : enc_fn V
| [l1, l2] g :=

let ⟨y, g1⟩ := g.fresh in
⟨[[l1.flip, Pos y], [Neg y, l2.flip]], g1⟩

| (l1 :: l2 :: ls) g :=
let ⟨y, g1⟩ := g.fresh in
let ⟨z, _⟩ := g1.fresh in
let ⟨F’, g2⟩ := sc_rec (l2 :: ls) g1 in
⟨[[l1.flip, Pos y], [Neg y, Pos z],

[Neg y, l2.flip]] ++ F’, g2⟩

The correctness proof for sc_rec proceeds by induction on
the input list l. For the forward direction, the proof strategy is

146

https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/parity/recursive_parity.lean#L56
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cardinality/amk.lean#L23
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cardinality/direct_amo.lean#L25
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cardinality/distinct.lean#L18
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cardinality/sc_amo.lean#L50
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cardinality/sc_amo.lean#L40
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cardinality/sc_amo.lean#L439

similar to the one for recursive_parity. An assignment
that extends the given τ is constructed by setting the truth
value for signal variable s1 to τ(x1). If s1 is set to true, then
the assignment that sets all signal variables to true is proved
to satisfy the formula. Otherwise, s1 is set to false in the
extended assignment, and the induction hypothesis gives back
an assignment σ that satisfies the recursive sub-formula. An
aite construction finishes the proof.

Now the reverse direction. If τ(x1) is true, then we use
a lemma stating that because τ satisfies the formula, all
other xi must be false under τ (due to all signal variables
being true). Otherwise, the induction hypothesis gives that
AMO(x2, . . . , xn) is satisfied under τ , and since τ(x1) is false,
the full constraint is satisfied.

The correctness proof for the non-recursive sc_amo re-
quired engineering that was not present in the proof for
sc_rec. The additional engineering contributed to the proof
being 50% larger (300 vs. 200 lines).

In the forward direction, we supply an explicit truth assign-
ment sc_tau that provides the truth values for all signal
variables at once. A helper function var_idx extracts the
index i for each provided signal variable. Proving that sc_tau
satisfies the encoded formula was straightforward but tedious.

For the reverse direction, if no xi is true under τ , then of
course the AMO constraint is satisfied. Otherwise, the proof uses
lemmas showing that the signal variables propagate the truth
value of xi appropriately. Because the lemmas were stated in
terms of “if xi is true, then all later xj are false,” distinct
was used to finish the proof.

There are two main takeaways. The first is that the recursive
implementation and its correctness proof are more compact
than the non-recursive version’s. Because the fresh variables
generated at each recursive level are largely independent, the
induction hypothesis can be leveraged effectively.

The second takeaway is that much of the proof overhead
in the non-recursive case came from managing hypotheses
about set membership among the fresh variables (i.e., that they
are disjoint from the literals in l and the updated stock, and
that they were distinct from each other). As we developed our
library, we added more lemmas to ease these proof burdens, but
ultimately, proving facts like g.nth i /∈ l.take j when
g.stock and l are disjoint will persist. Future work could
address this burden by automating the proving of these facts.

We implemented the AMK encoding in a non-recursive
manner analogous to sc_amo. Since the implementation and
correctness proof are so similar, we omit the details.

VI. ENCODING SUDOKU

To demonstrate the use of our proof library, we implemented
an encoding for the Sudoku problem using AMO sub-encodings.
Because the encoding was formed by composing well-behaved,
correct sub-encodings, its correctness proof was only 15 lines.
In addition, it uses an abstract sub-encoding amo_enc that
can be defined to be any correct sub-encoding, which happily
agrees with the mathematical view of encodings.

4 3
7 9

6
1 4 5

9 1
2 6

7 2
5 8

9

4 3
7 9

6
1 4 5

9 1
2 6

7 2
5 8

9

1 7 8 9 2 6 5
5 8 6 2 1 4 3
3 9 2 5 7 1 8 4
8 7 3 6 2 9

6 4 7 2 5 3 8
1 5 9 3 8 4 7

6 3 8 5 9 4 1
7 9 4 6 1 3 2
4 2 1 8 3 6 5 7

Fig. 3. A 9-by-9 Sudoku puzzle (left) and its unique solution (right). Every
row, column, and 3-by-3 subgrid that compose the grid must have exactly one
each of the numbers 1 through 9.

Sudoku is a classic Japanese puzzle where one must fill in
a number between 1 and 9 in every cell in a 9-by-9 grid such
that every row, column, and 3-by-3 subgrid comprising the grid
must contain each number 1 through 9 exactly once. Numbers
present in the grid from the start define a single unique solution
to the puzzle. Figure 3 depicts a difficult Sudoku puzzle and
its solution. The general Sudoku problem is parameterized by
n, the side length for a single subgrid. In the figure, n = 3.

One encoding for Sudoku is to use AMO constraints for each
cell, row, column, and square, along with an ALO constraint
on each cell. Let X = {xr,c,k} be the set of boolean variables
used in the encoding. Setting xr,c,k to true means placing
number k in the cell in row r and column c. Each of r, c,
and k run from 1 to n2, making a total of n6 variables. For
example, the AMO constraint on the rows would look like

n2⋀︂
r=1

n2⋀︂
k=1

AMO(xr,1,k, . . . , xr,n2,k).

Implementing the Sudoku encoding in Lean using the
machinery we’ve discussed so far seems challenging. At first
blush, it looks like the append operation could combine all
the sub-encodings together, but append combines encodings
that share an input list of literals. In the Sudoku encoding
discussed above, each ALO and AMO constraint is expressed
on a different subset of the n6 variables in X . So append
won’t work without some modification.

Our solution is to compose each ALO and AMO encoding
function with a function filter_by_idx that filters out
indexes in a list that don’t satisfy a given predicate. This way,
all of the encoding functions can be folded together, since each
will extract the literals it needs. An example of one predicate we
use, is_cell_lit, returns whether a list index corresponds
to one of the literals associated with a particular cell. The filter
functions help define the sub-constraints on each cell, row,
column, and square on the Sudoku board.

def is_cell_lit (n row col : nat) := λ idx,
idx ∈ (range (nˆ2)).map (λ num,

(row * nˆ4) + (col * nˆ2) + num)

The function range k returns a list [0, 1, . . . , k − 1].

147

https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cardinality/sc_amo.lean#L133
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cardinality/sc_amo.lean#L60
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/basic.lean#L610
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/demos/sudoku.lean#L37

(The presentation of is_cell_lit above elides many
bookkeeping details. For instance, we use Lean’s fin type
instead of nat. However, the logical core is the same.)

In the spirit of Wadler’s “Theorems for Free!” [44], the
correctness and well-behavedness of encoding functions are
preserved under operations on arbitrary lists, such as permu-
tation and element copying and deletion, since our notion of
correctness refers only to the values in the list and not the
list itself. We use the theorem that filter_by_idx, which
returns a sublist of its input, preserves an encoding function’s
correctness to prove the Sudoku encoding correct.

We can now define the Sudoku constraint. We note that
while the constraint isn’t the most efficient one possible, it is
the most natural, and the redundant clauses in the encoded
formula help SAT solvers in practice. The encoding is defined
almost identically by swapping in the abstract encoding function
amo_enc in place of the sub-constraints.
def is_valid_sudoku (n : nat) :=
let L := cart_prod (nˆ2) (nˆ2) in
fold (L.map (λ ⟨r, c⟩, is_cell_valid r c)) ++
fold (L.map (λ ⟨c, k⟩, is_row_valid c k)) ++
fold (L.map (λ ⟨r, k⟩, is_col_valid r k)) ++
fold ((cart_prod n n).zip

(fin.range (nˆ2))).map
(λ ⟨⟨sr, sc⟩, k⟩, is_subgrid_valid sr sc k)

We omit a check by the function len_check, which en-
sures that the constraint only accepts lists of appropriate
length (of length n6). The function cart_prod returns
a list of pairs representing the Cartesian product of the
universe of fintypes. For example, cart_prod 2 3 =
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)].

To demonstrate Lean’s ability to produce these encodings,
we had Lean generate and save the Sudoku encoding to a file
in DIMACS format, which can then be sent to conventional
SAT solvers. The file can be found in our library.

VII. RELATED WORK

We are not the first to verify SAT encodings using a
proof assistant. Our work is most similar to Giljegård and
Wennerbreck’s library for verified SAT encodings [45], written
in CakeML [46]. In their library, they verified the correctness of
the naive AMO encoding, several encodings of pseudo-boolean
constraints, and the Tseitin transformation for turning arbitrary
propositional logic formulas into CNF. They also provide a
way to translate mathematical objects (e.g., unordered sets and
natural numbers) into SAT analogues, which helps with the
writing of encodings. They then applied their verified encodings
to logic puzzles like the n-queens problem and Sudoku variants.

Our work improves on Giljegård and Wennerbreck’s library
in two main regards. The first is our richer set of operations
and theorems on CNF objects. For example, constructing
composite truth assignments with aite is crucial for proving
the correctness of encodings that introduce fresh variables.

The second improvement is our library’s management of
fresh variables. While Giljegård and Wennerbreck’s library also
generates fresh variables to implement the Tseitin transforma-
tion, their reasoning about fresh variables is specialized to the

Tseitin transformation, as it is the only place in their library
where fresh variables are used. What’s more, they state that
they did not implement more-efficient encodings for pseudo-
boolean constraints due to the challenges of fresh variable
management. Our library solves this problem.

Our work also shares similarities with Luı́s Cruz-Filipe,
et al.’s work on an end-to-end verification of the encoding
of the Pythagorean triples problem [47]. They verified the
encoding, and additional symmetry breaking techniques, in
Coq [48]. Their types for literals, clauses, and CNF formulas
are identical to ours, and their notion of encoding correctness
agrees with our definition. However, because the encoding they
verified did not introduce fresh variables, they did not develop
any infrastructure for managing fresh variables.

Other verification efforts are domain-specific and mainly
translate other logical systems into SAT [49–51]. For example,
Ishii and Fujii verify an encoding of SAT-based model checking
in Coq. They formalize methods such as k-induction and
property-directed reachability to check the safety of state-
transition systems, and then they prove the soundness of
converting safety properties expressed using these methods
into SAT. By taking in a fixed number of transitions k, they
express the safety properties in terms of a finite logical formula,
which is then converted into propositional logic.

Our work has already seen application beyond this paper.
Holliday, Norman, and Pacuit [52] used our library to verify
their SAT encoding of problems in voting theory.

VIII. CONCLUSION AND FUTURE WORK

Our library has laid the groundwork for formally verifying
SAT encodings. The encodings we verify are efficient in
practice, even at large scales, and we have made efforts to
develop a framework that is general, extensible, and easy to use
in practice. So far, we have verified the correctness of encodings
for the parity, at-most-one, and at-most-k constraints and an
encoding of Sudoku. To do so, we developed methods of
generating fresh variables, constructing extended assignments,
and combining sub-encodings, and we proved lemmas that
allow us to reason about these operations.

Despite our progress, there is still much left to do. We plan
to upgrade our library to Lean version 4, which offers better
automation and linking to SAT and satisfiability modulo theory
solvers. We will also rewrite our gensym in terms of a state
monad to simplify writing encodings. Finally, many encodings
are still unverified. For example, a wide number of SAT-
solving applications require efficient encodings of cardinality
constraints [40, 53], pseudo-boolean constraints [54, 55], and
symmetry-breaking predicates [56, 57].

In the long run, our goal is to provide tools so that any claim
established with a SAT solver can be fully verified from start to
finish. Increasingly-complex mathematical theorems and claims
about hardware and software are being reduced to propositional
search problems, and these reductions are becoming more
subtle and involved. Interactive theorem proving therefore has
an important role to play, and our goal is to develop a library
that can adequately support the task.

148

https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/demos/sudoku.lean#L80
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L149
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/basic.lean#L514

REFERENCES

[1] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi,
A. Tacchella, and M. Y. Vardi, “Benefits of bounded
model checking at an industrial setting,” in CAV, pp. 436–
453, Springer, 2001.

[2] F. Ivančić, Z. Yang, M. K. Ganai, A. Gupta, and
P. Ashar, “Efficient SAT-based bounded model checking
for software verification,” Theoretical Computer Science,
vol. 404, no. 3, pp. 256–274, 2008.

[3] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean,
D. Jovanovic, T. King, A. Reynolds, and C. Tinelli,
“CVC4,” in Computer Aided Verification - 23rd Inter-
national Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings (G. Gopalakrishnan and
S. Qadeer, eds.), vol. 6806 of Lecture Notes in Computer
Science, pp. 171–177, Springer, 2011.

[4] L. de Moura and N. Bjørner, “Z3: An efficient SMT
solver,” in Tools and Algorithms for the Construction and
Analysis of Systems (C. R. Ramakrishnan and J. Rehof,
eds.), (Berlin, Heidelberg), pp. 337–340, Springer Berlin
Heidelberg, 2008.

[5] J. Brakensiek, M. J. H. Heule, J. Mackey, and D. Narváez,
“The Resolution of Keller’s Conjecture,” in Automated
Reasoning (N. Peltier and V. Sofronie-Stokkermans, eds.),
(Cham), pp. 48–65, Springer International Publishing,
2020.

[6] M. J. H. Heule, O. Kullmann, and V. W. Marek, “Solving
and verifying the Boolean Pythagorean triples problem
via cube-and-conquer,” in Theory and Applications of
Satisfiability Testing – SAT 2016 (N. Creignou and
D. Le Berre, eds.), (Cham), pp. 228–245, Springer
International Publishing, 2016.

[7] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh,
Handbook of Satisfiability: Volume 185 Frontiers in
Artificial Intelligence and Applications. Amsterdam, The
Netherlands: IOS Press, 2009.

[8] S. A. Cook, “The complexity of theorem-proving proce-
dures,” in STOC ’71: Proceedings of the third annual
ACM symposium on Theory of computing, (New York,
NY, USA), pp. 151–158, ACM, 1971.

[9] R. Ası́n, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-
Carbonell, “Efficient generation of unsatisfiability proofs
and cores in SAT,” in LPAR, pp. 16–30, 2008.

[10] A. Van Gelder, “Producing and verifying extremely large
propositional refutations - have your cake and eat it too,”
Ann. Math. Artif. Intell., vol. 65, no. 4, pp. 329–372, 2012.

[11] M. J. H. Heule, W. A. Hunt, Jr., and N. Wetzler, “Verifying
refutations with extended resolution,” in International
Conference on Automated Deduction (CADE), vol. 7898
of LNAI, pp. 345–359, Springer, 2013.

[12] E. I. Goldberg and Y. Novikov, “Verification of proofs of
unsatisfiability for CNF formulas,” in Design, Automation
and Test in Europe Conference and Exhibition (DATE),
pp. 10886–10891, IEEE, 2003.

[13] M. J. H. Heule, W. A. Hunt, Jr., and N. Wetzler,

“Trimming while checking clausal proofs,” in Formal
Methods in Computer-Aided Design (FMCAD), pp. 181–
188, IEEE, 2013.

[14] L. Cruz-Filipe, M. J. H. Heule, W. A. Hunt, M. Kaufmann,
and P. Schneider-Kamp, “Efficient certified RAT verifica-
tion,” in Automated Deduction – CADE 26 (L. de Moura,
ed.), (Cham), pp. 220–236, Springer International Pub-
lishing, 2017.

[15] L. Cruz-Filipe, J. Marques-Silva, and P. Schneider-Kamp,
“Efficient certified resolution proof checking,” in Tools and
Algorithms for the Construction and Analysis of Systems,
vol. 10205, pp. 118–135, 2017.

[16] M. J. H. Heule, W. Hunt, M. Kaufmann, and N. Wetzler,
“Efficient, verified checking of propositional proofs,”
in Interactive Theorem Proving (M. Ayala-Rincón and
C. A. Muñoz, eds.), (Cham), pp. 269–284, Springer
International Publishing, 2017.

[17] Y. K. Tan, M. J. H. Heule, and M. O. Myreen, “cake lpr:
Verified propagation redundancy checking in CakeML,” in
Tools and Algorithms for the Construction and Analysis
of Systems - 27th International Conference, TACAS 2021,
Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2021, Luxembourg City,
Luxembourg, March 27 - April 1, 2021, Proceedings,
Part II (J. F. Groote and K. G. Larsen, eds.), vol. 12652
of Lecture Notes in Computer Science, pp. 223–241,
Springer, 2021.

[18] L. M. de Moura, S. Kong, J. Avigad, F. van Doorn,
and J. von Raumer, “The Lean theorem prover (system
description),” in Conference on Automated Deduction
(CADE) 2015 (A. P. Felty and A. Middeldorp, eds.),
pp. 378–388, Springer, Berlin, 2015.

[19] A. Leventi-Peetz, O. Zendel, W. Lennartz, and K. We-
ber, “CryptoMiniSat switches-optimization for solving
cryptographic instances,” in Proceedings of Pragmatics
of SAT 2015 and 2018 (D. L. Berre and M. Järvisalo,
eds.), vol. 59 of EPiC Series in Computing, pp. 79–93,
EasyChair, 2019.

[20] M. Soos, K. Nohl, and C. Castelluccia, “Extending
SAT solvers to cryptographic problems,” in Theory and
Applications of Satisfiability Testing - SAT 2009, 12th
International Conference, SAT 2009, Swansea, UK, June
30 - July 3, 2009. Proceedings (O. Kullmann, ed.),
vol. 5584 of Lecture Notes in Computer Science, pp. 244–
257, Springer, 2009.

[21] A. Graça, I. Lynce, J. Marques-Silva, and A. L. Oliveira,
“Efficient and accurate haplotype inference by combin-
ing parsimony and pedigree information,” in Algebraic
and Numeric Biology (K. Horimoto, M. Nakatsui, and
N. Popov, eds.), pp. 38–56, Springer Berlin Heidelberg,
2012.

[22] M. Soos and K. S. Meel, “BIRD: engineering an efficient
CNF-XOR SAT solver and its applications to approximate
model counting,” in The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First In-
novative Applications of Artificial Intelligence Conference,

149

IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pp. 1592–
1599, AAAI Press, 2019.

[23] J. P. Marques-Silva and I. Lynce, “Towards robust CNF
encodings of cardinality constraints,” in Principles and
Practice of Constraint Programming - CP 2007, 13th
International Conference, CP 2007, Providence, RI, USA,
September 23-27, 2007, Proceedings (C. Bessiere, ed.),
vol. 4741 of Lecture Notes in Computer Science, pp. 483–
497, Springer, 2007.

[24] N. Manthey, M. J. H. Heule, and A. Biere, “Automated
reencoding of Boolean formulas,” in Hardware and
Software: Verification and Testing (A. Biere, A. Nahir, and
T. Vos, eds.), (Berlin, Heidelberg), pp. 102–117, Springer
Berlin Heidelberg, 2013.

[25] M. J. H. Heule, M. Kauers, and M. Seidl, “New ways
to multiply 3×3-matrices,” J. Symb. Comput., vol. 104,
pp. 899–916, 2021.

[26] W. Nawrocki, Z. Liu, A. Fröhlich, M. J. H. Heule, and
A. Biere, “XOR local search for Boolean brent equations,”
in Theory and Applications of Satisfiability Testing - SAT
2021 - 24th International Conference, Barcelona, Spain,
July 5-9, 2021, Proceedings (C. Li and F. Manyà, eds.),
vol. 12831 of Lecture Notes in Computer Science, pp. 417–
435, Springer, 2021.

[27] S. A. Weaver, H. J. Roberts, and M. J. Smith, “XOR-
satisfiability set membership filters,” in Theory and
Applications of Satisfiability Testing - SAT 2018 - 21st
International Conference, SAT 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford,
UK, July 9-12, 2018, Proceedings (O. Beyersdorff and
C. M. Wintersteiger, eds.), vol. 10929 of Lecture Notes
in Computer Science, pp. 401–418, Springer, 2018.

[28] G. V. Bard, N. T. Courtois, and C. Jefferson., “Efficient
methods for conversion and solution of sparse systems of
low-degree multivariate polynomials over GF(2) via SAT-
solvers.” Cryptology ePrint Archive, Report 2007/024,
2007.

[29] M. Gwynne and O. Kullmann, “A framework for good
SAT translations, with applications to CNF representations
of XOR constraints,” 2014.

[30] M. Gwynne and O. Kullmann, “On SAT representations
of XOR constraints,” in Language and Automata Theory
and Applications - 8th International Conference, LATA
2014, Madrid, Spain, March 10-14, 2014. Proceedings
(A. Dediu, C. Martı́n-Vide, J. L. Sierra-Rodrı́guez, and
B. Truthe, eds.), vol. 8370 of Lecture Notes in Computer
Science, pp. 409–420, Springer, 2014.

[31] G. S. Tseitin, “On the complexity of derivation in
propositional calculus,” in Automation of Reasoning 2
(J. Siekmann and G. Wrightson, eds.), pp. 466–483,
Springer, 1983.

[32] W. Küchlin and C. Sinz, “Proving consistency assertions
for automotive product data management,” Journal of
Automated Reasoning, vol. 24, no. 1, pp. 145–163, 2000.

[33] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P.
Warners, “Radio link frequency assignment,” Constraints,
vol. 4, no. 1, pp. 79–89, 1999.

[34] M. Jose and R. Majumdar, “Cause clue clauses: Error
localization using maximum satisfiability,” in Proceedings
of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’11,
p. 437–446, Association for Computing Machinery, 2011.

[35] R. Ası́n Achá and R. Nieuwenhuis, “Curriculum-based
course timetabling with SAT and MaxSAT,” Annals of
Operations Research, vol. 218, no. 1, pp. 71–91, 2014.

[36] O. Bailleux and Y. Boufkhad, “Efficient CNF encoding
of Boolean cardinality constraints,” in Principles and
Practice of Constraint Programming – CP 2003 (F. Rossi,
ed.), (Berlin, Heidelberg), pp. 108–122, Springer Berlin
Heidelberg, 2003.

[37] A. Frisch, T. Peugniez, A. Doggett, and P. Nightingale,
“Solving non-Boolean satisfiability problems with stochas-
tic local search: A comparison of encodings,” Journal of
Automated Reasoning, vol. 35, pp. 143–179, 01 2005.

[38] W. Klieber and G. Kwon, “Efficient CNF encoding for
selecting 1 from N objects,” in Fourth Workshop on
Constraint in Formal Verification (CFV), 2007.

[39] V.-H. Nguyen and S. T. Mai, “A new method to encode
the at-most-one constraint into SAT,” in Proceedings of
the Sixth International Symposium on Information and
Communication Technology, SoICT 2015, (New York, NY,
USA), p. 46–53, Association for Computing Machinery,
2015.

[40] C. Sinz, “Towards an optimal CNF encoding of Boolean
cardinality constraints,” in Principles and Practice of
Constraint Programming - CP 2005, 11th International
Conference, CP 2005, Sitges, Spain, October 1-5, 2005,
Proceedings (P. van Beek, ed.), vol. 3709 of LNCS,
pp. 827–831, Springer, 2005.

[41] The mathlib community, “The Lean mathematical li-
brary,” in Certified Programs and Proofs (CPP) 2020
(J. Blanchette and C. Hritcu, eds.), pp. 367–381, ACM,
2020.

[42] N. de Bruijn, “Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with
application to the Church-Rosser theorem,” Indagationes
Mathematicae (Proceedings), vol. 75, no. 5, pp. 381–392,
1972.

[43] A. Filinski, “Normalization by evaluation for the com-
putational lambda-calculus,” in Proceedings of the 5th
International Conference on Typed Lambda Calculi and
Applications, TLCA’01, (Berlin, Heidelberg), pp. 151–
–165, Springer-Verlag, 2001.

[44] P. Wadler, “Theorems for free!,” in Conference on
Functional Programming Languages and Computer Ar-
chitecture, 1989.

[45] S. Giljegård and J. Wennerbreck, “Puzzle solving with
proof,” Master’s thesis, Chalmers University of Technol-
ogy, University of Gothenburg, 2021.

[46] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens,

150

“CakeML: A verified implementation of ML,” in Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, (New
York, NY, USA), pp. 179–191, Association for Computing
Machinery, 2014.

[47] L. Cruz-Filipe, J. Marques-Silva, and P. Schneider-
Kamp, “Formally verifying the solution to the Boolean
Pythagorean triples problem,” J. Autom. Reason., vol. 63,
no. 3, pp. 695–722, 2019.

[48] Y. Bertot and P. Castéran, Interactive theorem proving and
program development: Coq’Art: the calculus of inductive
constructions. Springer Science & Business Media, 2013.

[49] K. Anuarul Hoque, O. A. Mohamed, S. Abed,
and M. Boukadoum, “An automated SAT encoding-
verification approach for efficient model checking,”
in 2010 International Conference on Microelectronics,
pp. 419–422, 2010.

[50] D. Ishii and S. Fujii, “Formalizing the soundness of
the encoding methods of SAT-based model checking,”
in International Symposium on Theoretical Aspects of
Software Engineering, TASE 2020, Hangzhou, China,
December 11-13, 2020 (T. Aoki and Q. Li, eds.), pp. 105–
112, IEEE, 2020.

[51] M. Abdulaziz and F. Kurz, “Formally verified SAT-based
AI planning,” 2020.

[52] W. H. Holliday, C. Norman, and E. Pacuit, “Voting theory
in the Lean theorem prover,” in Logic, Rationality, and
Interaction: 8th International Workshop, Lori 2021, Xi?an,
China, October 16?18, 2021, Proceedings (S. Ghosh and
T. Icard, eds.), pp. 111–127, Springer Verlag, 2021.

[53] J.-C. Régin, “Generalized arc consistency for global
cardinality constraint,” in 14th National Conference on
Artificial Intelligence (AAAI 1996), vol. 1, pp. 209–215,
AAAI Press / The MIT Press, 1996.

[54] O. Bailleux, Y. Boufkhad, and O. Roussel, “A trans-
lation of pseudo-Boolean constraints to SAT,” Journal
on Satisfiability, Boolean Modeling and Computation,
vol. 2, pp. 183–192, 2006. Special Issue on SAT 2005
competition and evaluations.

[55] N. Eén and N. Sörensson, “Translating Pseudo-Boolean
Constraints into SAT,” Journal on Satisfiability, Boolean
Modeling and Computation, vol. 2, pp. 1–25, 2006.
Special Issue on SAT 2005 competition and evaluations.

[56] F. A. Aloul, K. A. Sakallah, and I. L. Markov, “Efficient
symmetry breaking for Boolean satisfiability,” IEEE Trans.
Computers, vol. 55, no. 5, pp. 549–558, 2006.

[57] J. Crawford, M. Ginsberg, E. Luks, and A. Roy,
“Symmetry-breaking predicates for search problems,” in
Proc. KR’96, 5th Int. Conf. on Knowledge Representation
and Reasoning, pp. 148–159, Morgan Kaufmann, 1996.

151

Formal Methods in Computer-Aided Design 2023

SAT-Based Quantified Symmetric Minimization of
the Reachable States of Distributed Protocols

Katalin Fazekas
TU Wien

Vienna, Austria
katalin.fazekas@tuwien.ac.at

Aman Goel
Amazon Web Services§

Seattle, USA
goelaman@amazon.com

Karem A. Sakallah
University of Michigan

Ann Arbor, USA
karem@umich.edu

Abstract—Most of the recent published work on the automated
verification of distributed protocols has been concerned with
deriving an inductive invariant that implies a safety specification.
In this paper we argue that the inherent structural symme-
try of protocols strongly suggests the existence of a unique
property-independent formula rmin that describes a protocol’s
reachable states as a minimum-cost conjunction of quantified
first-order logic predicates. We show, for finite instances, that
these predicates correspond to symmetry orbits of prime im-
plicates, and show how they are derived using a novel SAT-
based logic minimization algorithm which relies on the connection
between symmetry and quantification as complementary ways
of representing these orbits. We also present empirical data
showing that the minimum-cost orbits derived for increasing
protocol sizes converge syntactically, reaching a fixed point at
a relatively small critical size. Our findings, thus, confirm earlier
observations about the cutoff and saturation phenomenon of
parameterized systems. To our knowledge, our approach is the
first to algorithmically derive quantified first-order logic formulas
for the reachable states of unbounded parameterized systems,
enabling the verification of any safety property.

Index Terms—Distributed protocols, logic minimization, invari-
ant inference, symmetry, quantifier inference.

I. INTRODUCTION

Driven by the availability of modern Satisfiability Modulo
Theories (SMT) solvers [1], [2], the last few years have seen
increasing interest in finding ways to automate the analysis
and verification of distributed protocol specifications. Most of
the recent published work [3]–[9] has been concerned with
deriving an inductive invariant in quantified first-order logic
(FOL) that serves as a proof certificate of a protocol’s safety
property.

In this paper we argue that (an enhanced version of) clas-
sical logic minimization adds a new perspective that furthers
our understanding of protocol behavior. Specifically we show,
for a restricted class of protocol specifications, that it is
possible to algorithmically derive a formula rmin that encodes
the reachable states as an exact minimum-cost conjunction of
quantified FOL invariants. For this purpose, we define the cost
of a quantified invariant in prenex normal form (PNF) to be the
sum of the number of quantifiers in its prefix and the number
of literals in its matrix.

Key to deriving these minimum-cost formulas for the reach-
able states is the inherent structural symmetries of proto-

§Work does not relate to Aman Goel’s position at Amazon

col specifications as well as the recently-established connec-
tion between symmetry and quantification [6]. Applied to
finite protocol instances, our proposed Quantified Symmetric
Minimization (QSM) algorithm preserves these symmetries in
both the prime implicant (PI) generation and set covering
phases of the classical Quine-McCluskey (QM)1 algorithm.
In addition, it replaces the unscalable tabular procedures in
QM with scalable alternatives based on incremental SAT
solving [10], [11]. Empirically, we also show that the finitely-
quantified reachable state formulas generated by QSM at
increasing protocol sizes reach a syntactic fixed point at a
critical cutoff size and yield the minimum formula for the
reachable states of the unbounded protocol. We believe this to
be a direct consequence of the restrictions (elaborated later)
on the class of protocols we consider, but leave a rigorous
formal proof as future work.

The invariants in the rmin formula will be shown to be prime
implicate symmetry orbits of the reachable states and that they
represent the complete set of strengthening assertions needed
to establish the validity of any safety property S . Intuitively,
if rmin → S is valid, then S holds. However, the simplest
explanation of why S holds might be a minimal subset of
rmin ’s orbits that acts as its strongest strengthening assertion.

Our key contributions include:

• A novel symmetry-aware SAT-based logic minimization
algorithm that utilizes structural symmetry and its con-
nection with quantification to derive an exact minimum-
cost representation of the original structurally-symmetric
formula as a finitely-quantified FOL formula.

• A novel forward-reachability algorithm that derives the
strongest complete property-independent quantified for-
mula rkmin representing the set of reachable states for a
protocol instance of size k .

• A simple property-independent procedure that derives
r1min , r

2
min , . . . for protocol instances with increasing

sizes until reaching convergence at a critical cutoff size
k∗, where rk

∗

min syntactically converges to rk
∗+1

min . At the
cutoff size, rmin represents the strongest and complete
inductive invariant that summarizes all protocol behaviors
for any size.

1The fact that QSM and QM have two identical initials is purely coinci-
dental.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 23 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0002-0497-3059
https://orcid.org/0000-0003-0520-8890
https://orcid.org/0000-0002-5819-9089
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_23
https://creativecommons.org/licenses/by/4.0/

• The first empirical demonstration of the cutoff phe-
nomenon for a collection of distributed protocols based
on deriving a quantified FOL formula rmin that encodes
the protocol’s reachable states for all sizes.

The paper is organized as follows: Section II provides pre-
liminaries and context. Section III details the QSM algorithm.
Section IV shows how QSM, applied to increasing protocol
sizes, reaches cutoff. Section V presents our experimental
evaluation with Section VI giving a brief survey of related
work. Section VII concludes the paper with future work
directions.

II. PRELIMINARIES AND CONTEXT

We assume familiarity with the basics of 2-valued Boolean
algebra including literals, minterms, prime implicants, and
prime implicates of an n-variable function f (x1, · · · , xn) as
well as basic notions from group theory including permutation
groups, cycle notation, orbits, etc., which can be readily
found in standard textbooks on Abstract Algebra [12]. We use
primes(f) to denote the disjunction of f ’s prime implicants,
i.e., its complete sum. On the other hand, the complete product2

of f is the conjunction of its prime implicates and can be
expressed as ¬primes(¬f). primes(f) can also be viewed as
a set and we define #lits(ρ) for ρ ∈ primes(f) to be the
number of literals in ρ.

A. Exact Two-Level Minimization

Exact two-level sum-of-product (SOP/DNF) minimization is
an optimization problem seeking to find a minimum-cost
subset of primes(f) that covers all of f ’s minterms. Math-
ematically, the problem can be stated as finding a Boolean
assignment to a set of selector variables zρ ∈ {0, 1}, for
ρ ∈ primes(f), that represents a solution to the following set
covering problem [13]:

minimize
∑︂

ρ ∈ primes(f)

cost(ρ)× zρ

subject to

⎛⎝ ⋁︂
ρ ∈ primes(f)

zρ ∧ ρ

⎞⎠ = f

(1)

where cost(ρ) ≜ #lits(ρ). This formulation can also be used
to find a minimum-cost product-of-sums (POS/CNF) solution
by applying De Morgan’s law to the minimum-cost SOP
solution of ¬f .

B. The Quine-McCluskey Algorithm

The classical Quine-McCluskey (QM) algorithm [14]–[16]
solves this problem by first deriving primes(f) using a tabular
procedure starting from f ’s minterms, followed by a branch-
and-bound search to find the optimal solution to (1). Both steps
assume an explicit listing of f ’s minterms. In particular, the
set covering problem is represented as a 2-dimensional {0, 1}
prime implicant chart whose rows and columns correspond,

2Sum and product are commonly used in the hardware logic design
literature. They are synonymous with disjunction and conjunction.

respectively, to f ’s minterms and prime implicants. A 1 (resp.
0) entry in row µ and column ρ indicates that minterm µ is
(resp. is not) covered by prime implicant ρ. In this encoding,
the optimization objective is stated as finding a minimum-cost
set of columns that covers all the rows.

C. Distributed Protocols

Our focus is the verification of distributed protocol specifica-
tions, i.e., protocols described at an abstraction level that hides
code implementation details that model network topology
and the effects of message interleaving, message loss, node
failures, etc. Such specifications are typically encoded in FOL
in such languages as TLA+ [17] or Ivy [18].

We specifically consider the class of multi-sorted data-
independent protocol specifications [19], [20] that satisfy the
following three requirements:

• The protocol sorts are unbounded sets of interchangeable
structurally-symmetric elements.

• The protocol actions are atomic and asynchronous, i.e.,
they occur one at a time and interleave arbitrarily.

• The protocol encoding is in the empty theory of FOL,
namely equality with uninterpreted functions.

This class encompasses a wide range of common protocols
and should be considered a starting point that does not exclude
future extensions to other types of protocols such as ones with
totally-ordered sorts.

For purposes of illustration, and without loss of generality,
in this paper we consider a protocol P defined over a single
unbounded sort node ≜ {n0,n1,n2, · · · } along with a) a
finite set of relations3 on node that serve as P’s state
variables, and b) a finite set of actions that capture P’s
state transitions. The elements of node are referred to as its
constants and are assumed to be indistinguishable; they can
be arbitrarily permuted without changing P’s behavior.

A predicate Ψ on P’s state variables is a closed quantified
FOL expression. In prenex normal form (PNF) it can be
expressed as Ψ ≜ Q1X1Q2X2 · · ·QnXn . ψ(X1,X2, · · · ,Xn)
where Qi ∈ {∀,∃}, Xi ∈ node and ψ is a quantifier-free
Boolean formula over P’s relations. Following standard prac-
tice, we define prefix (Ψ) as the string of quantifiers and bound
variables, and refer to ψ as matrix (Ψ). In the context of
minimization, we further define the quantified cost of Ψ as

qCost(Ψ) = #Q(prefix (Ψ)) + #lits(matrix (Ψ)) (2)

where #Q is the number of Ψ’s quantified variables.
We use Pk to denote a finite instance of P defined over

nodek ≜ {n0,n1, · · · ,nk−1} for k ≥ 1. Instantiating Pk ’s
relations with all possible combinations of its constants yields
Pk ’s state variables, denoted varsk , whose cardinality is⃓⃓

varsk
⃓⃓
=

∑︂
h ∈ relations

karity(h) (3)

Pk is structurally symmetric; its behavior remains invariant
under the action of Sym(nodek), the group of permutations

3The arity of these relations is typically between 1 and 4.

153

TABLE I: Sample explicit clause orbits and their implicit encoding by finitely-quantified FOL formulas

Partial Protocol Spec P
Domain: node ≜ {n0,n1,n2, · · · }
Relations: a : node ↦→ {0, 1}, b : node ↦→ {0, 1}

Finite Protocol Instance P3

node3 ≜ {n0,n1,n2}
vars3 = {a(n0), a(n1), a(n2), b(n0), b(n1), b(n2)}
Sym(node3): {(), (n0n1), (n0n2), (n1n2), (n0n1n2), (n0n2n1)}

Explicit Clause Orbit

(a(n0) ∨ b(n1)) ∧ (a(n0) ∨ b(n2)) ∧ (b(n0) ∨ b(n1) ∨ b(n2)) (a(n0) ∨ b(n0) ∨ b(n1) ∨ b(n2)) ∧
(a(n1) ∨ b(n0)) ∧ (a(n1) ∨ b(n2)) ∧ (a(n1) ∨ b(n0) ∨ b(n1) ∨ b(n2)) ∧
(a(n2) ∨ b(n0)) ∧ (a(n2) ∨ b(n1)) (a(n2) ∨ b(n0) ∨ b(n1) ∨ b(n2))

Implicitly-Quantified Orbit
∀3N ,M : (N = M) ∨ a(N) ∨ b(M) ∃3N : b(N) ∀3N , ∃3M : a(N) ∨ b(M)

qCost = 2 + 3 = 5 qCost = 1 + 1 = 2 qCost = 2 + 2 = 4

(a) ∀3 Quantification (b) ∃3 Quantification (c) Mixed ∀3∃3 Quantification

on a k -element set. In particular, Sym(nodek) partitions
Pk ’s variables, as well as any Boolean expressions on them
(conjunctions, disjunctions, etc.) into equivalence classes or
orbits. Given any finite set S k of syntactically “similar”
formulas on the variables of Pk and any f ∈ S k we define

orbitk (f) ≜ {g ∈ S k |∃π ∈ Sym(nodek) : π(f) = g} (4)

where π(f) is the result of applying the permutation π to f .
The set of orbits in S k will be denoted as orbs(S k).

We are particularly interested in clausal orbits and their
compact encoding as finitely-quantified FOL predicates. Ta-
ble I illustrates this concept with three example clausal orbits.
We assume that our generic protocol P has two unary relations
labeled a and b. Its finite instantiation with 3 nodes creates
6 variables and has 3! = 6 structural symmetries (identity, 3
swaps, and 2 rotations) expressed as node permutations in stan-
dard cycle notation. The example orbits in the table represent
a 6-clause orbit in column (a), a 1-clause orbit in column (b),
and a 3-clause orbit in column (c). Note that the set of clauses
in each of these orbits remains unchanged under the action of
the 6 permutations of node3. The effect of these permutations
is to simply reorder the literals and clauses in each orbit
while preserving logical equivalence. Logical invariance, in
fact, is a direct consequence of two properties of conjunction
and disjunction: idempotency (x ∧ x = x , x ∨ x = x) and
commutativity (x ∧ y = y ∧ x , x ∨ y = y ∨ x).

The last row in Table I shows the finitely-quantified FOL
formulas that encode these clause orbits. To emphasize that
the quantification is over the finite node3 set, we use the con-
vention of annotating the universal and existential quantifiers
with a “3” superscript. Each of these formulas are derived by
the mechanical quantifier inference procedure from [6]. This
procedure is based on a syntactic analysis of any clause in the
orbit (basically the number and distribution of sort constants in
the clause’s relations) and guarantees that instantiating the uni-
versal and existential quantifiers in these formulas over node3

yields the exact set of clauses in the corresponding explicit
orbits, except possibly for potential duplicates and tautologies.
The correspondence between an explicit orbit orbitki and its
finitely-quantified encoding Ψk

i can be expressed by a pair of

related functions as

Ψk
i = qInf (orbitki)

orbitki = qIns(Ψk
i)

(5)

where qInf performs finite quantifier inference whereas qIns
performs finite quantifier instantiation.

D. An Example rmin Formula

Before describing the steps for deriving rmin , let’s illustrate it
for a specific example. Consider the TLA+ specification [21]
of the Transaction Commit (TC) protocol [22]. This protocol
is based on a single sort for representing resource managers
and four unary relations working , prepared , committed , and
aborted . Denoting these relations by their initials, the mini-
mum formula produced by QSM for the protocol’s reachable
states converged syntactically at a finite instance with 2 re-
source managers yielding the following eight-orbit expression:

rmin(TC) =
⋀︂

1⩽i⩽8

Ψi

Ψ1 = ∀R.(a(R) → ¬w(R))

Ψ2 = ∀R.(a(R) → ¬p(R))

Ψ3 = ∀R.(a(R) → ¬c(R))

Ψ4 = ∀R.(p(R) → ¬w(R))

Ψ5 = ∀R.(c(R) → ¬p(R))

Ψ6 = ∀R.(c(R) → ¬w(R))

Ψ7 = ∀R.(w(R) ∨ p(R) ∨ c(R) ∨ a(R))

Ψ8 = ∀R1,R2.

c(R1) ∧ ¬c(R2) ∧ ¬p(R2) → (R1 = R2)

(6)

An unbounded quantified SMT query showed that this formula
is indeed an inductive invariant for TC. Checking if TC
satisfies any desired safety property S can now be achieved by
showing that rmin(TC) → S is valid. More interestingly, the
shortest strengthening assertion that explains why S holds can
be seen as a minimal subset of the eight orbits in (6). Denoting
this subset by Amin(TC,S) it can be found using a minimal
unsatisfiable subset (MUS) extractor, such as MARCO [23],
from the UNSAT CNF formula

Amin(TC,S) = MUS [(rmin(TC)∧S)∧T∧¬(r ′min(TC)∧S ′)]

154

where T is the transition relation, the primes indicate a vari-
able’s next state, and the clauses of rmin(TC) are highlighted
to emphasize that they are treated as soft clauses by the
MUS extractor. For example, given the following two safety
properties for TC,

S1 = ∀R1,R2.(¬a(R1) ∨ ¬c(R2))

S2 = ∀R1,R2.(¬w(R1) ∨ ¬c(R2))

we can show that their shortest respective proof certifi-
cates/strengthening assertions are:

Amin(TC,S1) = Ψ2

Amin(TC,S2) = Ψ4

III. QSM: SAT-BASED QUANTIFIED SYMMETRIC
MINIMIZATION

The QSM minimization algorithm seeks to derive a minimum-
cost finitely-quantified formula for rk , the set of reachable
states of Pk . To achieve this, it takes advantage of two features
of these formulas. The first, obvious, feature is the structural
symmetry of Pk . QSM preserves this symmetry by operating
on prime implicant orbits rather than on individual prime
implicants. The second, less obvious, feature is that the number
of Pk ’s reachable states is almost always much smaller than
the number of its unreachable states. This suggests seeking a
minimum-cost CNF, rather than DNF, solution. Before delving
into the detailed description of QSM, it is helpful to understand
its operation at a very high level as

Pk QSM−−−→ rkmin = ∧
1⩽i⩽l

Ψk
i (7)

In other words, QSM produces a minimum-cost conjunction
of l finitely-quantified FOL formulas where each Ψk

i captures
an orbit of rk ’s prime implicates.

In contrast to (1), the minimization problem for rk can now
be stated as finding a Boolean assignment to a set of selector
variables zωk , for ωk ∈ orbs(primes(¬rk)), that represents a
solution of the set covering problem

min
∑︂

ωk ∈ orbs(primes(¬rk))

qCost(qInf (¬ωk))× zωk

s.t.

⎛⎝ ⋁︂
ωk ∈ orbs(primes(¬rk))

zωk ∧ ωk

⎞⎠ = ¬rk
(8)

Viewed as a formula, each such orbit ωk is a disjunction
of symmetric prime implicants; thus, its negation ¬ωk is a
conjunction of symmetric prime implicates, i.e., a clausal orbit.
This explains the particular choice of the cost metric in (8).

The derivation of rkmin in QSM is a deterministic mechanical
procedure consisting of the following four steps:

1) A BDD-based forward image computation [24] to pro-
duce a DNF representation of rk .

2) A SAT-based procedure to generate the set of prime
implicant orbits of ¬rk .

Algorithm 1 Symmetry-Aware Enumeration of PI Orbits

1 procedure EnumeratePIOrbits(¬rk)
2 ¬rkD ← dualRail(¬rk)
3 i ← 1, m ← |varsk |, primeOrbits ← ∅
4 while i ≤ m do
5 (found , ρD) ← SAT?[¬rkD ∧

∑︁
1⩽j⩽m

(x p
j + xn

j) ⩽ i]

6 if found then
7 ω ← orbitk (singleRail(ρD))
8 primeOrbits ← primeOrbits ∪ {ω}
9 ¬rkD ← ¬rkD

⋀︁
ρ ∈ ω

dualRail(¬ρ)

10 else
11 i ← i + 1
12 return primeOrbits

3) A quantifier-inference procedure qInf from [6] that out-
puts a finitely-quantified FOL formula for each prime
implicate orbit of rk along with its qCost .

4) A branch-and-bound set covering procedure that finds the
minimal number of prime implicate orbits that cover rk

using their quantified cost as the minimization objective.

A. Symmetry-Aware Enumeration of Prime Implicant Orbits

The PI enumeration algorithm operates on the CNF formula
representing ¬rk and is based on a dualRail encoding of the
state variables [25], [26]. Specifically, each state variable x is
encoded using two fresh variables xp and xn according to

xp xn x
0 0 d
0 1 0
1 0 1
1 1 invalid

where d stands for don’t-care. The dualRail version of ¬rk is
obtained by replacing all positive (resp. negative) appearances
of x with xp (resp. xn) and by adding the clause (¬xp∨¬xn)
to exclude the invalid combination. This encoding is reversible:
given any conjunction (model) or disjunction (clause) of ¬rk
we use dualRail(¬rk) to denote the above encoding, and
singleRail(dualRail(¬rk)) to recover the ¬rk formula based
on the original state variables.

This encoding makes it possible to interpret the complete
assignments produced by a SAT solver for the xp and xn

variables as partial assignments (i.e., assignments with don’t-
cares) for the original x variables. Assuming that |varsk | = m ,
a prime implicant consisting of l literals corresponds to
(i.e., covers) 2m−l states and can be found by checking the
satisfiability of the conjunction of dualRail(¬rk) with the
following pseudo-Boolean (cardinality) constraint [27]:∑︂

1⩽j⩽m

(xp
j + xn

j) ⩽ l (9)

The orbit enumeration procedure is depicted in Algorithm 1.
The procedure accepts a CNF representation of ¬rk and
returns the complete set of prime orbits. The primes are
found, in increasing literal size, by executing the SAT query

155

on line 5 for i = 1, · · · ,m using a single incremental SAT
solver instance based on an incremental encoding [28] of the
cardinality constraint (9). If satisfiable, the solution to the
query is an i -literal prime ρD in dualRail encoding. The
orbit of the singleRail encoding of this prime, computed by
applying the appropriate structural symmetry permutations to
its sort constants (line 7), is then added to primeOrbits (line
8) and eliminated from further consideration (line 9) for all
subsequent SAT queries. When the query is unsatisfiable (i.e.,
when there are no i -literal primes or all i -literal primes have
been found), i is incremented to find primes with i+1 literals.

B. Symmetry-Aware Set Covering

Our QSM algorithm is an adaptation of the standard textbook
branch-and-bound (BnB) logic minimization procedure that
uses an explicit matrix encoding of the covering constraints.
Specifically, it is based on the BCP procedure for unate and
binate covering in [29]. This procedure has three parts: a)
a reduction step that uses column and row dominance rules
to identify essential and covered (dominated) primes, b) a
termination check to accept or reject a complete solution by
comparing its cost to the best seen so far, and c) a depth-first
BnB search when the “reduced” covering constraints become
cyclic. The QSM algorithm closely follows this computational
flow but replaces the column and row dominance rules with
queries to an incremental SAT solver using an implicit CNF
encoding of the covering constraints.

To simplify the description of QSM, let’s assume
that the prime orbits are numbered from 1 to n , i.e.,
orbs(primes(¬rk)) = {ωk

1 , · · · , ωk
n}, and let [n] ≜

{1, 2, · · · ,n}. The covering constraints can now be captured
by the CNF formula

φk ≜
⋀︂

i ∈ [n]

(¬zi ∨ ¬ωk
i) (10)

which can be queried by an incremental SAT solver under
different assumptions involving the literals of the formula.
Specifically, the SAT query

SAT?[φk , assume chosenLiterals(φk)] (11)

checks the satisfiability of φk assuming that all literals in
chosenLiterals(φk) are set to True. These literals can include
the protocol state variables as well as the selection variables. In
particular, it is convenient to define the orbit selection formula

Z (sel) ≜ (
⋀︁

i ∈ sel

zi) ∧ (
⋀︁

i /∈ sel

¬zi) (12)

which can serve as an assumption in (11) to activate the prime
orbits specified by the set sel ⊆ [n] and to deactivate the
remaining orbits.

During the search we use sol ⊆ [n] to represent the set of
prime orbits in the current partial solution and pnd ⊆ [n] for
the prime orbits that are pending, i.e., the orbits that may or
may not be needed to complete the solution. sol becomes a
complete solution when pnd = ∅.

Identifying Essential Orbits: A pending prime orbit ωk
i is

essential if it covers some states that are not covered by the
union of a) the remaining pending orbits and b) the orbits in
the current partial solution; otherwise it is not essential. This
can be checked by the SAT query

isEssential(ωk
i) ≜ SAT?[¬(ωk

i →
⋁︁

j ∈ sol∪pnd\{i}
ωk
j)]

= SAT?[ωk
i ∧

⋀︁
j ∈ sol∪pnd\{i}

¬ωk
j]

Since ωk
i is a disjunction of primes, the formula in this query

is not in CNF. By symmetry, however, it is sufficient to check
the essentiality of any prime ρ ∈ ωk

i to conclude if the whole
orbit is or is not essential. This allows the above query to be
re-expressed as

isEssential(ωk
i) = SAT?[ρ(ωk

i) ∧
⋀︂

j ∈ sol∪pnd\{i}

¬ωk
j]

where, with a slight notational abuse, ρ(ωk
i) is used to assert

an arbitrary prime (a conjunction of protocol literals) from the
ωk
i orbit. The SAT query to check whether or not the ωk

i orbit
is essential can now be expressed as

isEssential(ωk
i) =

SAT?[φk , assume ρ(ωk
i) ∧ Z (sol ∪ pnd\{i})] (13)

Identifying Covered and Partially-Covered Orbits: The
coverage of a pending orbit is the number of states it covers
that are not already covered by the current partial solution and
can be found as the solution of this #SAT [30] query:

coverage(ωk
i) ≜ #SAT?[¬(ωk

i →
⋁︂

j ∈ sol

ωk
j)]

Exact coverage can, thus, be expressed as

coverage(ωk
i) =

#SAT?[φk , assume ρ(ωk
i) ∧ Z (sol)]

(14)

Coverage is used to remove completely covered orbits from
pnd (when coverage = 0) and to rank partially-covered
orbits for the branching step (when coverage > 0). Our
implementation uses an approximation of #SAT since the exact
number of solutions to (14) is not needed. The coverage
estimate of pending orbits is stored in an array cov .

The pseudo-code of QSM is shown in Algorithm 2. Initially,
pnd = [n], sol = ∅, the entries in the cov array are un-
initialized, and UB (the upper bound on the cost of the
solution) is set to 1 +

∑︁
i ∈ [n] qCost(ω

k
i).

At each invocation, QSM performs the following steps:

• Line 2: It updates the current covering requirements
(encoded by pnd , sol , and cov) by calling reduce to
identify essential and covered primes, if any.

• Lines 3-8: It checks if a complete solution has been found
and
– Lines 4-6: returns this solution and updates UB to its

cost if it is cheaper than the best seen so far.

156

Algorithm 2 Quantified Symmetric Minimization
1 procedure QSM(pnd , sol , cov ,UB)
2 (pnd , sol , cov) ← reduce(pnd , sol , cov)
3 if pnd = ∅ then
4 if qCost(sol) < UB then
5 UB ← qCost(sol)
6 return sol
7 else
8 return NOSOLUTION
9 LB ← qCost(sol)

10 if LB ≥ UB then
11 return NOSOLUTION
12 i ← chooseOrbit(pnd , cov)
13 Swith i ← QSM(pnd \ {i}, sol ∪ {i}, cov ,UB)
14 if qCost(Swith i) = LB then
15 return (Swith i)
16 Swithout i ← QSM(pnd \ {i}, sol , cov ,UB)
17 return BESTSOLUTION(Swith i , Swithout i)

18 procedure reduce(pnd , sol , cov)
19 (existEss, pnd , sol) ← addEssentials(pnd , sol)
20 (existCov , pnd , cov) ← removeCovered(pnd , sol , cov)
21 if existEss ∨ existCov then
22 (pnd , sol , cov) ← reduce(pnd , sol , cov)
23 return (pnd , sol , cov)

24 procedure addEssentials(pnd , sol)
25 essentials ← ∅
26 for each orbit ∈ pnd do
27 if isEssential(orbit , pnd , sol) then
28 essentials ← essentials ∪ {orbit}
29 sol ← sol ∪ essentials
30 pnd ← pnd \ essentials
31 return (|essentials| > 0, pnd , sol)

32 procedure removeCovered(pnd , sol , cov)
33 covered ← ∅
34 for each orbit ∈ pnd do
35 cov [orbit] ← coverage(orbit , sol)
36 if cov [orbit] = 0 then
37 covered ← covered ∪ {orbit}
38 pnd ← pnd \ covered
39 return (|covered | > 0, pnd , cov)

– Lines 7-8: returns “no solution” (i.e., backtracks) if the
cost is higher than the best seen so far.

• Lines 9-11: It sets the lower bound LB to be the cost of
the current partial solution and backtracks if that cost is
greater than the current upper bound.

• Line 12: It ranks the pending orbits by their estimated
coverage and chooses the orbit with the highest coverage
for the next branching decision breaking ties arbitrarily.
In addition, it ranks orbits that are not parameterized by
sort constants (i.e., they are independent of “k”) higher
than other orbits. The intuition behind this heuristic is
that such orbits are more likely to be in the minimum
solution since they are size- independent.

• Lines 13-17: It recursively calls itself to search for a
solution that includes the chosen orbit and returns that

QSM

NO

YES

Fig. 1: QSM Syntactic Fixed Point Convergence

solution if its cost is equal to the lower bound. Otherwise,
it recursively calls itself to search for a solution that
excludes the chosen orbit and returns the cheaper of the
two solutions.

The computational core of QSM is in the reduce, addEssen-
tials, and removeCovered procedures. The reduce procedure
repeatedly calls addEssentials and removeCovered until all
essential and covered orbits have been processed and pnd , sol ,
and cov updated. Finally, the addEssentials and removeCov-
ered) procedures implement the SAT queries corresponding
to (13) and (14).

IV. FROM BOUNDED TO UNBOUNDED MINIMIZATION

Applying the QSM algorithm to P1,P2, · · · generates a corre-
sponding sequence of minimum solutions4 r1min , r

2
min , · · · . An

interesting empirical observation is that this sequence reaches
a syntactic fixed point (Figure 1) at some value k⋆ defined as:

• rk
⋆

min =
⋀︂

1⩽i⩽l

Ψk⋆

i

• rk
⋆+1

min =
⋀︂

1⩽i⩽l

Ψk⋆+1
i

• ∀i ∈ [1, l] : prefix (Ψk⋆+1
i) = prefix (Ψk⋆

i)

• ∀i ∈ [1, l] : matrix (Ψk⋆+1
i) = matrix (Ψk⋆

i)

(15)

Another way of saying this is that the minimum clausal orbits
“converge” and that additional orbits that might be produced
at values of k larger than k⋆ become redundant and do not
introduce new behaviors beyond k⋆. This is reminiscent of
the cutoff [31], [32] and data saturation [20] phenomena
in the model checking literature and suggests that the finite
quantification can be replaced with unbounded quantification
yielding an exact minimum formula

rmin =
⋀︂

1⩽i⩽l

Ψi (16)

for the unbounded protocol P . Our contribution can be seen
as the culmination of these earlier efforts by showing that the
incorporation of minimization a) yields the natural quantified
forms of the rmin orbits and b) “explains” how saturation
happens.

V. EXPERIMENTAL EVALUATION

We evaluated QSM on a set of 17 protocols from [4], [5], [33].
This set includes fairly complex high-level descriptions of

4In practice, the initial base size usually starts at i > 1.

157

TABLE II: QSM Experimental Results†

Protocol Memory
MB

CPU Time, sec Number of
rmin

Orbits

Asseertions

Total BDD PI Gen qInf Cov vars rk cubes ¬rkPIs Orbits Human IC3PO

tla-consensus 59 9 4 0 4 0∗ 3 3 3 1 1 0 0
tla-tcommit 67 9 4 0 4 0 8 12 26 13 8 2 1
tla-twophase 67 7197 4 1 4 7188 17 29 252 134 ? 11 11
distai-ricart-agrawala 67 9 4 0 4 0∗ 10 4 10 6 4 2 2
i4-lock-server 67 17 8 1 8 1∗ 8 16 14 3 3 1 1
pyv-sharded-kv 104 58 22 10 17 10∗ 42 324 420 15 8 4 5
pyv-sharded-kv-no-lost-keys 106 68 22 15 18 14 42 324 422 16 9 1 1
ex-simple-decentralized-lock 67 18 8 1 8 1∗ 24 80 198 18 18 4 3
pyv-firewall 67 56 6 1 7 42 15 23 348 62 5 1 2
pyv-lockserv 67 9 4 0 4 0∗ 13 10 46 13 13 8 8
ex-lockserv-automaton 67 9 4 0 4 0∗ 13 10 46 13 13 1 8
ex-toy-consensus 108 29 14 2 12 2 27 138 510 19 4 2 2
ex-naive-consensus 67 21 9 2 8 2∗ 27 189 396 14 3 3 3
ex-simple-election 47056 3812 3773 2 11 27 27 220 849 55 7 2 3
pyv-toy-consensus-forall 67 31 13 3 13 3 23 1072 518 19 6 3 3
pyv-toy-consensus-epr 48912 3622 3607 1 11 3 24 94 534 35 6 3 3
pyv-consensus-epr 913 7401 4675 74 32 2621 72 1318 19818 743 16 6 5

† The memory and time statistics capture the runs of QSM from the initial finite size to the one larger than the cutoff size. The number of
variables, cubes, PIs, and Orbits are at the cutoff size.
∗For these protocols, rmin was found without any branch-and-bound search.

mutual-exclusion and consensus algorithms, including proto-
cols such as sharded key-value store, two-phase commit, asyn-
chronous lock server, Ricart-Agrawala, etc. Several studies [4],
[5], [18], [34]–[36] have indicated the challenges involved in
verifying these protocols.

We assessed the performance of each step in QSM and con-
trasted its derivation of rmin (which is inferred independently
of any protocol property) to human-written and automatically-
derived property-driven strengthening assertions. For each
protocol in Table II we made a sequence of QSM runs from
an initial base size to the converged k∗ cutoff size (details on
these sizes are shown in Table III) and report the cumulative
time and maximum memory usage for all these runs. The total
time for these runs is broken down into the following stages:

• BDD: the time to generate the DNF table (as a set of
cubes) of rk using BDD-based forward image computa-
tion.

• PI Gen: the time for the SAT-based procedure to enu-
merate the prime implicants of ¬rk and to partition them
into symmetry orbits.

• qInf: the time to perform quantifier inference on all prime
implicate orbits.

• Cov: the time for the SAT-based branch-and-bound set
covering minimization problem that yields rkmin .

The table also shows, at the cutoff size, the number of vari-
ables, cubes, prime implicants/implicates, and orbits. Column
“rmin Orbits” gives the number of (invariant) orbits in the final
unbounded formula rmin ; these formulas were independently
confirmed to be inductive using Ivy [18]. Note that rmin can
be instantiated for any arbitrary protocol size k and can be
independently confirmed to be logically-equivalent to the set of
reachable states of Pk . The final two columns give the number
of manually-written and automatically-derived strengthening
assertions using IC3PO [6], [37] for the protocol’s specified
safety property.

We can make the following observations about these results.

• Except for 4 cases, the total time for deriving rmin is less
than a couple of CPU minutes.

• For 8 protocols, rmin was found without any branch-and-
bound search (indicated with ∗ in the Cov column).

• Except for the tla-twophase protocol, the derivation of
rmin was completed and the solution was unique. The
minimization step timed out for tla-twophase. Interest-
ingly though, the complete set of orbits at sizes 2 and 3
were identical and found to be inductive. Thus, even in
this case the complete product was unique.

• In 3 cases, the BDD image computation had a large
memory footprint and dominated the total run time.

A preliminary analysis of these results identified the causes
for the observed computational bottlenecks. Specifically, the
current BDD front-end does not account for symmetry causing
a huge memory blow-up and the attendant increase in run
time. A natural solution would be to preserve the protocol’s
structural symmetry in the forward image computation in order
to produce a set of cube orbits, rather than individual cubes5,
for rk . The excessive run time of the covering step in tla-
twophase and pyv-consensus-epr was a direct consequence
of the large number of PIs and PI orbits and the failure of
the branching heuristic to identify good candidate orbits that
can guide the search to close-to-minimal initial solutions. We
noticed that many of the PI orbits in these, as well as other,
protocols are “similar” (involving the same literals) and can be
merged as disjoint sub-orbits into larger super orbits. As an
example, Table IV shows 5 sub-orbits from the ex-simple-
decentralized-lock protocol and their merger into a single
super orbit with a much smaller qCost . Identifying super orbits

5The current BDD front-end limited the set of protocols our prototype can
support.

158

TABLE III: Finite instance sizes from the initial base size to the converged cutoff size
Protocol Finite instance sizes † ‡

tla-consensus value = 2 ↦→ 3
tla-tcommit resource-manager = 2
tla-twophase resource-manager = 2
distai-ricart-agrawala node = 2
i4-lock-server client = 2 ↦→ 3, server = 1 ↦→ 2
pyv-sharded-kv key = 2, node = 2 ↦→ 3, value = 2 ↦→ 3
pyv-sharded-kv-no-lost-keys key = 2, node = 2 ↦→ 3, value = 2 ↦→ 3
ex-simple-decentralized-lock node = 2 ↦→ 4
pyv-firewall node = 2 ↦→ 3
pyv-lockserv node = 2 ↦→ 3
ex-lockserv-automaton node = 2 ↦→ 3
ex-toy-consensus node = 2 ↦→ 4, quorum = 1 ↦→ 4, value = 2 ↦→ 3
ex-naive-consensus node = 3 ↦→ 4, quorum = 3 ↦→ 4, value = 3
ex-simple-election acceptor = 2 ↦→ 3, proposer = 2 ↦→ 3, quorum = 1 ↦→ 3
pyv-toy-consensus-forall node = 2 ↦→ 4, quorum = 1 ↦→ 4, value = 2 ↦→ 3
pyv-toy-consensus-epr node = 2 ↦→ 3, quorum = 1 ↦→ 3, value = 2 ↦→ 3
pyv-consensus-epr node = 2 ↦→ 4, quorum = 1 ↦→ 4, value = 2 ↦→ 3

† s = x denotes sort s has both initial size and final cutoff size x
‡ s = x ↦→ y denotes sort s has initial size x and final cutoff size y

during the PI generation step will yield a much smaller number
of orbits for the subsequent cover minimization step.

These initial results provide strong support to our thesis that
the structural symmetries of a protocol enable the derivation
of a minimal conjunctive FOL formula for its reachable states.

VI. RELATED WORK

Notwithstanding the undecidability result of Apt and
Kozen [38], many efforts to automatically infer quantified
inductive invariants for distributed protocols have been re-
ported with the pace increasing in recent years [3]–[9]. All
these works, however, perform a property-dependent analysis
of the distributed protocol and aim to derive an inductive
invariant specific to a given safety property. In contrast, our
work attempts to derive an FOL encoding of the exact set of
reachable states of a distributed protocol, which can be utilized
to check the validity of any safety property.

Several manual or semi-automatic verification techniques
based on interactive theorem proving have been proposed for
deriving system-level proofs [18], [34], [39]–[43]. However,
unlike fully-automatic verification, all these methods require
a detailed understanding of the intricate inner workings of the
protocol and entail significant manual effort to guide proof
development.

Verification of parameterized systems using SMT solvers is
further explored in MCMT [44], Cubicle [45], and paraVer-
ifier [46]. Our work is closest in spirit to view abstraction,
proposed in [47], which computes the reachable set for finite

instances using forward reachability until cutoff is reached.
Our technique further builds on these works with the ability
to automatically derive a quantified FOL encoding of the set
of reachable states by utilizing a novel symmetry-aware SAT-
based logic minimization algorithm.

In the context of logic minimization, the implicit encoding
of the covering constraints in QSM is similar, at least in spirit
but not details, to the procedure in [48]. Finally, it is worth
noting, as an interesting historical fact, that McCluskey [16]
considered the incorporation of Boolean symmetry in his
tabular method for deriving the set of prime implicants.

VII. CONCLUSIONS AND FUTURE WORK

We proposed QSM, a novel forward-reachability algorithm that
combines the relationship between symmetry and quantifica-
tion in a SAT-based logic minimization procedure to derive
a compact quantified FOL formula rmin representing the set
of reachable states of a distributed protocol. We empirically
demonstrate the ability of our prototype to derive such quanti-
fied representations of the reachable states, independent of the
protocol size, on a restricted class of distributed protocols. The
derivation of rmin is property- independent, enables checking
the validity of any protocol safety property and compactly
summarizes all protocol behaviors for any size.

In its current form, our QSM prototype is limited to protocol
specifications based on unbounded symmetric sorts. Structural
symmetry is a manifestation of what can be called spatial reg-
ularity which leads to boundedness in the spatial dimension.

TABLE IV: Illustrating the merger of sub-orbits into a single super orbit for the ex-simple-decentralized-lock protocol

Sub-orbits

invariant [pi19] forall N1, N2, N3. (∼has lock(N1) | ∼message(N3, N2) | (N1 = N2) | (N1 = N3) | (N2 = N3))
invariant [pi25] forall N1, N2. (∼has lock(N1) | ∼message(N2, N2) | (N1 = N2))
invariant [pi31] forall N1, N2. (∼has lock(N1) | ∼message(N1, N2) | (N1 = N2))
invariant [pi37] forall N1, N2. (∼has lock(N1) | ∼message(N2, N1) | (N1 = N2))
invariant [pi43] forall N1. (∼has lock(N1) | ∼message(N1, N1))

Equivalent Super Orbit invariant [pi19 pi43] forall N, S, D. (∼has lock(N) | ∼message(S, D))

159

An important extension would be to derive rmin for protocols
that also include totally-ordered sorts. We do not foresee
conceptual difficulties for such an extension since totally-
ordered sorts introduce another type of regularity, namely tem-
poral regularity which leads to boundedness in the temporal
dimension, as explored in [49] and applied to automatically
prove the safety of Paxos [50] and Bakery [51] protocols.
Intuitively, while a totally-ordered sort causes the state space
of the protocol to expand without bound, that expansion must
be characterized by a repeating pattern since, otherwise, it
would not be captured by a finite set of quantifiers. Thus, as
observed in [49], we expect a cutoff/saturation phenomenon
conceptually similar to that exhibited by symmetry but dif-
ferent in implementation details. We also plan to augment
QSM with the MARCO MUS extractor [23] to automatically
derive subsets of the minimum orbits of rmin that can serve as
minimum strengthening assertions for given safety properties.

The experimental results strongly hint that the rmin formula
produced by QSM is unique. We conjecture that this must
follow from symmetry and the particular cost function used
in the set covering step. However, we do not have a formal
proof that this is always the case and we plan to develop
such a proof since solution uniqueness is critical for syntactic
convergence. More speculatively, the possibility that a unique
quantified formula for rmin can be mechanically derived, even
when it contains predicates that violate known decidable FOL
classes, suggests perhaps the existence of a new decidable
fragment of FOL.

Finally, the limited experiments we reported highlighted the
need for several optimizations to our current prototype imple-
mentation of QSM including the incorporation of symmetry
in BDD-based forward image computation, the identification
of super orbits in the PI enumeration step, and improving
the accuracy of coverage estimates during the branch-and-
bound search for the minimum cover. Specifically, one simple
modification of the #SAT query in (14) is to multiply its
answer by the number of primes in the orbit to get a more
accurate orbit coverage.

ACKNOWLEDGMENTS

This work was done in part while the authors were partici-
pating in a program at the Simons Institute for the Theory of
Computing. The research was funded in part by the Austrian
Science Fund (FWF) under project No. T-1306.

REFERENCES

[1] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of Model Checking. Springer, 2018, pp. 305–343.

[2] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2016.

[3] A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, and S. Shoham,
“Property-directed inference of universal invariants or proving their
absence,” J. ACM, vol. 64, no. 1, Mar. 2017. [Online]. Available:
https://doi.org/10.1145/3022187

[4] H. Ma, A. Goel, J.-B. Jeannin, M. Kapritsos, B. Kasikci, and K. A.
Sakallah, “I4: Incremental Inference of Inductive Invariants forVeri-
fication of Distributed Protocols,” in The 27th ACM Symposium on
Operating Systems Principles (SOSP 2019), Huntsville, Ontario, Canada,
October 2019, pp. 370–384.

[5] J. R. Koenig, O. Padon, N. Immerman, and A. Aiken, “First-order
quantified separators,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI 2020. New York, NY, USA: Association for Computing
Machinery, 2020, p. 703–717. [Online]. Available: https://doi.org/
10.1145/3385412.3386018

[6] A. Goel and K. A. Sakallah, “On Symmetry and Quantification: A
New Approach to Verify Distributed Protocols,” in 13th Annual NASA
Formal Methods Symposium (NFM 2021), Langley, Virginia, May 2021,
pp. 131–150. [Online]. Available: https://arxiv.org/abs/2103.14831

[7] T. Hance, M. Heule, R. Martins, and B. Parno, “Finding invariants
of distributed systems: It’s a small (enough) world after all,” in 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, Apr. 2021, pp. 115–131. [Online].
Available: https://www.usenix.org/conference/nsdi21/presentation/hance

[8] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan, “Distai: Data-
driven automated invariant learning for distributed protocols,” in 15th
{USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 21), 2021, pp. 405–421.

[9] J. Yao, R. Tao, R. Gu, and J. Nieh, “{DuoAI}: Fast, automated inference
of inductive invariants for verifying distributed protocols,” in 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), 2022, pp. 485–501.

[10] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, ser. Lecture Notes in Computer Science, E. Giunchiglia and
A. Tacchella, Eds., vol. 2919. Springer, 2003, pp. 502–518. [Online].
Available: https://doi.org/10.1007/978-3-540-24605-3 37

[11] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS
press, 2009, vol. 185.

[12] J. B. Fraleigh, A First Course in Abstract Algebra, 6th ed. Reading,
Massachusetts: Addison Wesley Longman, 2000.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[14] W. V. Quine, “The problem of simplifying truth functions,” The Amer-
ican mathematical monthly, vol. 59, no. 8, pp. 521–531, 1952.

[15] ——, “A way to simplify truth functions,” The American mathematical
monthly, vol. 62, no. 9, pp. 627–631, 1955.

[16] E. J. McCluskey, “Detection of group invariance or total symmetry of
a boolean function,” The Bell System technical journal, vol. 35, no. 6,
pp. 1445–1453, 1956.

[17] L. Lamport, “The temporal logic of actions,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 16, no. 3, pp.
872–923, 1994.

[18] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy:
safety verification by interactive generalization,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2016, pp. 614–630.

[19] P. Wolper, “Expressing interesting properties of programs in propo-
sitional temporal logic,” in Proceedings of the 13th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, 1986,
pp. 184–193.

[20] C. Norris IP and D. L. Dill, “Better verification through symmetry,”
Formal Methods in System Design, vol. 9, no. 1, pp. 41–75, Aug 1996.
[Online]. Available: https://doi.org/10.1007/BF00625968

[21] “A TLA+ specification of the Transaction Commit protocol,”
https://github.com/tlaplus/Examples/blob/master/specifications/
transaction commit/TCommit.tla.

[22] J. Gray and L. Lamport, “Consensus on transaction commit,” ACM
Transactions on Database Systems (TODS), vol. 31, no. 1, pp. 133–160,
2006.

[23] M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva, “Fast, flexible
mus enumeration,” Constraints, vol. 21, no. 2, pp. 223–250, 2016.

[24] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic Model Checking: 1020 States and Beyond,” in Proceedings.
Fifth Annual IEEE Symposium on Logic in Computer Science, 1990, pp.
428–439.

[25] V. M. Manquinho, P. F. Flores, J. P. M. Silva, and A. L. Oliveira,
“Prime implicant computation using satisfiability algorithms,” in
9th International Conference on Tools with Artificial Intelligence,
ICTAI ’97, Newport Beach, CA, USA, November 3-8, 1997.
IEEE Computer Society, 1997, pp. 232–239. [Online]. Available:
https://doi.org/10.1109/TAI.1997.632261

160

www.SMT-LIB.org
https://doi.org/10.1145/3022187
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.1145/3385412.3386018
https://arxiv.org/abs/2103.14831
https://www.usenix.org/conference/nsdi21/presentation/hance
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/BF00625968
https://github.com/tlaplus/Examples/blob/master/specifications/transaction_commit/TCommit.tla
https://github.com/tlaplus/Examples/blob/master/specifications/transaction_commit/TCommit.tla
https://doi.org/10.1109/TAI.1997.632261

[26] S. Jabbour, J. Marques-Silva, L. Sais, and Y. Salhi, “Enumerating
prime implicants of propositional formulae in conjunctive normal
form,” in Logics in Artificial Intelligence - 14th European Conference,
JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014.
Proceedings, ser. Lecture Notes in Computer Science, E. Fermé and
J. Leite, Eds., vol. 8761. Springer, 2014, pp. 152–165. [Online].
Available: https://doi.org/10.1007/978-3-319-11558-0 11

[27] R. Martins, S. Joshi, V. M. Manquinho, and I. Lynce, “Incremental
cardinality constraints for maxsat,” in Principles and Practice
of Constraint Programming - 20th International Conference, CP
2014, Lyon, France, September 8-12, 2014. Proceedings, ser.
Lecture Notes in Computer Science, B. O’Sullivan, Ed., vol.
8656. Springer, 2014, pp. 531–548. [Online]. Available: https:
//doi.org/10.1007/978-3-319-10428-7 39

[28] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental cardi-
nality constraints for maxsat,” in Principles and Practice of Constraint
Programming: 20th International Conference, CP 2014, Lyon, France,
September 8-12, 2014. Proceedings 20. Springer, 2014, pp. 531–548.

[29] G. D. Hachtel and F. Somenzi, Logic synthesis and verification algo-
rithms. Springer Science & Business Media, 2007.

[30] C. P. Gomes, A. Sabharwal, and B. Selman, “Model counting,” in
Handbook of satisfiability. IOS press, 2021, pp. 993–1014.

[31] A. Pnueli, S. Ruah, and L. Zuck, “Automatic deductive verification
with invisible invariants,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2001, pp. 82–97.

[32] T. Arons, A. Pnueli, S. Ruah, Y. Xu, and L. Zuck, “Parameterized veri-
fication with automatically computed inductive assertions,” in Computer
Aided Verification, G. Berry, H. Comon, and A. Finkel, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 221–234.

[33] “A collection of distributed protocol verification problems,” https://
github.com/aman-goel/ivybench.

[34] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill, “Ironfleet: proving practical distributed
systems correct,” in Proceedings of the 25th Symposium on Operating
Systems Principles. ACM, 2015, pp. 1–17.

[35] Y. M. Feldman, J. R. Wilcox, S. Shoham, and M. Sagiv, “Inferring
inductive invariants from phase structures,” in International Conference
on Computer Aided Verification. Springer, 2019, pp. 405–425.

[36] I. Berkovits, M. Lazić, G. Losa, O. Padon, and S. Shoham, “Verification
of threshold-based distributed algorithms by decomposition to decidable
logics,” in International Conference on Computer Aided Verification.
Springer, 2019, pp. 245–266.

[37] A. Goel and K. A. Sakallah, “IC3PO: IC3 for Proving Protocol Proper-
ties,” https://github.com/aman-goel/ic3po.

[38] K. R. Apt and D. Kozen, “Limits for automatic verification of finite-
state concurrent systems,” Inf. Process. Lett., vol. 22, no. 6, pp. 307–309,
1986.

[39] S. Owre, J. M. Rushby, and N. Shankar, “Pvs: A prototype verifi-
cation system,” in International Conference on Automated Deduction.
Springer, 1992, pp. 748–752.

[40] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “Verifying safety
properties with the tla+ proof system,” in International Joint Conference
on Automated Reasoning. Springer, 2010, pp. 142–148.

[41] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D.
Ernst, and T. Anderson, “Verdi: A framework for implementing
and formally verifying distributed systems,” in Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’15. New York, NY, USA: ACM,
2015, pp. 357–368. [Online]. Available: http://doi.acm.org/10.1145/
2737924.2737958

[42] J. Hoenicke, R. Majumdar, and A. Podelski, “Thread modularity at many
levels: a pearl in compositional verification,” ACM SIGPLAN Notices,
vol. 52, no. 1, pp. 473–485, 2017.

[43] K. v. Gleissenthall, R. G. Kıcı, A. Bakst, D. Stefan, and R. Jhala, “Pre-
tend synchrony: synchronous verification of asynchronous distributed
programs,” Proceedings of the ACM on Programming Languages, vol. 3,
no. POPL, pp. 1–30, 2019.

[44] S. Ranise and S. Ghilardi, “Backward reachability of array-based
systems by smt solving: Termination and invariant synthesis,” Logical
Methods in Computer Science, vol. 6, 2010.

[45] S. Conchon, A. Goel, S. Krstić, A. Mebsout, and F. Zaı̈di, “Cubicle:
A parallel smt-based model checker for parameterized systems,” in

International Conference on Computer Aided Verification. Springer,
2012, pp. 718–724.

[46] Y. Li, J. Pang, Y. Lv, D. Fan, S. Cao, and K. Duan, “Paraverifier:
An automatic framework for proving parameterized cache coherence
protocols,” in International Symposium on Automated Technology for
Verification and Analysis. Springer, 2015, pp. 207–213.

[47] P. Abdulla, F. Haziza, and L. Holı́k, “Parameterized verification through
view abstraction,” International Journal on Software Tools for Technol-
ogy Transfer, vol. 18, no. 5, pp. 495–516, 2016.

[48] M. J. Ghazala, “Irredundant disjunctive and conjunctive forms of a
boolean function,” IBM J. Res. Dev., vol. 1, no. 2, pp. 171–176, 1957.
[Online]. Available: https://doi.org/10.1147/rd.12.0171

[49] A. Goel and K. A. Sakallah, “Regularity and Quantification: A New
Approach to Verify Distributed Protocols,” Innovations in Systems and
Software Engineering (ISSE), pp. 1–19, September 2022.

[50] ——, “Towards an Automatic Proof of Lamport’s Paxos,” in Formal
Methods in Computer-Aided Design (FMCAD), R. Piskac and M. W.
Whalen, Eds., New Haven, Connecticut, October 2021, pp. 112–122.

[51] A. Goel, S. Merz, and K. A. Sakallah, “Towards an automatic proof
of the bakery algorithm,” in Formal Techniques for Distributed Objects,
Components, and Systems, M. Huisman and A. Ravara, Eds. Cham:
Springer Nature Switzerland, 2023, pp. 21–28.

161

https://doi.org/10.1007/978-3-319-11558-0_11
https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.1007/978-3-319-10428-7_39
https://github.com/aman-goel/ivybench
https://github.com/aman-goel/ivybench
https://github.com/aman-goel/ic3po
http://doi.acm.org/10.1145/2737924.2737958
http://doi.acm.org/10.1145/2737924.2737958
https://doi.org/10.1147/rd.12.0171

Formal Methods in Computer-Aided Design 2023

BIG Backbones
Nils Froleyks∗

nils.froleyks@jku.at
Emily Yu∗

emily.yu2019@gmail.com
Armin Biere†

biere@cs.uni-freiburg.de

∗Johannes Kepler University, Linz, Austria †University of Freiburg, Freiburg, Germany

Abstract—The backbone of a satisfiable formula is the set of
literals that hold true in every model. In this paper we introduce
Single Unit Resolution Backbone (SURB) which names both a
polynomial-time algorithm for backbone extraction and a class
of propositional formulas on which it is complete. We show that
this class is a superset of the polynomial-time solvable SLUR
formulas. The presented algorithm meets a lower bound on
time complexity under the strong exponential-time hypothesis.
As a second contribution, we present a version that operates
on the binary implication graph (BIG) and implement it as
a preprocessor in the recently introduced backbone extractor
CADIBACK. Experiments on a large number of SAT competition
benchmarks show that our implementation results in faster BIG
backbone extraction by an order of magnitude. Additionally,
incorporating it as a preprocessor enables CADIBACK to identify
up to four times as many backbone literals early on.

I. INTRODUCTION

Backbone extraction has been put forward as an effective
technique for a wide variety of applications including chip
verification, specifically fault localization [1], [2], [3], and
interactive configuration [4]. The concept of the backbone,
which refers to the set of literals that hold true in all models of
a satisfiable formula, was initially studied when investigating
the hardness of (random) propositional formulas [5], [6], [7].
Since then, a number of practical applications for backbone
extraction have been discovered. One notable example is the
improved performance in SAT solving itself [8], [9]. In fact,
the proposed algorithm in this paper has been implemented as
a cheaper version of failed literal elimination in SAT solvers
developed by one of the authors [10]. Other related areas like
maximum satisfiability [11], [12], [13], [14] have been found
to benefit from early knowledge of backbone literals.

In these applications, it is highly advantageous to promptly
access as many backbone literals as possible. This can be
due to two key reasons: either the backbone computation is
bound by a time limit or the identification of a backbone
literal triggers additional computations that can be executed
in parallel. As a result, our focus shifts to the time taken to
identify individual backbone literals rather than the completion
of the entire backbone extraction.

The state-of-the-art in backbone extraction has remained
unchanged for a long time, until recently CADIBACK [15] was
introduced, exhibiting significantly better performance. This
was achieved by using the modern SAT solver CADICAL
and tightly integrating features currently not found in any
other SAT solver. Our contribution presented in this paper is
orthogonal to that. Instead of using an exponential approach

based on incremental SAT solving, we use a polynomial time
algorithm to extract the backbone from a subset of the formula.

In SAT solving, Single Look-ahead Unit Resolution
(SLUR) [16], independently discovered as Backtrack-once
in [17], defines a class of formulas that are solvable in
polynomial time. Similar to that, we define a simple poly-
nomial algorithm called SURB and use it to define a subclass
of propositional formulas on which the backbone can be
extracted in polynomial time. We formally show that SURB is
a strict superset of SLUR. As another novel contribution, we
present a practical algorithm that exhibits considerably better
performance in our experimental evaluation than SURB. The
algorithm finds all backbone literals in the binary implication
graph. We implement it as a preprocessor, extending the
recently introduced backbone extractor CADIBACK [15]. Re-
sults show that our implementation outperforms the pervious
state-of-the-art by an order of magnitude. Furthermore, our
extension enables CADIBACK to identify a subset of all
backbone literals within a fraction of the time required to find
an initial model.

II. PRELIMINARIES

We consider satisfiable SAT formulas in conjunctive normal
form (CNF). A formula F is defined over a fixed set of vari-
ables V or their literals L = V∪¬V , where ¬V = {¬ℓ | ℓ ∈ V}
is the set of negative literals over V . It consists of a set
of clauses, which are sets of literals. A clause is unit if it
contains only one literal. We use |F| to denote the number
of literal occurrences in F , the number of distinct literals |L|
will commonly be referred to as n.

An assignment σ ⊂ L can also be interpreted as as the con-
junction of its literals and we use F|σ = F

⋀︁
ℓ∈σ ℓ to denote

a formula F under assignment σ. The unit-clause rule [18]
picks a unit clause {ℓ}, removes all clauses containing ℓ and
removes ¬ℓ from all clauses. We write F ⊢1 ℓ and say ℓ
is derived from F by unit propagation, if a unit clause {ℓ}
can be picked during repeated application of this rule. If both
F ⊢1 ℓ and F ⊢1 ¬ℓ we say a conflict is derived and for
convenience write F ⊢1 (note that is not a literal).
The assignment resulting from unit propagation under σ until
fixpoint is σ′ = {k | F|σ ⊢1 k}. If σ′ contains conflicting
literal we use the same notation ∈ σ′. If no conflict is
encountered, we can set σ = σ′, extend the assignment, and
repeat the computation until a full assignment is reached. The
entire process can be implemented in O(|F|) [19].

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_24 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0003-3925-3438
https://orcid.org/0000-0002-4993-773X
https://orcid.org/0000-0001-7170-9242
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_24
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_24
https://creativecommons.org/licenses/by/4.0/

The Binary Implication Graph (BIG) of F has a node for
each literal in L and two edges (¬u, v) and (¬v, u) for each
binary clause {u, v} [20]. By contraposition, if there is a path
from u to v, there is also a path from ¬v to ¬u [21]. Equivalent
Literal Substitution (ELS) identifies all cycles in the BIG and
replaces the corresponding literals with a single representative.
Failed Literal Elimination (FLE) [22] identifies literals ℓ with
F|ℓ ⊢1 (called failed) and adds ¬ℓ as a unit clause. This is
done repeatedly until a fixpoint is reached.

Algorithm 1 (SLUR) [16] may return unsatisfiability, a sat-
isfying assignment, or give up. If it succeeds for any variable
ordering (line 3), the formula is in the SLUR class [23].
Notable subsets of SLUR include 2-CNF which contain only
binary clauses, and Horn-3-CNF that contain length 3 clauses
with at most one positive literal.

SLUR (CNF F)

1 σ ← {k | F ⊢1 k}
2 if ∈ σ then return UNSAT

3 for v ∈ V
4 σ+ ← {k | F|σ∧v ⊢1 k}
5 σ− ← {k | F|σ∧¬v ⊢1 k}
6 if ∈ σ+ and ∈ σ− then
7 return GIVE-UP

8 if ∈ σ+ then σ ← σ−

9 else σ ← σ+

10 return SAT, σ

Algorithm 1: Single Look-ahead Unit Resolution. Success
depends on the formula and the variable order chosen in line 3.

III. SINGLE UNIT RESOLUTION BACKBONE

This section, introduces the algorithm SURB (Single Unit
Resolution Backbone) for finding backbone literals and defines
a subclass of formulas with the same name.

SURB (CNF F)

1 B ← ∅
2 for ℓ ∈ L
3 if F|B∧ℓ ⊢1 then
4 B ← {k | F|B∧¬ℓ ⊢1 k}
5 return B

Algorithm 2: Single Unit Resolution Backbone identifies a
subset of the backbone. The order of literals chosen in line 2
is non-deterministic and can influence which backbone literals
are identified.

The algorithm is sound, since the negation of failed literals
are backbone literals and only previously identified backbone
literals are added to the propagation. In the following we
introduce the SURB subclass based on Algorithm 2.

Definition 1. A formula F is in SURB if the algorithm
identifies the entire backbone for any order of literal selection.

The relation of SURB and other classes can be summarized
as the following, where FLBE is defined later in Def. 2.

2-CNF ⊊ SLUR ⊊ SURB ⊊ FLBE

Similar to SLUR, running Algorithm 2 does not indicate the
membership in the class. Deciding if a formula is in SLUR
is co-NP-complete [24]. We leave a similar proof for SURB
to future work. In practice, this means that without additional
knowledge about the formula, it is unknown if the backbone
extends beyond the literals identified by SURB. We now
formally prove the subset relations from above.

Theorem 1. SLUR ⊂ SURB

Proof. Assume a satisfiable formula F has a backbone literal
¬ℓ that is not identified by SURB, we show SLUR can fail
on F . Let ℓ be the first variable that is decided by SLUR.
By the assumption F|B∧ℓ ̸⊢1 for some set B and therefore
especially for B = ∅. SLUR chooses σ+ to proceed and will
eventually give up since ¬ℓ is a backbone literal.

The example shows not all formulas in SURB are in SLUR.

Example 1. Consider the formula F = (¬a ∨ b ∨ ¬c ∨ d) ∧
(¬a ∨ b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ b ∨ c ∨ d) ∧ (¬a ∨ b ∨ c ∨ ¬d).

SLUR fails for the variable order [a, b, c, d]. However, F
has neither failed nor backbone literals.

Definition 2. Failed Literal Backbone Equivalent (FLBE) is
the class of formulas on which the negation of every backbone
literal is a failed literal.

This class defines the upper bound on which SURB is
complete, if it had an oracle to determine the optimal ordering
of literals. Without the correct ordering, SURB would need to
be executed up to n times to identify the entire backbone of
a formula in FLBE. The following example illustrates this.

Example 2. Consider the formula
F = (¬a ∨ ¬b) ∧ (¬a ∨ b) ∧ (a ∨ ¬c ∨ ¬d) ∧ (a ∨ ¬c ∨ d).
If c is propagated before a, only ¬a will be found by SURB.

However, both a and c are failed literals and there are no
further backbone literals, thus F is in FLBE.

Now we proceed to discuss the time complexity of SURB. It
performs up to n propagations and therefore has a worst-case
complexity of O(n · |F|). Järvisalo and Korhonen [25] suggest
that any algorithm to find even a single backbone literal in a
Horn-3-CNF has worst-case complexity of O(n · |F|) under
the strong exponential time hypothesis [26]. Since SURB
subsumes the problem and is complete on a superset of Horn-
3-CNF, it is unlikely that we can achieve a better worst-case
complexity than what this simple algorithm offers.

The same asymptotic time complexity is also shared by
SLUR [16]. However, while SLUR continuously extends an
assignment and uses it for future propagations, SURB only
saves backbone literals. As in the end both algorithms propa-
gate each literal at least once, keeping more literals assigned
can lead to a faster overall runtime. We exploit this idea in
the design of Algorithm 3 in the next section.

163

IV. BIG BACKBONES

As the algorithm presented in the previous section is gen-
erally not guaranteed to identify the entire backbone of a
formula, it can only serve as part of the backbone search.
Applying SURB to the entire formula would be too slow, even
with the highly optimized implementations of unit propagation
in modern SAT solvers. It is also not possible to efficiently
identify the subset of a formula that is in SLUR [24]. We
therefore focus on the binary clauses where propagation can
be implemented more efficiently and SURB is complete. The
following proposition justifies focusing on a subset.

Proposition 1. The backbone found on a subset of a satisfiable
formula F is a subset of the backbone of F .

In Algorithm 3, we present KB3, a version of SURB, which
is only valid for 2-CNFs and avoids re-propagation by keeping
an assignment between propagations.

KB3 (2-CNF F)

1 B ← ∅, Λ← L
2 while Λ ̸= ∅
3 σ ← B, ∆← ∅
4 for ℓ ∈ Λ // next candidate

5 if ¬ℓ ∈ σ then continue
6 ∆← ∆ ∪ {ℓ}
7 if ℓ ∈ σ then continue
8 σ′ ← {k | F|σ∧ℓ ⊢1 k}
9 if ∈ σ′ then

10 B ← B ∪ {k | F|¬ℓ ⊢1 k}
11 ∆← ∆ ∪ B ∪ ¬B
12 σ ← σ ∪ B
13 else σ ← σ′

14 Λ← Λ \∆
15 return B

Algorithm 3: Keep assignment BIG Backbone (KB3) is only
defined on 2-CNFs, for which it is complete regardless of the
literal selection order (in line 4).

The example in Figure 1 illustrates why we can keep literals
assigned without encountering spurious conflicts. Specifically,
running the KB3 algorithm for this formula, when c is picked
as the first candidate (line 4), all candidates with a path to ¬c
are blocked until the assignment is reset in line 3.

Theorem 2. Algorithm 3 is sound and complete on 2-CNF.

Proof. Since 2-CNF is a subset of SURB we can rely on the
completeness of Algorithm 2 for any variable ordering. We can
therefore assume the set B to be empty for every candidate ℓ
in line 3. Every literal is either immediately eliminated in line
7 or eventually propagated in line 8. Note that propagation
under a bigger assignment is only more likely to derive a
conflict. Any eliminated literal has been assigned by a previous
propagation that did not lead to a conflict.

¬a ¬c

b

¬b

c a

¬d

d

Fig. 1: BIG of (a ∨ ¬b) ∧ (b ∨ ¬c) ∧ (b ∨ c) ∧ (c ∨ ¬d).

To show soundness, consider a conflict derived in line 8. Let
c and ¬c be any pair of conflicting literals and ℓ the current
candidate. We show neither c nor ¬c are in σ and therefore
F|ℓ ⊢1 which implies that ¬ℓ is a backbone literal. It is
impossible for c and ¬c to both be in σ since the conflict
would have prevented the assignment from being updated in
line 13. Without loss of generality assume c to be in σ and
the propagation of ℓ to imply ¬c. Since ℓ implies ¬c, there is
a path from ℓ to ¬c in the BIG and by contraposition there is
also a path from c to ¬ℓ. The set σ is the result of propagation
therefore every literal implied by c is included. But if ¬ℓ ∈ σ
the current candidate would have been skipped in line 5.

By this proof, ℓ is a failed literal in the original formula.
Therefore a resolution proof for ¬ℓ being in the backbone can
be found by resolving the clauses corresponding to the paths
from ℓ to c and ℓ to ¬c in the BIG.

The example below shows that Algorithm 3 does not extend
to Horn-3-CNF.

Example 3. Consider the formula (¬a∨¬b∨¬c)∧(¬a∨¬b∨c).
Both ¬a, b, c and a,¬b,¬c satisfy the formula, the backbone is
therefore empty. However, if the candidates are picked in the
order [a, b, . . .] literal ¬b is identified as part of the backbone.

V. RELATED TECHNIQUES

We now discuss some previous work on extracting back-
bones from BIGs [21], as well as other techniques used in
failed literal extraction and how they relate to KB3. We refer
to Figure 1 for an illustration of the following discussions. The
algorithm Van Gelder describes in [21] is essentially equivalent
to SURB with a depth-first search order, instead of the usual
breadth-first propagation. Whenever the BFS propagation of a
literal ¬a causes the assignment of conflicting literals c and
¬c, the BIG does not only contain a path from ¬a to c and
¬a to ¬c but by contraposition also a path from c to a. Thus,
with a DFS order the first conflicting literal b, is always in
the backbone. Furthermore, b is the highest such literal in the
search tree, so propagating it will identify all other backbones
that can be found for this conflict. To emulate this desirable
property with BFS, we can explicitly store the search tree and
identify the first UIP[27] after a conflict is encountered.
Stamping [28], [29] prevents a literal to be considered as

a candidate, if it has been propagated since the last backbone
literal was identified. However, such a literal must still be re-
propagated if it is encountered during another propagation,
as the previous example demonstrates for the candidate order
[d,¬a, . . .]. KB3 subsumes this technique, since any candidate
that is not propagated due to stamping would still be assigned
and added to ∆ in line 6, at the first time it is encountered.

164

Moreover, while stamping is reset when a conflict is encoun-
tered, KB3 still maintains part of the assignment.
Roots [21], [30], [31] only propagates a candidate if

it has no predecessor in the BIG. Removing the negation
of an identified backbone literal can add new roots. This
optimization is part of Van Gelder’s algorithm and also used
in failed literal elimination. To maintain completeness, it is
necessary to run ELS until fixpoint. Note that if only the BIG is
considered, one round of ELS is sufficient. Since a root cannot
be implied by another candidate, this technique also subsumes
Stamping. Note that combining this technique with KB3
increases the size of the unkept assignment when a conflict is
encountered and can therefore also have negative effects.

We present two scalable examples of 2-CNF formulas.
Figure 2a is lifted from [21]. They used the example to show
that their algorithm expands O(n3) edges and is therefore not
more efficient than computing the two-closure. In contrast,
our algorithm expands each edge exactly once and is thus
in O(n2). We can therefore achieve a speedup of n times
and reach the lower bound complexity of performing a single
propagation. However, as the example in Figure 2b shows, the
worst case complexity has not changed. Each of theO(n) roots
in group R expands the O(n2) edges in P and the at-most-one
constraint prevents any of the propagations from being reused.

¬A

¬C

D

B

¬B

¬D

C

A

(a) The positive literals
are split into four equal
groups. The double-arrow
denotes that each literal of
one group implies all liter-
als of the other [21].

R

P
¬R

¬P

(b) The literals in R are connected to ¬R
with an at-most-one constraint, meaning
that each literal has an edge to the nega-
tion of every other literal. They all con-
nect to the highest literal in P . Literals
in P have an edge to every lower literal.

Fig. 2: Depicted are the BIGs of two scalable SAT formulas.
On (a) KB3 achieves a linear speed up over the previous state
of the art. However, (b) shows that KB3 does not improve
upon the worst case performance.

VI. IMPLEMENTATION AND EVALUATION

We implement the new algorithm KB3 [32] and the base
version SURB with various optimizations as preprocessors for
CADIBACK [15]. For each configuration we tested both DFS
and BFS for propagation. The binary clauses are extracted after
some basic preprocessing has been performed by CADICAL
and stored as an adjacency array. All backbone literals in the
BIG are then extracted and added as unit clauses before the
first call to a SAT solver. To increase trust, we checked that
all configurations identify the same backbone on close to a

SURB KB3

BFS DFS BFS DFS

Base 21136.11 21287.25 647.53 728.46
ELS 20523.81 20756.81 640.43 733.47
ELS+Roots 18164.47 18756.10 643.57 721.09

stamp 19205.73 19636.01
ELS+Stamping 18947.99 19392.12

ELS+Roots+UIP 822.49

Fig. 3: The time in seconds to run backbone extraction
on the BIG until completion accumulated over all satisfiable
benchmarks from the last 19 SAT competitions (2004-2022).
The time to run ELS on the entire benchmark set is 50.59
seconds and included for the algorithms which use it.

billion randomly generated 2-CNF. We use a cluster with 20
nodes each running two AMD EPYC 7313 at 3.7Ghz under
Ubuntu 22.04 LTS. Memory is limited to 15GB per instance.

For benchmarking, we collected formulas from SAT com-
petitions 2004-2022, and removed duplicates to obtain a
large and representative set. We ran Kissat 3.0.0 [33] for
5,000 seconds to identify satisfiable benchmarks. This left
us with 1798 benchmarks (available at https://cca.informatik.
uni-freiburg.de/sc04to22sat.zip (6 GB) and [34]).

Table 3 presents the comparison of the different configura-
tions. Even though the source code from [21] is not available,
the configuration of SURB with DFS and ELS+Roots in
our implementation is equivalent to what they describe in
their paper and we use it as a representation of the previous
state of the art. The results show that the new algorithm
clearly outperforms the configuration of [21], being more
than 29 times faster. Three benchmarks are particularly hard
for SURB. Only the BFS configurations without stamping
solve them within the time limit of 5000 seconds, whereas
KB3 takes less than a second to solve them. Furthermore,
the additional optimizations work well for the base version,
however, as discussed in the previous section, KB3 does not
seem to benefit from them as much.

As argued before, KB3 subsumes stamping and the combi-
nation is therefore not presented. Similarly, the UIP technique
is not necessary when a depth first order is used for propaga-
tion and has not been implemented for SURB.

In the second part of the evaluation we investigate how
the best configuration of KB3 (BFS and ELS) performs as a
preprocessor for the complete backbone extractor CADIBACK.
We log the time of identifying a backbone literal for the 533
benchmarks from the past three SAT competitions (2020-2022)
and present their accumulation over time in Figure 4. Even
though we limit the run time to 1000 seconds, still more
than 10 Million backbone literals are identified. The version
with KB3 holds the biggest absolute advantage at around 210
seconds, where it identified 5.5 Million backbone literals, 4.5
times as many as the base version has found at that point.

165

https://cca.informatik.uni-freiburg.de/sc04to22sat.zip
https://cca.informatik.uni-freiburg.de/sc04to22sat.zip

0 200 400 600 800 1000
time [s]

0.0

0.2

0.4

0.6

0.8

1.0
ba

ck
bo

ne
s

1e7 SC2020-SC2022
CaDiBack+KB3
CaDiBack

Fig. 4: Presented is the number of backbone literals identified
over time. We compare default CADIBACK to a version with
added preprocessing performed by KB3.

VII. CONCLUSION

We proposed a new algorithm for backbone extraction from
the binary implication graph of a formula. The new algorithm
exhibits a significant performance advantage over the previous
state-of-the-art approach. Furthermore, we have integrated
our algorithm into the backbone extractor CADIBACK as a
preprocessor, yielding remarkable improvements, particularly
in the early identification of backbone literals.

Acknowledgements: This work is supported by the Austrian
Science Fund (FWF) under projects W1256-N23 and S11408-
N23, and the LIT AI Lab funded by the State of Upper Austria.

REFERENCES

[1] C. S. Zhu, G. Weissenbacher, and S. Malik, “Post-silicon fault local-
isation using maximum satisfiability and backbones,” in 2011 Formal
Methods in Computer-Aided Design (FMCAD), Oct. 2011, pp. 63–66.

[2] C. S. Zhu, G. Weissenbacher, D. Sethi, and S. Malik, “SAT-based
techniques for determining backbones for post-silicon fault localisation,”
in 2011 IEEE International High Level Design Validation and Test
Workshop, Nov. 2011, pp. 84–91.

[3] C. S. Zhu, G. Weissenbacher, and S. Malik, “Silicon fault diagnosis
using sequence interpolation with backbones,” in 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov.
2014, pp. 348–355.

[4] M. Janota, “SAT solving in interactive configuration,” Ph.D. dissertation,
University College Dublin, 2010.

[5] P. C. Cheeseman, B. Kanefsky, W. M. Taylor et al., “Where the really
hard problems are.” in Ijcai, vol. 91, 1991, pp. 331–337.

[6] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyan-
sky, “Determining computational complexity from characteristic ’phase
transitions’,” Nature, vol. 400, pp. 133–137, Jul. 1999.

[7] D. Achlioptas, C. Gomes, H. Kautz, and B. Selman, “Generating
satisfiable problem instances,” AAAI/IAAI, vol. 2000, pp. 256–261, 2000.

[8] T. Al-Yahya, M. E. B. A. Menai, and H. Mathkour, “Boosting the
Performance of CDCL-Based SAT Solvers by Exploiting Backbones
and Backdoors,” Algorithms, vol. 15, no. 9, p. 302, Sep. 2022.

[9] O. Dubois and G. Dequen, “A backbone-search heuristic for efficient
solving of hard 3-SAT formulae,” in IJCAI, vol. 1, 2001, pp. 248–253.

[10] A. B. M. Fleury, “GIMSATUL, ISASAT, KISSAT,” SAT COMPETI-
TION 2022, p. 10.

[11] M. El Bachir Menaï, “A Two-Phase Backbone-Based Search Heuristic
for Partial MAX-SAT – An Initial Investigation,” in Innovations in
Applied Artificial Intelligence, ser. Lecture Notes in Computer Science,
M. Ali and F. Esposito, Eds. Berlin, Heidelberg: Springer, 2005, pp.
681–684.

[12] W. Zhang, A. Rangan, M. Looks et al., “Backbone guided local search
for maximum satisfiability,” in IJCAI, vol. 3, 2003, pp. 1179–1186.

[13] G. Zeng, C. Zheng, Z. Zhang, and Y. Lu, “An Backbone Guided
Extremal Optimization Method for Solving the Hard Maximum Sat-
isfiability Problem,” in 2012 International Conference on Computer
Application and System Modeling. Atlantis Press, Aug. 2012, pp. 1301–
1304.

[14] W. Zhang, “Configuration landscape analysis and backbone guided
local search.: Part I: Satisfiability and maximum satisfiability,” Artificial
Intelligence, vol. 158, no. 1, pp. 1–26, Sep. 2004.

[15] A. Biere, N. Froleyks, and W. Wang, “CadiBack: Extracting
Backbones with CaDiCaL,” in 26th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2023), ser. Leibniz
International Proceedings in Informatics (LIPIcs), M. Mahajan and
F. Slivovsky, Eds., vol. 271. Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023, pp. 3:1–3:12. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2023/18465

[16] J. S. Schlipf, F. S. Annexstein, J. V. Franco, and R. P. Swaminathan,
“On Finding Solutions for Extended Horn Formulas,” Inf. Process. Lett.,
vol. 54, no. 3, pp. 133–137, 1995.

[17] A. del Val, “On 2-SAT and renamable Horn,” pp. 279–284, 2000.
[18] M. Davis and H. Putnam, “A computing procedure for quantification

theory,” J. ACM, vol. 7, no. 3, pp. 201–215, 1960. [Online]. Available:
https://doi.org/10.1145/321033.321034

[19] I. P. Gent, “Optimal Implementation of Watched Literals and More
General Techniques,” Journal of Artificial Intelligence Research, vol. 48,
pp. 231–252, Oct. 2013.

[20] B. Aspvall, M. F. Plass, and R. E. Tarjan, “A Linear-Time Algorithm for
Testing the Truth of Certain Quantified Boolean Formulas,” Inf. Process.
Lett., vol. 8, no. 3, pp. 121–123, 1979.

[21] A. Van Gelder, “Toward leaner binary-clause reasoning in a satisfiability
solver,” Annals of Mathematics and Artificial Intelligence, vol. 43, no. 1,
pp. 239–253, Jan. 2005.

[22] D. L. Berre, “Exploiting the real power of unit propagation lookahead,”
Electron. Notes Discret. Math., vol. 9, pp. 59–80, 2001.

[23] J. Franco and A. Van Gelder, “A perspective on certain polynomial-
time solvable classes of satisfiability,” Discrete Applied Mathematics,
vol. 125, no. 2, pp. 177–214, Feb. 2003.

[24] O. Čepek, P. Kučera, and V. Vlček, “Properties of SLUR Formulae,” in
SOFSEM 2012: Theory and Practice of Computer Science, ser. Lecture
Notes in Computer Science, M. Bieliková, G. Friedrich, G. Gottlob,
S. Katzenbeisser, and G. Turán, Eds. Berlin, Heidelberg: Springer,
2012, pp. 177–189.

[25] M. Järvisalo and J. H. Korhonen, “Conditional Lower Bounds for
Failed Literals and Related Techniques,” in Theory and Applications
of Satisfiability Testing – SAT 2014, ser. Lecture Notes in Computer
Science, C. Sinz and U. Egly, Eds. Cham: Springer International
Publishing, 2014, pp. 75–84.

[26] R. Impagliazzo, R. Paturi, and F. Zane, “Which Problems Have Strongly
Exponential Complexity?” Journal of Computer and System Sciences,
vol. 63, no. 4, pp. 512–530, Dec. 2001.

[27] A. Darwiche and K. Pipatsrisawat, “Complete algorithms,” in Handbook
of Satisfiability - Second Edition, ser. Frontiers in Artificial Intelligence
and Applications, A. Biere, M. Heule, H. van Maaren, and T. Walsh,
Eds. IOS Press, 2021, vol. 336, pp. 101–132. [Online]. Available:
https://doi.org/10.3233/FAIA200986

[28] A. Biere, M. Järvisalo, and B. Kiesl, “Preprocessing in SAT solving,” in
Handbook of Satisfiability - Second Edition, ser. Frontiers in Artificial
Intelligence and Applications, A. Biere, M. Heule, H. van Maaren, and
T. Walsh, Eds. IOS Press, 2021, vol. 336, pp. 391–435. [Online].
Available: https://doi.org/10.3233/FAIA200992

[29] P. Simons, I. Niemelä, and T. Soininen, “Extending and implementing
the stable model semantics,” Artificial Intelligence, vol. 138, no. 1-2,
pp. 181–234, 2002.

[30] R. Gershman and O. Strichman, “Cost-Effective Hyper-Resolution for
Preprocessing CNF Formulas,” in Theory and Applications of Satisfia-
bility Testing, ser. Lecture Notes in Computer Science, F. Bacchus and
T. Walsh, Eds. Berlin, Heidelberg: Springer, 2005, pp. 423–429.

166

https://drops.dagstuhl.de/opus/volltexte/2023/18465
https://doi.org/10.1145/321033.321034
https://doi.org/10.3233/FAIA200986
https://doi.org/10.3233/FAIA200992

[31] A. Biere, “CaDiCaL, Lingeling, Plingeling, Treengeling and Yalsat
entering the SAT Competition 2018,” Proceedings of SAT Competition,
pp. 14–15, 2017.

[32] Froleyks, Nils, “KB3: Keep Big Backbones,” 2023, http://fmv.jku.at/kb3.
[33] A. Biere and M. Fleury, “Gimsatul, IsaSAT and Kissat entering the

SAT Competition 2022,” in Proc. of SAT Competition 2022 – Solver and
Benchmark Descriptions, ser. Department of Computer Science Series of
Publications B, T. Balyo, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2022-1. University of Helsinki, 2022, pp. 10–11.

[34] A. Biere, N. Froleyks, and W. Wang, “Sampled and Normalized
Satisfiable Instances from the main track of the SAT Competition
2004 to 2022,” Mar. 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.7750076

167

http://fmv.jku.at/kb3
https://doi.org/10.5281/zenodo.7750076
https://doi.org/10.5281/zenodo.7750076

Formal Methods in Computer-Aided Design 2023

Local Search For SMT On Linear and Multi-linear
Real Arithmetic

Bohan Li , Shaowei Cai ∗

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
School of Computer Science and Technology, University of Chinese Academy of Sciences

Beijing, China
{libh, caisw}@ios.ac.cn

Abstract—Satisfiability Modulo Theories (SMT) has significant
application in various domains. In this paper, we focus on
quantifier-free Satisfiablity Modulo Real Arithmetic, referred to
as SMT(RA), including both linear and non-linear real arithmetic
theories. As for non-linear real arithmetic theory, we focus on
one of its important fragments where the atomic constraints
are multi-linear. We propose the first local search algorithm
for SMT(RA), called LocalSMT(RA), based on two novel ideas.
First, an interval-based operator is proposed to cooperate with
the traditional local search operator by considering the interval
information. Moreover, we propose a tie-breaking mechanism
to further evaluate the operations when the operations are
indistinguishable according to the score function. Experiments
are conducted to evaluate LocalSMT(RA) on benchmarks from
SMT-LIB. The results show that LocalSMT(RA) is competitive
with the state-of-the-art SMT solvers, and performs particularly
well on multi-linear instances.

I. INTRODUCTION

Satisfiability Modulo Theories (SMT) is the problem of
checking the satisfiability of a first order logic formula with
respect to certain background theories. It has been applied in
various areas, including program verification and termination
analysis [1], [2], symbolic execution [3] and test-case genera-
tion [4], etc.

In this paper, we focus on the theory of quantifier-free
real arithmetic, consisting of atomic constraints in the form
of polynomial equalities or inequalities over real variables.
The theory can be divided into two categories, namely linear
real arithmetic (LRA) and non-linear real arithmetic (NRA),
based on whether the arithmetic atomic constraints are linear
or not. As for NRA, this paper concerns one of its important
fragments where the atomic constraints are multi-linear. The
SMT problem with the background theory of LRA and NRA
is to determine the satisfiability of the Boolean combination of
respective atomic constraints, referred to as SMT(LRA) and
SMT(NRA). In general, we refer to the SMT problem on the
theory of real arithmetic as SMT(RA).

A. Related Work

The mainstream approach for solving SMT(RA) is the lazy
approach [5], [6], also known as DPLL(T) [7], which relies on
the interaction of a SAT solver with a theory solver. Most state-
of-the-art SMT solvers supporting the theory of real arithmetic
are mainly based on the lazy approach, including Z3 [8],
Yices2 [9], SMT-RAT [10], cvc5 [11], OpenSMT [12] and

MathSAT5 [13]. In the DPLL(T) framework, the SMT formula
is abstracted into a Boolean formula by replacing arithmetic
atomic constraints with fresh Boolean variables. A SAT solver
is employed to reason about the Boolean structure, while a
theory solver is invoked to receive the set of theory constraints
determined by the SAT solver, and solve the conjunction of
these theory constraints, including consistency checking of the
assignments and theory-based deduction.

The efforts in the lazy approach are mainly devoted to de-
signing effective decision procedures, serving as theory solvers
to deal with the conjunction of theory constraints. The core
reasoning module for LRA integrated in DPLL(T) is a variant
of the simplex algorithm dedicated for SMT solving, proposed
in [14]. Another approach for solving LRA constraint systems
is the Fourier-Motzkin variable elimination [15], which often
shows worse performance than the simplex algorithm.

As for non-linear real arithmetic, the cylindrical algebraic
decomposition (CAD) [16] is the most widely used decision
procedure, and CAD is adapted and embedded as theory solver
in the SMT-RAT solver [10] with improvement since [17].
Other well-known methods use Gröbner bases [18] or the
realization of sign conditions [19]. Incomplete methods in-
clude a theory solver [20] based on virtual substitution [21],
and techniques based on interval constraint propagation [22]
proposed in [23], [24].

Moreover, Constructing Satisfiability (MCSat) calculus is
also an efficient framework for solving SMT(RA). It was
proposed in [25] for solving SMT(LRA), and an elegant
variation of CAD method is instantiated in the model-
constructing satisfiability calculus framework of Z3 [26] for
solving SMT(NRA).

Local search is an incomplete method playing a significant
part in many combinatorial problems [27]. It has been suc-
cessfully applied to the Boolean Satisfiability (SAT) problem
[28], [29], [30], [31], [32] and can rival CDCL solvers on
certain types of instances.

Local search for SMT, however, has only received very
little amount of attention. The idea of integrating local search
solvers with theory solvers has been previously explored to
solve SMT(LRA), where a local search SAT solver WalkSAT
is used to solve the Boolean skeleton of the SMT formula [33].
A local search solver called LocalSMT was recently employed
to SMT on integer arithmetic [34], [35]. Moreover, local search

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 25 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0003-1356-6057
https://orcid.org/0000-0003-1730-6922
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_25
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_25
https://creativecommons.org/licenses/by/4.0/

algorithm has been applied to Bit-vectors [36], [37], [38].
However, we are not aware of any local search algorithm for
SMT on real arithmetic.

B. Contributions

In this paper, for the first time, we design a local search
algorithm for SMT(RA), namely LocalSMT(RA), based on
the following novel strategies. Note that LocalSMT(RA) is
implemented as a fragment of LocalSMT [35], which is our
local search solver dedicated for SMT.

First, we propose the interval-based operator to enhance
the conventional local search operator by taking interval in-
formation into account. Specifically, we observe that assigning
the real-value variable to any value in a given interval would
make the same amount of currently falsified clauses become
satisfied. Hence, the interval-based operator evaluates mul-
tiple values inside the interval as the potential value of the
operation, rather than only assign it to a fixed value (e.g. the
threshold value to satisfy a constraint).

Moreover, we observe that there frequently exist multiple
operations with the same best score when performing local
search, and thus a tie-breaking mechanism is proposed to
further distinguish these operations.

Experiments are conducted to evaluate LocalSMT(RA) on 2
benchmark sets, namely SMT(LRA) and SMT(NRA) bench-
marks from SMT-LIB. Note that unsatisfiable instances are
excluded, and we only consider multi-linear instances from
SMT(NRA) benchmark. We compare LocalSMT(RA) with the
top 4 SMT solvers in the relevant logics (QF LRA, QF NRA)
according to the SMT-COMP 20221, excluding the portfolio
and derived solvers. Specifically, as for SMT(LRA), we com-
pare LocalSMT(RA) with OpenSMT, Yices2, cvc5 and Z3,
while for SMT(NRA), the competitors are Z3, cvc5, Yices2
and SMT-RAT. Experimental results show that LocalSMT(RA)
is competitive and complementary with state-of-the-art SMT
solvers, especially on multi-linear instances. Moreover, the
ablation experiment confirms the effectiveness of our proposed
novel strategies.

Note that multi-linear instances are comparatively difficult
to solve by existing solvers. For example, Z3, perhaps the best
solver for satisfiable SMT(NRA) instances according to SMT-
COMP 2022, can solve 90.5% QF(NRA) instances, while it
can only solve 77.5% multi-linear instances. However, multi-
linear instances are suitable for local search, since without
high order terms, the operation can be efficiently calculated.

C. Paper Organization

In section II, preliminary knowledge is introduced. In sec-
tion III, we propose a novel interval-based operator to enrich
the traditional operator by considering the interval informa-
tion. In section IV, a tie-breaking mechanism is proposed to
distinguish multiple operations with the same best score. Based
on the two novel strategies, our local search for SMT(RA) is
proposed in section V. Experiments are presented in section
VI. Conclusion and future work are given in section VII.

1https://smt-comp.github.io/2022/

II. PRELIMINARIES

A. Basic Definitions
A monomial is an expression of the form xe1

1 ...xem
m where

m > 0, xi are variables and ei are exponents, ei > 0 for all
i ∈ {1...m}, and xi ̸= xj for all i, j ∈ {1...m}, i ̸= j. A
monomial is linear if m = 1 and e1 = 1.

A polynomial is a linear combination of monomials, that
is, an arithmetic expression of the form

∑︁
i aimi where ai

are coefficients and mi are monomials. If all its monomials
are linear in a polynomial, indicating that the polynomial
can be written as

∑︁
i aixi, then it is linear, and otherwise

it is non-linear. A special case of non-linear polynomial is
multi − linear polynomial, where the highest exponent for
all variables is 1, indicating that each monomial is in the form
of x1...xm.

Definition 1: The atomic constraints of the theory of real
arithmetic are polynomial inequalities and equalities, in the
form of

∑︁
i aimi ▷◁ k, where ▷◁∈ {=,≤, <,≥, >}, mi are

monomials consisting of real-valued variables, k and ai are
rational constants.

The formulas of the SMT problem on the theory of real
arithmetic, denoted as SMT(RA), are Boolean combinations
of atomic constraints and propositional variables, where the
sets of real-valued variables and propositional variables are
denoted as X and P . The SMT problem on the theory of
linear real arithmetic (LRA) and non-linear arithmetic (NRA)
are denoted as SMT(LRA) and SMT(NRA), respectively. As
for NRA, this paper only considers one important fragment
where the polynomials in atomic constraints are multi-linear,
denoted as MRA in this paper.

Example 1: Let X = {x1, x2, x3, x4, x5} and P = {p1, p2}
denote the sets of integer-valued and propositional vari-
ables respectively. A typical SMT(LRA) formula FLRA and
SMT(MRA) formula FMRA is shown as follows:
FLRA: (p1 ∨ (x1 + 2x2 ≤ 2)) ∧ (p2 ∨ (3x3 + 4x4 =

2) ∨ (−x2 − x3 < 3))
FMRA: (p1 ∨ (x1x2 ≤ 2)) ∧ (p2 ∨ (3x3x4 + 4x4 = 2) ∨

(−x2 − x3 < 3))
In the theory of real arithmetic, a positive, infinitesimal real

number is denoted as δ.
A literal is an atomic constraint or a propositional variable,

or their negation. A clause is the disjunction of a set of
literals, and a formula in conjunctive normal form (CNF) is the
conjunction of a set of clauses. For an SMT(RA) formula F , an
assignment α is a mapping X → R and P → {false, true},
and α(x) denotes the value of a variable x under α. A complete
assignment is a mapping which assigns to each variable a
value. A literal is true if it evaluates to true under the given
assignment, and false otherwise. A clause is satisfied if it has
at least one true literal, and falsified if all literals in the clause
are false. A complete assignment is a solution to an SMT(RA)
formula iff it satisfies all the clauses.

B. Local Search
When local search is performed on the SMT problem, the

search space is comprised of all complete assignments, each of

169

which represents a candidate solution. Typically, a local search
algorithm begins with a complete assignment and repeatedly
updates it by modifying the value of variables in order to find
a solution.

Given a formula F , the cost of an assignment α, denoted
as cost(α), is the number of falsified clauses under α. In
dynamic local search algorithms which use clause weighting
techniques [39], [30], cost(α) denotes the total weight of
all falsified clauses under an assignment α (The weight is
computed according to the PAWS scheme which will be
described in detail in Section V-B).

A key component of a local search algorithm is the set of
operators, which define how to modify the current solution.
When an operator is instantiated by specifying the variable
to operate and the value to assign, an operation is obtained.
The operation to assign variable x to value v is denoted as
op(x, v). The critical move operator for SMT on linear integer
arithmetic proposed in [34] is defined as follows.

Definition 2: The critical move operator, denoted as
cm(x, ℓ), assigns an integer variable x to the threshold value
making literal ℓ true, where ℓ is a falsified literal containing
x.

For example, given a falsified literal ℓ = (x + 1 ≤ 0)
where x is currently assigned to 0, the corresponding operation
cm(x, ℓ) will assign x to −1.

Local search algorithms usually choose an operation among
candidate operations according to some scoring function.
Given a formula and an assignment α, the most commonly
used scoring function of an operation op is defined as

score(op) = cost(α′)− cost(α)

where α′ is the resulting assignment by applying op to α. An
operation op is said to be decreasing if score(op) > 0.

Another property used for evaluating an operation is its
make value.

Definition 3: Given an operation op, the make value of op,
denoted as make(op), is the number of falsified clauses that
would become satisfied after performing op.

III. INTERVAL-BASED OPERATION

Critical move satisfies falsified clauses by modifying one
variable in a false literal to make it true. This operator can
still be used in the context of SMT(RA), and it is also
used in our algorithm. However, an issue of accuracy arises
when applying the critical move operator in the context of
Real Arithmetic. Recalling that we need to calculate the
threshold value for a literal to become true, when solving
a strict inequality, there is no threshold value. Instead, the
value depends on what accuracy we intend to maintain. In
this section, we propose an operator for SMT(RA), which
considers the interval information and is more flexible than
critical move.

A. Satisfying Domain

An important fact on linear or multi-linear inequality of
real-value variables is that, when all variables but one in

the inequality are fixed, there is a domain for the remaining
variable whose coefficient is not 0, such that assigning the
variable to any value in the domain makes the inequality
hold. Thus, given a falsified literal ℓ in the form of an atomic
constraint and a variable x in it, it can be satisfied by assigning
x to any value in the corresponding domain, called Satisfying
Domain. For example, consider a literal ℓ : (x−y > 4) where
the current assignment is α = {x = 0, y = 0}, then obviously
assigning x to any value in (4,+∞) satisfies the inequality,
and thus the Satisfying Domain is (4,+∞).

We further extend the definition of Satisfying Domain to the
clause level, defined as follows.

Definition 4: Given an assignment α, for a false literal ℓ and
a variable x appearing in ℓ, the satisfying domain of x for
literal ℓ is SDl(x, ℓ) = {v|ℓ becomes true if assigning x to
v}; for a falsified clause c and a variable x in c, the satisfying
domain of x for clause c is SDc(x, c) =

⋃︁
ℓ∈c SDl(x, ℓ).

Since the false literal ℓ is in the form of linear or multi-
linear inequality, SDl(x, ℓ) is either in the form of (−∞, u]
or [l,∞). Thus, as the union of SDl(x, ℓ), SDc(x, c) may
contain (−∞, u] whose upper bound is defined as UB(x, c) =
u, or [l,∞) whose lower bound is defined as LB(x, c) = l,
or both kinds of intervals. For simplicity, interval (−∞, u) or
(l,∞) are denoted as (−∞, u− δ] or [l + δ,∞) respectively.

Example 2: Given a clause c = ℓ1 ∨ ℓ2 ∨ ℓ3 = (a − b >
4)∨ (2a− b ≥ 7)∨ (2a− c ≤ −5) and the current assignment
α = {a = 0, b = 0, c = 0}, for variable a, the satisfying
domains to the three literals are SDl(a, ℓ1) = [4 + δ,∞),
SDl(a, ℓ2) = [3.5,∞) and SDl(a, ℓ3) = (−∞,−2.5] re-
spectively. The Satisfying Domain to clause c is SDc(a, c) =
(−∞,−2.5] ∪ [3.5,∞), and the corresponding upper bound
and lower bound are UB(a, c) = −2.5 and LB(a, c) = 3.5.

B. Equi-make Intervals

Based on the variables’ satisfying domain to clauses, we
observe that operations assigning the variable to any value in
a given interval would satisfy the same amount of falsified
clauses, that is, they have the same make value. We call such
interval as equi-make interval.

Definition 5: Given an SMT(RA) formula F and an assign-
ment α to its variables, for a variable x, an equi-make interval
is a maximal interval I such that all operations op(x, v) with
v ∈ I have the same make value.

We can divide (−∞,+∞) into several equi-make intervals
w.r.t. a variable.

Example 3: Consider a formula F : c1 ∧ c2 where both
clauses are falsified under the current assignment and variable
a appears in both clauses. Suppose SDc(a, c1) = [3,+∞)
and SDc(a, c2) = [5,+∞), then we can divide (−∞,+∞)
into three intervals as (−∞, 3), [3, 5) and [5,+∞). Operations
assigning a to any value in (−∞, 3) results in a make value
of 0, those assigning a to a value in [3, 5) results in a make
value of 1, while those corresponding to [5,∞) results in a
make value of 2.

Thus, we can enrich the traditional critical move operator
by considering the interval information. The intuition is to find

170

the equi-make intervals, and then consider multiple values in
such interval as the options for future value of operations,
rather than only consider the threshold value.

We focus on the variables appearing in at least one falsified
clause. Here we describe a procedure to partition (−∞,+∞)
into equi-make intervals for such variables.

• First, we go through the falsified clauses. For each falsi-
fied clause c, we calculate for each real-valued variable x
in c the corresponding satisfying domain to c, SDc(x, c),
as well as the upper bound UB(x, c) and lower bound
LB(x, c) if they exist.

• Then, for each real-valued variable x appearing in fal-
sified clauses, all its UBs are sorted in the ascending
order, while LBs sorted in the descending order. After
sorting, these bounds are labeled as UB1(x), . . . UBn(x)
and LB1(x),. . . LBm(x), where UBn(x) and LBm(x)
denotes the maximum of UB and minimum of LB for x
respectively 2. For convenience in description, we denote
UB0(x) = −∞ and LB0(x) = ∞. These bounds are
listed in order: UB0(x) < UB1(x) < . . . < UBn(x) <
LBm(x) < . . . < LB1(x) < LB0(x).

• Finally, for each variable x, we obtain an interval
partition IP (x) =

⋃︁
0<i≤n{(UBi−1(x), UBi(x)]} ∪

(UBn, LBm) ∪
⋃︁

0<j≤m{[LBj(x), LBj−1(x))}
Formally, given a real variable x and an interval I from

IP (x), ∀v1, v2 ∈ I , make(op(x, v1)) = make(op(x, v2)).
As a slight abuse of notation, for an interval I from IP (x),
we define its make value as the make value of any operation
op(x, v) with v ∈ I . Note that all intervals in IP (x) have
positive make values except (UBn, LBm), whose make value
is 0.

Example 4: Given a formula F : c1 ∧ c2 = (a − b >
4 ∨ 2a− b ≥ 7 ∨ 2a− c ≤ −5) ∧ (a− c ≥ 2 ∨ a− d ≤ −1)
and the current assignment is α = {a = 0, b = 0, c = 0}.
For variable a, SDc(a, c1) = (−∞,−2.5] ∪ [3.5,∞) and
SDc(a, c2) = (−∞,−1] ∪ [2,∞). Then, UB0(a) = −∞,
UB1(a) = UB(a, c1) = −2.5, UB2(a) = UB(a, c2) = −1,
LB2(a) = LB(a, c2) = 2, LB1(a) = LB(a, c1) = 3.5 and
LB0(a) = ∞.

Therefore, interval partition for x is IP (x) = I1 ∪ I2 ∪
I3 ∪ I4 ∪ I5=(−∞,−2.5] ∪ (−2.5,−1] ∪ (−1, 2) ∪ [2, 3.5) ∪
[3.5,+∞), as shown in Fig 1. For these intervals w.r.t. x, the
make value is 2, 1, 0, 1, 2 respectively.

C. Candidate Values for Operations

Since assigning a variable x to any value in an equi-make
interval would satisfy the same amount of falsified clauses,
after choosing an equi-make interval, we can consider more
values in the interval as the option for the future value of
operation, rather than only the threshold.

2Note that UBn(x) < LBm(x), since otherwise the current assignment is
either in the interval [LBm(x),∞) or (−∞, UBn(x)]. Suppose the falsified
clauses corresponding to the intervals [LBm(x),∞) and (−∞, UBn(x)] are
c1 and c2, if the current assignment is either in the first or second interval,
then according to the definition, either c1 or c2 has already been satisfied,
which contradicts the definition of UBn and LBm.

Fig. 1: Interval example

The motivation for the candidate future values is based on
the following 3 intuitions: First, we have to restrict the value
in the given interval. Moreover, we hope the denominator of
corresponding value to be relatively small, in order to avoid
exploring complex search space as will be explained in the
next section. Finally, the value should be easy to calculate, in
order to improve the efficiency of algorithm.

In this work, we only consider the intervals with a pos-
itive make value, and thus the interval (UBn, LBm) is
omitted. Thus, the interval for consideration is of the form
(UBi−1(x), UBi(x)] or [LBi(x), LBi−1(x)). For such an
interval, we consider the following values for the operation:

• Assign x to the threshold UBi(x) or LBi(x).
• Assign x to the median of the interval, that is

(UBi−1(x) + UBi(x))/2 or (LBi(x) + LBi−1(x))/2
(when one of the bounds is ∞ or −∞, the median will
not be considered).

• if there are integers in the interval (UBi−1(x), UBi(x))
or the interval (LBi(x), LBi−1(x)), assign x to the
largest or smallest integer in the respective open interval;
Otherwise, suppose that the open interval can be written
as (ab ,

c
d), then assign x to a+c

b+d .
The first option is the same as critical move, and thus

critical move can be regarded as a special case of our interval-
based operator. The second option is a simple choice among
intervals. The third option aims to find a rational value limited
in the open interval with small denominator, and it is easy to
calculate.

Note that it is difficult and even even impractical to compute
the operations leading to the largest local decrease in the score,
based on the following reasons: An operation consists of the
variable to modify and the future value to assign. However,
the variable can be assigned with arbitrary real number, which
is inexhaustible. Although this can be reduced to enumerable
intervals, it is still too time-consuming to enumerate all
possible operations. Moreover, a literal ℓ contains different
variables, and changing one such variable would affect all
other literals (not only ℓ) containing the variable. Thus, to
calculate the score of an operation, we need to go through
all literals containing the variable to modify, which is time-
consuming. These two reasons make it a very time-consuming
procedure to compute such an operation leading to the largest
local decrease in the score.

Thus, our algorithm does not tempt to compute such an
operation, but chooses an operation with good score from
sampled candidate operations with those candidate values. In

171

the future work, we will further enrich the sampled candidate
values by considering more random values with small denom-
inator in the interval.

IV. A TIE-BREAKING MECHANISM

We notice that there often exist different operations with the
same best score during local search, and thus tie-breaking is
also important to guide the search.

To confirm our observation, we conduct a pre-experiment on
100 randomly selected instances. On each instance, we execute
a simple local search algorithm which selects an operation
with the best score for 10000 iterations, and we count the
number of steps where k operations with the same best score
are found, denoted as step(k).

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 >9
k

st
ep

(k
)

Fig. 2: Average step(k) distribution

As shown in Fig. 2, the steps where more than one opera-
tions have the same best score take up 61.2% of the total steps.
Thus, a tie-breaking heuristic is required to further distinguish
these operations with same best score.

First, we consider that assigning real-valued variable to
values with large denominator can lead the algorithm to a
more complex search space where variables are assigned to
real number with extremely large denominators, leading to
more complicated computation and possible errors, because
the local search solver needs to perform factorization of large
numbers and numerical approximation to handle these values
during the iteration. Thus, we prefer operations that assign
variable to a value with a small denominator.

Moreover, we consider that assigning variables to values
with large absolute value can lead to the assignment with an
extraordinarily large value, deviating the algorithm from find-
ing a possible solution. Thus, we prefer operations assigning
variables to values with small absolute value.

Based on the above observation and intuition, we propose
a selection rule for picking operations, described as follows.

Selection Rules: Select the operation with the greatest
score, breaking ties by preferring the one assigning the cor-
responding variable to a value with the smallest denominator.
Further ties are broken by picking the operation assigning the
variable with the smallest absolute value.

V. LOCALSMT(RA) ALGORITHM

Our local search algorithm adopts a two-mode framework,
which switches between Real mode and Boolean mode. This
framework has been used in the local search algorithm LS-LIA
for integer arithmetic theories [34].

A. Local search Framework

Fig. 3: An SMT Local Search Framework

LocalSMT(RA) is running a local search algorithm starting
from an arbitrary model with all real-value variables assigned
to 0 and all Boolean variables assigned to false. As depicted in
Fig. 3, after the initialization, the algorithm switches between
Real mode and Boolean mode. In each mode, an operation on a
variable of the corresponding data type is selected to modify
the current solution. The two modes switches between each
other when the number of non-improving steps (denoted as
non improve steps) of the current mode reaches a threshold.
non improve steps is increased by one when the algorithm
fails to find a better solution, otherwise, it is reset as 0. The
threshold is set to L× Pb for the Boolean mode and L× Pr

for the Real mode, where Pb and Pr denote the proportion
of Boolean and real-variable literals to all literals in falsified
clauses, and L is a parameter.

B. Local Search in Real and Boolean Mode

The algorithm for the Real mode of LocalSMT(RA) is
described in Algorithm 1: if the current assignment α satisfies
the given formula F , then the solution is found (Line 2). The
algorithm tries to find a decreasing interval-based operation
according to the Selection Rule (Line 3–4).

If there exists no such decreasing operation, this is an
indication that the algorithm falls into the local optimum. We
first update the clause weights according to the probabilistic
version of the Pure Additive Weighting Scheme (PAWS) [39],
[30] (Line 6), and then randomly sample K interval-based
operations into the set Setop (Line 7), where K is a relatively
small parameter. The best operation is picked according to
Selection Rules among Setop (Line 8). Note that since the
interval-based operation can satisfy at least one clause, picking
the best one among few randomly sampled interval-based
operation can be regarded as a diversification operation.

The probabilistic version of the PAWS scheme works as fol-
lows. In the beginning, the weight of each clause is initialized
as 1. During the local search process, with probability 1− sp,
the weight of each falsified clause is increased by one, and
with probability sp, for each satisfied clause whose weight is
greater than 1, the weight is decreased by one.

As for the Boolean mode focusing on the subformula
consisting of Boolean variables, LocalSMT(RA) works in the
same way as the Boolean mode of LS-LIA. By putting the

172

Algorithm 1: Real Mode of LocalSMT(RA)
Input: formula F
Output: A satisfying assignment α of F , or

“UNKNOWN”
1 while non impr steps < L× Pr do
2 if α satisfies F then return α;
3 if ∃ decreasing interval-based operation then
4 op := such an operation selected according to

Selection Rules;

5 else
6 update clause weights according to the PAWS

scheme;
7 randomly sample K interval-based operations

into the set Setop;
8 op := the best operation among Setop picked

by Selection Rules;

9 α := α with op performed;

10 return “UNKNOWN”;

Boolean mode and the Real mode together, we propose our lo-
cal search algorithm for SMT(RA) denoted as LocalSMT(RA).

VI. EXPERIMENTS

We conducted experiments to evaluate LocalSMT(RA) on 2
benchmark sets from SMT-LIB, and compare it with state-of-
the-art SMT solvers and local search solvers. Moreover, ab-
lation experiments are conducted to analyze the effectiveness
of the proposed strategies.

A. Experiment Preliminaries

Implementation: LocalSMT(RA) is implemented in C++
and compiled by g++ with ’-O3’ option. There are 3 param-
eters in LS-LRA: L for switching phases, K for the number
of sampled operation and sp (the smoothing probability) for
the PAWS scheme. The parameters are tuned according to
suggestions from the literature [34], [30] and our prelim-
inary experiments on 20% sampled instances. Preliminary
experiments show that LocalSMT(RA) is not sensitive to
the parameter setting in a considerable range. Parameters
are set as follows: L = 20, K = 3, sp = 0.0003 for
all benchmarks. In our implementation, to escape from local
optimum, LocalSMT(RA) restarts every 500000 iterations. We
use a fixed value for the infinitesimal real number δ, which is
min(1

256 ,
1

cmax
), where cmax denotes the maximum absolute

value of coefficients in the formula.
Note that in contrast to previous local search for for SMT

on Linear Integer Arithmetic [34], our solver is able to
handle arbitrary Boolean structure of formulas, including “ite”
operator, by using the Tseitin encoding [40].

Although any formula with high exponents can be rewritten
as multi-linear formula by introducing fresh variables (for
example, x2 > 4 can be rewritten as (x = y) ∧ (x ∗ y > 4)),
however, in that case, we cannot efficiently find the correct
feasible solution of x because of the relationship of both

variables. In our implementation, we simplify the formula by
eliminating equations in form of x = (a ∗ y), where x and y
are real-value variables and a is coefficient. Specifically, we
will replace x with (a ∗ y), and after simplifying, we only
reserve those instances which are still multi-linear.

Competitors: In the context of SMT(LRA), we compare
LocalSMT(RA) with the top 4 state-of-the-art SMT solvers
according to SMT-COMP 2022, namely OpenSMT (version
2.4.2) 3, Yices2 (version 2.6.2) 4, cvc5 (version 1.0.0) 5, and
Z3 (version 4.8.17) 6. While in the context of SMT(NRA),
the top 4 competitors are as follows, cvc5 (version 1.0.0),
Yices2 (version 2.6.2), Z3 (version 4.8.17) and SMT-RAT-
MCSAT (version 22.06) 7. The binaries of all competitors
are downloaded from their websites. Note that portfolio and
derived solvers are excluded.

Benchmarks: Experiments are carried out on 2 benchmark
sets from SMT-LIB.

• SMTLIB-LRA: The benchmark set contains SMT(LRA)
instances from SMT-LIB8. As LocalSMT(RA) is an in-
complete solver, UNSAT instances are excluded, result-
ing in a benchmark with 1044 unknown and satisfiable
instances.

• SMTLIB-MRA: The benchmark set contains SMT(NRA)
instances with multi-linear atomic constraints from SMT-
LIB9. UNSAT instances are also excluded, resulting in a
benchmark with 979 unknown and satisfiable instances.

Experiment Setup: All experiments are carried out on a
server with AMD EPYC 7763 64-Core 2.45GHz and 2048G
RAM under the system Ubuntu 20.04.4. Each solver is ex-
ecuted once with a cutoff time of 1200 seconds (as in the
SMT-COMP) for each instance in both benchmark sets, as
they contain sufficient instances (1044 for SMTLIB-LRA and
979 for SMTLIB-MRA). We compare the number of instances
where an algorithm finds a model (“#solved”), as well as
the run time. Bold values in table emphasize the solver with
greatest “#solved”.

B. Results on SMTLIB-LRA Benchmark

1) Comparison with DPLL(T) solvers: As shown in Table
I, LocalSMT(RA) can solve 900 out of 1044 instances, which
is competitive but still cannot rival its competitors. We also
perform a runtime comparison between LocalSMT(RA) and
each competitor on instances from SMTLIB-LRA in Fig 4,
which shows that LocalSMT(RA) is complementary to the
competitors.

One explanation for the fact that LocalSMT(RA) cannot
rival its DPLL(T) competitors is that 54.5% of the instances in
SMTLIB-LRA contain Boolean variables, while the Boolean
mode of LocalSMT(RA) is not good at exploiting the relations

3https://github.com/usi-verification-and-security/opensmt
4https://yices.csl.sri.com
5https://cvc5.github.io/
6https://github.com/Z3Prover/z3/
7https://github.com/ths-rwth/smtrat
8https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF LRA
9https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF NRA

173

TABLE I: Results on instances from SMTLIB-LRA

#inst cvc5 Yices Z3 OpenSMT LocalSMT(RA)

2017-Heizmann 8 4 3 4 4 7
2019-ezsmt 84 61 61 53 62 35
check 1 1 1 1 1 1
DTP-Scheduling 91 91 91 91 91 91
LassoRanker 271 232 265 256 262 240
latendresse 16 9 12 1 10 0
meti-tarski 338 338 338 338 338 338
miplib 22 14 15 15 15 4
sal 11 11 11 11 11 11
sc 108 108 108 108 108 108
TM 24 24 24 24 24 11
tropical-matrix 10 1 6 4 6 0
tta 24 24 24 24 24 24
uart 36 36 36 36 36 30

Total 1044 954 995 966 992 900

TABLE II: Comparison with WalkSMT on instances from
SMTLIB-LRA

sc uart sal TM tta miplib Total

#inst 108 36 11 24 24 22 225
WalkSMT UBCSAT 78 35 10 14 9 3 149
WalkSMT UBCSAT++ 63 14 8 19 10 2 116
LocalSMT(RA) 106 29 8 9 24 3 179

among Boolean variables, similar to previous local search
for SMT on Linear Integer Arithmetic [34]. Another possible
reason accounting for the poor performance of LocalSMT(RA)
on this benchmark set is that our algorithm is not complete in
the sense of probabilistically approximately complete (PAC),
because the candidate value selection of interval-based opera-
tion can miss the possible satisfying solution where the values
of variables are not considered.

2) Comparison with Local Search Solvers: We compare
LocalSMT(RA) with a previous local search solver dedi-
cated for SMT(LRA) [33], called WalkSMT. The best two
configurations of WalkSMT, namely “WalkSMT UBCSAT”
and “WalkSMT UBCSAT++”, are adopted for comparison.
Since WalkSMT only supports the earlier version of SMT-LIB
standard, which has been deprecated, we perform experiments
using the same experiment setup in their paper [33], where
the cutoff is set as 600s, and we compare with the result
presented in the original paper. The results are shown in Table
II, indicating that LocalSMT(RA) can significantly outperform
both configurations of WalkSMT, especially on the “sc” type.

C. Results on SMTLIB-MRA Benchmark

LocalSMT(RA) can solve more multi-linear instances than
all competitors on this benchmark set (solving 891 out of
979 instances), which is shown in Table III. Moreover, Lo-
calSMT(RA) can uniquely solve 28 instances in this bench-
mark set. The time comparison between LocalSMT(RA)
and its competitors is shown in Fig 5, confirming that
LocalSMT(RA) is more efficient than all competitors in
SMTLIB-MRA. As shown in Table IV, LocalSMT(RA) shows
better performance with smaller cutoff. Specifically, Lo-

(a) Comparing with cvc5

(b) Comparing with Yices2

(c) Comparing with Z3

(d) Comparing with OpenSMT

Fig. 4: Run time comparison on instances from SMTLIB-LRA

174

TABLE III: Results on instances from SMTLIB-MRA

#inst cvc5 Yices Z3 SMT-RAT LocalSMT(RA)

20170501-Heizmann 51 1 0 4 0 17
20180501-Economics 28 28 28 28 28 28
2019-ezsmt 32 31 32 32 21 28
20220314-Uncu 12 12 12 12 12 12
LassoRanker 347 312 124 199 0 297
meti-tarski 423 423 423 423 423 423
UltimateAutomizer 48 34 39 46 18 48
zankl 38 24 25 28 30 38

Total 979 865 683 772 532 891

TABLE IV: Results on instances from SMTLIB-MRA with
different cutoff

Cutoff cvc5 Yices Z3 SMT-RAT LocalSMT(RA)

1s 535 567 595 495 733
5s 607 609 674 507 796
10s 649 623 714 508 813

calSMT(RA) can solve 138, 122 and 99 more instances than
the best of competitors respectively with the cutoff of 1s, 5s,
and 10s.

LocalSMT(RA) works particularly well on instances from
“zankl” and “UltimateAutomizer” type, which are industrial
instances generated in the context of software verification. On
these types, LocalSMT(RA) can solve all instances, outper-
forming all the competitors. Moreover, LocalSMT(RA) can
exclusively solve 13 instances from “20170501-Heizmann”
type, which implements a constraint-based synthesis of
invariants[41].

The explanation for the superiority of LocalSMT(RA) on
SMTLIB-MRA are as follows. In contrast to LRA, the the-
ory solver for NRA constraints requires complex calculation,
which reduces the performance of these competitors, while
LocalSMT(RA) can trivially determine the operations in multi-
linear constraints, and thus LocalSMT(RA) can efficiently
explore the search space. Moreover, In SMTLIB-MRA bench-
marks, 3.4% instances have Boolean variables. In contrast to
SMTLIB-LRA, whose counterpart is 54.5%, SMTLIB-MRA
has simpler Boolean structures.

D. Effectiveness of Proposed strategies

To analyze the effectiveness of the strategies in Lo-
calSMT(RA), we modify LocalSMT(RA) to obtain 3 alter-
native versions as follows.

• To analyze the effectiveness of interval-based operator,
LocalSMT(RA) is modified by replacing the operator
with traditional cm operator, leading to the version v cm.

• To analyze the effectiveness of the tie-breaking mecha-
nism, we modify LocalSMT(RA) by evaluating operation
based on score without considering the Selection Rules,
that is to randomly pick one operation with greatest
score, leading to the version v score.

(a) Comparing with cvc5

(b) Comparing with Yices2

(c) Comparing with Z3

(d) Comparing with SMT-RAT

Fig. 5: Run time comparison on instances from SMTLIB-
MRA

175

(a) Comparison on SMTLIB-LRA

(b) Comparison on SMTLIB-MRA

Fig. 6: Run time distribution comparison

• We also implement a plain version which adopts neither
interval-based operator nor tie-breaking mechanism, de-
noted as v plain.

The original version of LocalSMT(RA), denoted as Origin,
is compared with these modified versions on both benchmarks.
The runtime distribution of LocalSMT(RA) and its modified
versions is presented in Fig. 6, which confirms the effective-
ness of our proposed strategies.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose the first local search algorithm for
SMT on Real Arithmetic based on the following novel ideas.
First, the interval-based operation is proposed to enrich the
traditional critical move operator, by considering the interval
information. Moreover, a tie-breaking mechanism is proposed
to distinguish operations with same best score. Experiments
on SMT-LIB show that our solver is competitive and comple-
mentary with state-of-the-art SMT solvers, especially for those
multi-linear instances.

The future direction is to extend LocalSMT(RA) to support
all SMT(NRA) instances and deeply combine our local search
algorithm with the DPLL(T) SMT solver, resulting in a hybrid
solver that can make the most of respective advantages.

Moreover, we will enrich the sampled candidate values of
interval-based operation by considering more random values
with small denominator.

VIII. ACKNOWLEDGEMENTS

This work is supported by NSFC Grant 62122078.

REFERENCES

[1] S. Lahiri and S. Qadeer, “Back to the future: revisiting precise program
verification using smt solvers,” ACM SIGPLAN Notices, vol. 43, no. 1,
pp. 171–182, 2008.

[2] N. S. Bjørner, K. L. McMillan, and A. Rybalchenko, “Program verifica-
tion as satisfiability modulo theories.” SMT@ IJCAR, vol. 20, pp. 3–11,
2012.

[3] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing Surveys
(CSUR), vol. 51, no. 3, pp. 1–39, 2018.

[4] J. Peleska, E. Vorobev, and F. Lapschies, “Automated test case generation
with smt-solving and abstract interpretation,” in NASA Formal Methods:
Third International Symposium, NFM 2011, Pasadena, CA, USA, April
18-20, 2011. Proceedings 3. Springer, 2011, pp. 298–312.

[5] R. Sebastiani, “Lazy satisfiability modulo theories,” JSAT, vol. 3, no.
3-4, pp. 141–224, 2007.

[6] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of model checking. Springer, 2018, pp. 305–343.

[7] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving sat and sat modulo
theories: From an abstract davis–putnam–logemann–loveland procedure
to dpll (t),” Journal of the ACM, vol. 53, no. 6, pp. 937–977, 2006.

[8] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems: 14th
International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings 14.
Springer, 2008, pp. 337–340.

[9] B. Dutertre, “Yices 2.2,” in Computer Aided Verification: 26th Interna-
tional Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings 26.
Springer, 2014, pp. 737–744.

[10] F. Corzilius, U. Loup, S. Junges, and E. Ábrahám, “Smt-rat: An
smt-compliant nonlinear real arithmetic toolbox: (tool presentation),”
in Theory and Applications of Satisfiability Testing–SAT 2012: 15th
International Conference, Trento, Italy, June 17-20, 2012. Proceedings
15. Springer, 2012, pp. 442–448.

[11] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli et al., “cvc5: A ver-
satile and industrial-strength smt solver,” in Tools and Algorithms for the
Construction and Analysis of Systems: 28th International Conference,
TACAS 2022, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich, Germany, April 2–7,
2022, Proceedings, Part I. Springer, 2022, pp. 415–442.

[12] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich, “The opensmt
solver.” in TACAS, vol. 6015. Springer, 2010, pp. 150–153.

[13] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The
mathsat5 smt solver,” in Tools and Algorithms for the Construction and
Analysis of Systems: 19th International Conference, TACAS 2013, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings
19. Springer, 2013, pp. 93–107.

[14] B. Dutertre and L. De Moura, “A fast linear-arithmetic solver for dpll
(t),” in Computer Aided Verification: 18th International Conference, CAV
2006, Seattle, WA, USA, August 17-20, 2006. Proceedings 18. Springer,
2006, pp. 81–94.

[15] N. Bjørner, “Linear quantifier elimination as an abstract decision proce-
dure,” in Automated Reasoning: 5th International Joint Conference, IJ-
CAR 2010, Edinburgh, UK, July 16-19, 2010. Proceedings 5. Springer,
2010, pp. 316–330.

[16] G. E. Collins, “Quantifier elimination for real closed fields by cylindrical
algebraic decompostion,” in Automata Theory and Formal Languages:
2nd GI Conference Kaiserslautern, May 20–23, 1975. Springer, 1975,
pp. 134–183.

176

[17] U. Loup, K. Scheibler, F. Corzilius, E. Ábrahám, and B. Becker, “A
symbiosis of interval constraint propagation and cylindrical algebraic
decomposition,” in Automated Deduction–CADE-24: 24th International
Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14,
2013. Proceedings 24. Springer, 2013, pp. 193–207.

[18] S. Junges, U. Loup, F. Corzilius, and E. Ábrahám, “On gröbner
bases in the context of satisfiability-modulo-theories solving over the
real numbers,” in Algebraic Informatics: 5th International Conference,
CAI 2013, Porquerolles, France, September 3-6, 2013. Proceedings 5.
Springer, 2013, pp. 186–198.

[19] S. Basu, “Algorithms in real algebraic geometry: a survey,” arXiv
preprint arXiv:1409.1534, 2014.

[20] F. Corzilius and E. Ábrahám, “Virtual substitution for smt-solving,”
in Fundamentals of Computation Theory: 18th International Sympo-
sium, FCT 2011, Oslo, Norway, August 22-25, 2011. Proceedings 18.
Springer, 2011, pp. 360–371.

[21] V. Weispfenning, “Quantifier elimination for real algebra—the quadratic
case and beyond,” Applicable Algebra in Engineering, Communication
and Computing, vol. 8, pp. 85–101, 1997.

[22] P. Van Hentenryck, D. McAllester, and D. Kapur, “Solving polynomial
systems using a branch and prune approach,” SIAM Journal on Numer-
ical Analysis, vol. 34, no. 2, pp. 797–827, 1997.

[23] S. Gao, S. Kong, and E. M. Clarke, “dreal: An smt solver for nonlinear
theories over the reals,” in Automated Deduction–CADE-24: 24th Inter-
national Conference on Automated Deduction, Lake Placid, NY, USA,
June 9-14, 2013. Proceedings 24. Springer, 2013, pp. 208–214.

[24] S. Schupp, E. Ábrahám, P. Rossmanith, and D.-I. U. Loup, “Interval
constraint propagation in smt compliant decision procedures,” Master’s
thesis, RWTH Aachen, 2013.

[25] D. Jovanovic, C. Barrett, and L. De Moura, “The design and implemen-
tation of the model constructing satisfiability calculus,” in 2013 Formal
Methods in Computer-Aided Design. IEEE, 2013, pp. 173–180.

[26] D. Jovanović and L. De Moura, “Solving non-linear arithmetic,” ACM
Communications in Computer Algebra, vol. 46, no. 3/4, pp. 104–105,
2013.

[27] H. H. Hoos and T. Stützle, Stochastic local search: Foundations and
applications, 2004.

[28] C. M. Li and Y. Li, “Satisfying versus falsifying in local search for
satisfiability,” in Proc. of SAT 2012, 2012, pp. 477–478.

[29] A. Balint and U. Schöning, “Choosing probability distributions for
stochastic local search and the role of make versus break,” in Proc.
of SAT 2012, 2012, pp. 16–29.

[30] S. Cai and K. Su, “Local search for boolean satisfiability with configura-
tion checking and subscore,” Artificial Intelligence, vol. 204, pp. 75–98,
2013.

[31] S. Cai, C. Luo, and K. Su, “CCAnr: A configuration checking based
local search solver for non-random satisfiability,” in Proc. of SAT 2015,
2015, pp. 1–8.

[32] A. Biere, “Splatz, Lingeling, Plingeling, Treengeling, YalSAT entering
the SAT competition 2016,” Proc. of SAT Competition 2016, pp. 44–45,
2016.

[33] A. Griggio, Q.-S. Phan, R. Sebastiani, and S. Tomasi, “Stochastic local
search for smt: combining theory solvers with walksat,” in International
Symposium on Frontiers of Combining Systems. Springer, 2011, pp.
163–178.

[34] S. Cai, B. Li, and X. Zhang, “Local search for smt on linear integer
arithmetic,” in International Conference on Computer Aided Verification.
Springer, 2022, pp. 227–248.

[35] ——, “Local search for satisfiability modulo integer arithmetic theories,”
ACM Transactions on Computational Logic, 2022.

[36] A. Niemetz, M. Preiner, and A. Biere, “Propagation based local
search for bit-precise reasoning,” Formal Methods Syst. Des.,
vol. 51, no. 3, pp. 608–636, 2017. [Online]. Available: https:
//doi.org/10.1007/s10703-017-0295-6

[37] A. Niemetz and M. Preiner, “Ternary propagation-based local
search for more bit-precise reasoning,” in 2020 Formal Methods in
Computer Aided Design, FMCAD 2020, Haifa, Israel, September
21-24, 2020. IEEE, 2020, pp. 214–224. [Online]. Available:
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6 29

[38] A. Fröhlich, A. Biere, C. M. Wintersteiger, and Y. Hamadi, “Stochastic
local search for satisfiability modulo theories,” in Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA, B. Bonet and S. Koenig,

Eds. AAAI Press, 2015, pp. 1136–1143. [Online]. Available:
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9896

[39] J. Thornton, D. N. Pham, S. Bain, and V. F. Jr., “Additive versus
multiplicative clause weighting for SAT,” in Proc. of AAAI 2004, 2004,
pp. 191–196.

[40] S. D. Prestwich, “Cnf encodings.” Handbook of satisfiability, vol. 185,
pp. 75–97, 2009.

[41] M. A. Colón, S. Sankaranarayanan, and H. B. Sipma, “Linear invariant
generation using non-linear constraint solving,” in International Confer-
ence on Computer Aided Verification. Springer, 2003, pp. 420–432.

177

https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9896

Formal Methods in Computer-Aided Design 2023

Mariposa: Measuring SMT Instability in
Automated Program Verification

Yi Zhou, Jay Bosamiya, Yoshiki Takashima, Jessica Li, Marijn Heule, Bryan Parno
Carnegie Mellon University, Pittsburgh, PA, USA

{yeet,jaybosamiya,ytakashi,jgli,marijn,parno}@cmu.edu

Abstract—Program verification has been successfully
applied to increasingly large and complex systems. Much
of this recent success can be attributed to the automation
provided by dispatching verification condition queries via
SMT solvers. However, multiple teams anecdotally report
that this style of automated verification is plagued by proof
instability, where semantically irrelevant changes to the
query can have large effects on the SMT solver’s response.

In this work, we present Mariposa, a tool to detect and
quantify instability. To better understand the status quo
of instability, we apply Mariposa to a set of 17,043 SMT
queries from six existing program verification projects. We
discover that SMT solver upgrades often make projects
less stable, and that the most recent SMT solver version is
unstable on 2.6% of the queries. For individual projects, the
unstable ratio can grow to 5.0%. Based on our experimental
results, we curate the Mariposa benchmark, which we hope
will help measure and incentivize stability improvements
in SMT-based program verification.

I. INTRODUCTION

Software verification can statically guarantee a pro-
gram’s correctness, reliability, and/or security. In recent
years, we have seen significant progress scaling software
verification up to large, practical programs, both in
academia [1–8] and industry [9–11].

Much of this success relies on Satisfiability Modulo
Theories (SMT) solvers [12–15]. The developer writes
specifications, proofs, and code, which are transformed
into a verification condition [16], expressed as a query
in the SMT-LIB [13] format. The SMT solver then does
the heavy lifting by checking the verification condition,
essentially verifying that the code meets its specification.
In practice, this process is iterative: when a query fails,
the developer adjusts the specifications, proofs, and/or
code until the updated query is accepted and the devel-
oper moves on to the next code region.

Unfortunately, automated program verification suffers
from proof instability [11, 17, 18], where seemingly
irrelevant changes to the verification condition can cause
notable variation in SMT solver performance. For exam-
ple, simply renaming a source-level variable may cause a
verified procedure to take orders of magnitude longer to
verify, or even to fail to verify at all. In either case, the
developer must tediously supply additional proof hints

that attempt to steer the SMT solver back towards a fast
and successful verification result.

Instability poses a significant challenge for large-
scale, industrial-level program verification. Concretely,
in the verification projects we study, we find up to
5% of queries to be unstable with the most recent
SMT solver version (Section IV-D). For developers, such
instability disrupts their iterative workflow, as it substan-
tially lengthens their code-prove-debug cycle. Moreover,
spurious failures may require developers to fix issues
that arise in code or proofs they did not write and may
not even understand. In a large team of developers, this
problem is amplified, as independent and concurrent
changes to the codebase potentially create instability
that is only visible after changes are merged. In short,
instability impedes monotonic progress in developing a
verified codebase.

While the program verification community has rec-
ognized the issue of instability [11, 17, 18], popular
automated verification tools like Dafny [19] and F⋆ [20]
only offer heuristic options to identify it [21, 22]. Fur-
thermore, our results show that these heuristics only
capture a fraction of the problem (Section IV-D).

In the SMT community, SMT-COMP [23], the annual
competition for SMT solvers, does not include any
benchmarks for evaluating stability. Possibly as a result,
the stability of some program verification projects actu-
ally deteriorates with solver upgrades (Section IV-D).

We believe there is a need for a systematic study of
the instability phenomenon, where concrete data and sta-
tistical analysis can inform both the program verification
and SMT communities. A robust measurement method-
ology can help program verification frameworks adapt
their query-generation strategy to avoid issuing unstable
queries. For SMT solvers, a benchmark for measuring
instability would help evaluate strategies for mitigating
it, as well as help prevent stability regressions. In this
work we fill this need with the following contributions.
• We present a methodology (and a concrete tool named

Mariposa1) to detect and quantify SMT-based proof
instability (Section III).

1Mariposa is Spanish for butterfly. The name is inspired by the
butterfly effect, where small changes can have large effects.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_26 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_26
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_26
https://creativecommons.org/licenses/by/4.0/

• We perform a detailed empirical study analyzing the
(in)stability of six projects written in three program
verification frameworks across multiple SMT solver
versions (Section IV). The study generates over three
million SMT queries that consume ∼ 578 CPU days.

• We distill our study’s queries into the Mariposa bench-
mark to facilitate future research on measuring and
mitigating instability (Section V).

• Our study quantifies anecdotal reports of SMT in-
stability, showing that it affects a non-trivial number
of queries and often grows worse with new solver
versions. We also find that multiple mutation methods
are needed to uncover unstable proofs.
The SMT queries and results from our experiments,

the source code for the Mariposa tool, and the Mariposa
benchmark are all publicly available: https://github.com/
secure-foundations/mariposa.

II. RELATED WORK

To the best of our knowledge, the problem of SMT
proof instability was first reported by the developers of
Ironclad Apps [17], who noticed instability in certain
non-linear integer arithmetic queries. In the later Ko-
modo work [24], instability was described as “the most
frustrating recurring problem.” More recently, Galois
highlighted the “fragility of proofs” as a challenge in
formally verified industry cryptography [11].

Leino and Pit-Claudel studied the problem of SMT
instability in the specific context of Dafny quantifier
instantiation [18]. They investigated trigger loops as
a possible source of instability, improved algorithms
for trigger selection, and then used ad hoc instability
measures to evaluate the impact of their algorithms.

The SAT Competition [25] and SMT-COMP [23]
may perform benchmark scrambling before evaluating
the solvers’ performance. Scrambling involves syntactic
transformations similar to our query mutations (Sec-
tion III). However, scrambling is not sufficient (nor in-
tended) to characterize stability. Prior work has examined
the impact of scrambling on competition results [26, 27].

Most work on testing SMT solvers focuses on finding
unsoundness bugs [28–33]. One exception is Janus [34],
which finds incompleteness bugs, where a query unex-
pectedly returns unknown, placing it closer to our work.
However, Janus does not offer a metric for instability, nor
does it target program verification queries.

III. METHODOLOGY

In this section, we outline our methodology for char-
acterizing proof instability. At a high level, our goal is
to answer two main questions for a given query Q and
solver S: (1) Is Q stable or unstable under S? and (2) How
stable or unstable is it?

Intuitively, instability means that the performance of S
diverges when seemingly irrelevant mutations are applied
to Q. Our methodology, detailed below, follows this intu-
ition. First, we characterize the queries of interest, drawn
from prior program verification projects (Section III-A).
Next, we describe the mutations chosen for our study
and the rationales behind the choices (Section III-B).
We then propose a scheme to differentiate stable and
unstable queries (Section III-C), addressing question (1)
above. Finally, we elaborate on metrics used to quantify
stability (Section III-F), addressing question (2).

A. Characterizing Program Verification Queries
This study focuses on queries from automated verifica-

tion projects, where instability is problematic. Here, we
describe their general characteristics, which might differ
from those in other domains, such as symbolic execution
or model checking. We discuss the specific verification
projects chosen for our study in Section IV-B.

Relevant Logics. Program verification queries involve
a mixture of bit-vector, integer arithmetic, and uninter-
preted functions, typically with quantifiers. There is no
single SMT-LIB logic (e.g. QF_UF or NIA) that captures
these at the same time, and thus program verification
queries commonly use the ALL logic.

Expected Query Result. The goal of program ver-
ification is to prove that a property holds in all cases.
Therefore, the SMT query is formulated as the negation
of the desired property, such that a successful proof is
indicated via an unsat result. Intuitively, if the result
is sat, then the property is violated in at least one case
(the satisfying assignment). For this study, the expected
result is always unsat, which means that the property
holds in all cases (i.e., the program verifies).

Expected Response Time. As discussed in Section I,
the process of developing verified software is iterative.
Given that the developer is blocked while the solver is
running, the solver’s run time should be in the responsive
range of human interaction. For most of the projects in
our study, the solver time limits used during development
are under 30 seconds.

B. Mutation Methods
In this study, we focus on mutation methods that

yield queries that are both semantically equivalent and
syntactically isomorphic; i.e., the original query Q and its
mutated version Q′ share the same semantic meaning and
syntactic structures. Hence it seems reasonable to expect
similar performance from the solver on both queries.

Semantic Equivalence. Q and Q′ are semantically
equivalent when there is a bijection between the set of
proofs for Q and those for Q′. In other words, a proof of
Q can be transformed into a proof of Q′, and vice versa.

Syntactic Isomorphism. Q and Q′ are syntactically
isomorphic if there exists a one-to-one correspondence

179

https://github.com/secure-foundations/mariposa
https://github.com/secure-foundations/mariposa

between the symbols (e.g., variables) and commands
(e.g., assertions). In other words, each symbol or com-
mand in Q has a counterpart in Q′, and vice versa.

For our concrete experiments, we are interested in
mutations that also correspond to common developer
practices. Specifically, we consider the following three
mutation methods:
• Assertion Shuffling. Reordering of source-level lem-

mas or code methods is a common practice when
developing verified software. Such reordering roughly
corresponds to shuffling the order of commands in
the generated SMT query. Specifically, SMT queries
introduce constraints using the assert command.
Shuffling the order in which the constraints are de-
clared guarantees syntactic isomorphism. Further, the
order within a local context is irrelevant to the query’s
semantics.

• Symbol Renaming. It is common to rename source-
level methods, types, or variables, which roughly
corresponds to α-renaming the symbols in the SMT
queries. Renaming preserves semantic equivalence and
syntactic isomorphism, as long as the symbol names
are used consistently.

• Randomness Reseeding. SMT solvers optionally take
as input a random seed, which is used in some of
their non-deterministic choices. Changing the seed
has no effect on the query’s semantics but is known
to affect the solver’s performance. Historically, some
verification tools have attempted to use reseeding to
measure instability: Dafny2 and F⋆ have options to run
the same query multiple times with different random
seeds and report the number of failures encountered.
When a mutation method is exhaustively applied to a

query Q, it produces a set of mutated queries MQ, which
also includes Q itself. Consider assertion shuffling as an
example. If Q contains 100 assertions, then MQ would
have 100! ≊ 9×10157 permutations of Q. We refer to Q
as the original query and members of MQ as mutants.

C. Detecting Stability

Intuitively, stability is a performance property over
MQ. That is, whether a query-solver pair (Q,S) is stable
or not depends on how the mutants perform. To sim-
plify the discussion, we assume for now that a single
mutation method, such as assertion shuffling, is used. In
Section III-E, we discuss how to aggregate results from
multiple mutation methods.

Mutant Success Rate. A natural performance metric
is the success rate of solver S over MQ. More precisely,
it is the percentage of queries in MQ that are proven (i.e.,
that return the expected unsat result).

2Dafny has recently started to perform shuffling and renam-
ing. The option has changed from randomSeedIterations to
randomizeVcIterations.

0% 100%rsolvable rstable

consistently
poor

consistently
goodinconsistent

Mutant Success Rate (r)

Fig. 1. Intuition for Our Stability Categories. (S,Q) is a solver-
query pair. r is the mutant success rate. When r < rsolvable, Q is not
solvable under S. When r > rstable, Q is stable under S. Otherwise, Q
is unstable under S.

The success rate, which we denote by r, reflects
performance consistency. A low r indicates consistently
poor results; a high r indicates consistently good results;
and a moderate r indicates inconsistent results, i.e.,
instability. This intuition is illustrated in Figure 1.

We thus define four stability categories using the
success rate r. The scheme includes two additional
parameters: rsolvable and rstable, which correspond respec-
tively to the lower and upper bounds of the success rate
range for unstable queries.
• unsolvable. Q is too difficult for solver S (r <

rsolvable). For example, if S gives up and returns
unknown for all members of MQ, we may conclude
that S is unable to solve Q or any version of it.

• unstable. S cannot consistently find a proof in the
presence of mutations to Q (rsolvable ≤ r < rstable).

• stable: S proves MQ consistently (r ≥ rstable).
• inconclusive: statistical tests do not result in

enough confidence to draw a conclusion.
Mutant Sampling. In practice, it is often intractable

to enumerate all members of MQ (recall the 100! mutants
from our shuffling example), so r is generally unknown.
Therefore we use statistical tests to estimate r from a
sample of mutants. We use M̂Q and r̂ to denote sample
mutants and sample success rate, respectively.

Our scheme is based on comparing proportions, so we
use the Z-test [35], which is a commonly used statistical
test to make inferences about the true proportion of a
population based on a set of samples. The test is param-
eterized by the alpha level, which specifies confidence
in its result. We use an alpha level of 0.05 (i.e., 95%
confidence), which is a standard choice.

Figure 2 shows our proposed workflow for categoriz-
ing the stability of a query-solver pair. For a statistical
test (shown as a trapezium shape), if we reject the null
hypothesis (H0), there is enough confidence to conclude
that the alternative hypothesis (HA) is true. For example,
in the Instability Test, if we reject H0, we are 95%
sure that HA is true, i.e., r < rstable. However, failing
to reject H0 simply means the result is not statistically
significant. That is, failing the Instability Test does not
imply stability. Hence, we test again using the opposite
hypothesis. If the test is still not significant, we do not
have a conclusive result.

180

Q,S

Solvability Test
H0 : r ≥ rsolvable
HA : r < rsolvable

Instability Test
H0 : r ≥ rstable
HA : r < rstable

Stability Test
H0 : r < rstable
HA : r ≥ rstable

Tolerance Test
T̂ ≥ ωTlimit

unsolvable

unstable

stableinconclusive

estimate r from M̂Q

low confidence

low confidence

low confidence

reject H0

reject H0

reject H0

noyes

Fig. 2. Flowchart for Stability Categorization. We output a stability
category based on the performance of the mutants though a series of
hypothesis tests. An additional tolerance test is used to filter out queries
that are finishing close to the time limit Tlimit.

A natural goal to make is to pick a sufficiently
large sample size such that very few cases are
inconclusive. As a sanity check, we expect to con-
clude unsolvable (r < rsolvable) if no sample mutant
succeeds (r̂ = 0%) using an alpha level of 0.05.

We thus calculate the required sample sizes for differ-
ent values of rsolvable. For rsolvable = 1%, we need 269
mutants to be 95% sure that the true success rate is
less than 1%. On the other hand, if rsolvable = 5%, 60
mutants are more than enough. Similarly, we expect to
conclude stable if the sample success rate r̂ is 100%.
We note this is symmetric to the previous scenario, and
thus, to conclude stable (r ≥ 95%), 60 sample mutants
all succeeding (r̂ = 100%) is sufficient.

For our experiments, we use rsolvable = 5%, rstable =
95%, and 60 mutants for each mutation method.

D. Accounting for Time Limits

Since there is no guarantee that a solver will terminate,
we impose a time limit Tlimit on all of our experiments.
Solvers may allow the user to bound the solver execution
with a resource limit (rlimit) instead of a time limit, in
an effort to make results more consistent across machines
with different computational abilities. However, the re-
source tracking often counts only some of the resources
used (e.g., it may ignores resources spent inside a theory
solver). Further, there is no guarantee of consistency
across solver versions, let alone across different solvers.
Hence, in this work Mariposa uses execution time as a
more universal measure.

In the categorization scheme, a mutant that times out
is considered a verification failure. However, when the

expected response time of MQ is close to the time limit,
small deviations in the response time can push some
mutants into failure. This might give a false impression
of instability, while in reality the solver behaves stably
given enough time.

To address this issue, we further parameterize the
categorization scheme with a tolerance factor ω between
0 and 1. When mixed results are observed in the samples
M̂Q, we estimate the expected response time for MQ
using the mean response time of successful samples,
denoted as T̂ . If the latter is close to the time limit, i.e.,
T̂ ≥ ωTlimit, the failures may be due to an insufficient
Tlimit. In that case, we take a conservative approach and
do not label (Q,S) as unstable.

Figure 2 shows the tolerance test in the workflow.
In our experiments, we use ω = 0.8, and Tlimit = 60s.
Section IV gives a more detailed analysis of the impact
of Tlimit.

E. Results from Different Mutation Methods
The discussion about the workflow thus far has been

based on a single mutation method. In our study, we
consider shuffling, renaming, and reseeding, each of
which outputs a stability category through our scheme.
We use the following procedure to combine the results.
1) If the results are unanimously inconclusive, out-

put inconclusive.
2) Remove inconclusive results. If the rest are

unanimously X , output X .
3) Otherwise output unstable.

Note that if the mutation methods disagree on the
categories, the procedure returns unstable. For exam-
ple, if shuffling outputs stable, but reseeding outputs
unsolvable, then the final result is unstable. In
Section IV we show how mutation methods differ in
their ability to detect instability.

F. Quantifying (In)stability
Given a query-solver pair (Q,S), we use the cate-

gorization scheme to answer the question of whether
the pair is stable. To quantify the instability of an
unstable pair, we simply use the Mutant Success
Rate (from Section III-C) as a metric, where higher
values are preferable.

To quantify the stability of stable queries, we use
the Standard Deviation of Mutant Response Times.
As discussed in Section I, increased response time im-
pedes the iterative development cycles. Therefore, even
if a query-solver pair is consistently producing the same
verification result, a large variation in response time
is still undesirable to the developer. Moreover, such
variation is indicative of potential instability: if the time
limit is shortened by a small amount, some mutants may
fail to finish in time. Therefore, the larger the standard
deviation, the less stable (Q,S) actually is.

181

IV. EXPERIMENTS

We have presented a general methodology to detect
and quantify SMT-based proof instability. To better un-
derstand the status quo of instability, we implement our
methodology in the Mariposa tool and use it to perform
experiments on existing program verification projects.

In this section, we first describe the experimental
setup, which includes an overview of the Mariposa tool
(Section IV-A), the verification projects studied (Sec-
tion IV-B), and the configurations used (Section IV-C).
We then present the experimental results, which are or-
ganized as a series of research questions (Section IV-D).

A. The Mariposa Tool

We implement our methodology in Mariposa, a tool
for SMT stability testing. In its basic use case, Mariposa
inputs a query-solver pair (Q,S), performs mutations on
Q, runs S on the mutants, analyzes the performance data,
and outputs the stability category and metrics.

For efficient manipulation of queries, the mutations
are implemented using Rust (∼200 LoC). The scripts
for running the mutants, recording performance, and
analyzing data are implemented in Python (∼2K LoC).

Mariposa is extensible, so new mutation methods can
be easily added. Mariposa is also configurable, allowing
the user to specify parameters such as the number of
mutants, the time limit, etc.

B. Projects Under Study

We experiment with prior automated program verifica-
tion projects. For verification tools, we mainly focus on
F⋆ [20] and Dafny [19], since (1) they have been used to
develop complex verified systems; (2) each has an active
community of users; (3) they are actively maintained.
We then select the following projects and extract all of
the SMT verification queries they generate.
• KomodoD. Komodo [24] is a security hypervisor veri-

fied and implemented in Dafny, a general-purpose pro-
gram verifier that often generates undecidable queries.

• KomodoS. Another research team reimplemented parts
of Komodo using the Serval framework [2], which re-
quires developers to work within a decidable fragment
of first-order logic. For example, recursive functions
and loops must be statically bounded. The goal is for
developers to write fewer proofs, but one might also
conjecture that using a simpler logic would lead to
greater query stability.

• VeriBetrKVD. VeriBetrKV [3] is a key-value store
based on a Bε tree [36], implemented and verified in
Dafny. VeriBetrKVD uses Dafny’s standard dynamic
frames [37] for heap reasoning.

• VeriBetrKVL. In a follow-up study [38], researchers
modified the VeriBetrKV code base to use a cus-
tomized Dafny version that employs linear types for

Project Source LoC Query Count

KomodoD 26K 2,054
KomodoS 4K 773
VeriBetrKVD 44K 5,325
VeriBetrKVL 49K 5,600
DICE⋆

F 25K 1,536
vWasmF 15K 1,755

TABLE I
BASIC STATISTICS ON PROJECTS USED IN OUR EXPERIMENTS

heap reasoning. They found that using linear types
results in faster queries. We explore whether linear
types also result in more stable queries.

• DICE⋆
F . DICE is an industry standard measured boot

protocol [39]. DICE⋆ [40] is a provably-correct im-
plementation of the protocol in F⋆.

• vWasmF . WebAssembly (Wasm) is a portable bi-
nary instruction format for web applications [41].
vWasm [42] is a provably-safe sandboxing compiler
from Wasm to native code, implemented in F⋆.
These project all exhibit non-trivial complexity. The

source lines of code (LoC) and query counts for each
project are summarized in Table I.

C. Experiment Configurations

We run the experiments on machines with an Intel
Core i9-9900K (max 5.00 GHz) CPU, 128 GB of RAM,
and the Ubuntu 20.04.3 LTS operating system. Recapit-
ulating earlier parameter settings, we set Tlimit = 60s; 60
samples per mutation method; an alpha level of 0.05;
ω = 0.8; rsolvable = 5%; and rstable = 95%.

For our experiments, we focus on the Z3 SMT
solver [14], which all of our experiment projects were
developed with, except for KomodoS, which used both
Z3 and CVC4 [43]3. We are interested in both the
current and historical status of SMT stability. Therefore,
in addition to the latest Z3 solver (version 4.12.1, as of
this writing), we include seven legacy versions of Z3,
with the earliest released in 2015. In particular, for each
project we include its artifact solver, which is the version
used in the project’s official artifact.

D. Experimental Results

We organize our experimental results around a series
of research questions (RQs). Where necessary for space,
we present the results from a subset of projects here and
defer the rest to a technical report [44].

3We had initially planned to run our experiments with cvc5 [15]
too. However, our preliminary experiments showed the projects are
overfitted to Z3. Without intervention, cvc5 cannot solve any of the
Dafny or F⋆ queries, since it cannot even parse the SMT queries these
program verification tools produce, due to their use of various bits of
Z3-specific syntax and features. After we converted the queries to a
format cvc5 understands, it could only solve ∼14% of the queries in
KomodoD. We consulted with the cvc5 developers for option tuning
and tried cvc5’s automated configuration script for SMT-COMP, but it
did not significantly improve the number of queries solved.

182

RQ1: Do Solver Upgrades Improve Stability?

For each query-solver pair (Q,S), we run Mariposa,
which outputs a stability category. In Figure 3, each
stacked bar shows the proportions of categories in a
project-solver pair. In all project-solver pairs, the major-
ity of queries are stable. However, a non-trivial amount
of instability persists as well.

We observe different trends in each project as newer
solver versions are used. The unstable proportion of
vWasmF and KomodoS remain consistently small across
the tested solver versions. On the other hand, we observe
signs of projects that “overfit” to their artifact solver, in
that they become less stable with solver upgrades.

Specifically, all of the Dafny-based projects in our
study show more instability in newer Z3 versions, with
a noticeable gap between Z3 4.8.5 and Z3 4.8.8. The
difference in the stability performance is perhaps ex-
pected, as these projects were all developed using (now)
outdated Z3 solver versions. As of the time of writing,
F⋆ continues to use Z3 4.8.5, which is approximately
four years old, while Dafny only transitioned away from
that version earlier this year.

Commit Bisection. We perform further experiments
to narrow down the Z3 git commits that may have caused
the increase in instability. In the six experiment projects,
285 queries are stable under Z3 4.8.5 but unstable
under Z3 4.8.8. For each query in this set, we run git
bisect (which calls Mariposa) to find the commit to
blame, i.e., where the query first becomes unstable.

Table II shows the the bisection results for the 285
queries. Note git bisect might not be able to find a
unique commit to blame. For example, when the binary
search narrows the problem down to a region where
commits do not compile, all commits in that region are
potentially to blame. We indicate such cases as N/A in
the table.

There are a total of 1,453 commits between the two
versions, among which we identify two commits that
have the most impact. Out of the 285 queries, 115 (40%)
are blamed on commit 5177cc4. Another 77 (27%)
of the queries are blamed on 1e770af. The remaining
queries are dispersed across the other commits.

These two most significant commits are small and
localized: 5177cc4 has 2 changed files with 8 additions
and 2 deletions; 1e770af has only 1 changed file with
18 additions and 3 deletions. Both commits are related to
the order of flattened disjunctions. 1e770af, the earlier
of the two, sorts the disjunctions, while 5177cc4 adds
a new term ordering for ASTs, which it uses to replace
the previous sorting order of disjunctions.4

4We contacted the Z3 developers after our paper submission. Coin-
cidentally, they were investigating regressions in F⋆ query success, and
they identified the same two commits as having the most significant
impact. Their fix is now merged into the Z3 master branch.

hash blames commit message

5177cc4 115 change lt
1e770af 77 local sort
db87f2a 16 separate rewriter...
ff6b330 12 remove incorrect ...
7f073a0 7 fix #2452 fix #...
8b23a17 3 move flatten func...
c70e9af 3 fix #3734
dd452e0 3 eq
762f265 3 merge with master
001ddef 3 fix #2749
3774d6d 2 fix #2890
3ef05ce 2 tuning
80994f7 1 redirect to the n...
d23230e 1 fix declaration s...
e5dffea 1 fix #2365
ad55a1f 1 Update release.ym...
06ee09a 1 Update README.md
38ad66c 1 update hash #257...
9cccfb9 1 Take one on addin...
ba40a57 1 better branching ...
1e92165 1 branch selection ...
bba2cf9 1 fix #3163
2a1f8ac 1 revert normalizin...

N/A 28
total 285

TABLE II
COMMIT BISECTION RESULTS

RQ2: Do Projects Differ in Stability?
KomodoD and KomodoS are two implementations of

the Komodo security hypervisor in Dafny and Serval
respectively. The unstable proportion of both projects
is small using their artifact solvers. However, KomodoD
shows a significant increase in instability using newer
versions of Z3, while KomodoS remains stable. Note
that KomodoS implements a subset of the features in
KomodoD. If we exclude the attestation-related queries
from KomodoD, which are not present in KomodoS, the
unstable proportion of KomodoD is reduced to 4.27%
(from 5.01%) using the latest Z3. The proportion is still
much higher than KomodoS’s (0.52%). The gap may be
attributable to other differences in features and proof
goals, but it may also indicate that restricting queries to
a decidable logic (as KomodoS does) improves stability.

VeriBetrKVL and VeriBetrKVD are two implementa-
tions of VeriBetrKV in Dafny with different approaches
to heap reasoning, where the authors of VeriBetrKVL
report better query times by adopting linear types. How-
ever, their result does not appear to generalize to stability
performance: VeriBetrKVL is only slightly more stable
than VeriBetrKVD when using their artifact solvers, and
both suffer similar stability regressions on later solvers.

We notice that vWasmF is remarkably stable: the
unstable proportion of vWasmF is almost negligible
across all solver versions. We contacted the authors of
vWasmF , and they confirmed that they put significant

183

Z3 4.4.2

2015/10
Z3 4.5.0

2016/11
Z3 4.6.0

2017/12
Z3 4.8.5

2019/06
Z3 4.8.8

2020/05
Z3 4.8.11

2021/07
Z3 4.11.2

2022/09
Z3 4.12.1

2023/01

solver versions and release dates

0

1

2

3

4

5

6

7

8

9

q
u

er
y

p
ro

p
or

ti
on

(%
)

unsolvable

unstable

inconclusive

KomodoD
KomodoS
VeriBetrKVD

VeriBetrKVL

DICE?
F

vWasmF

artifact solver

Fig. 3. Overall Stability Status. From bottom to top, each stacked bar shows the proportions of unsolvable (lightly shaded), unstable
(deeply shaded), and inconclusive (uncolored) queries. The remaining portion of the queries (stacking each bar to 100%), not shown, are
stable. The solver version used for each project’s artifact is marked with a star (⋆).

manual engineering effort into making the queries sta-
ble [45]. They attribute the stability of their queries to
a disciplined usage of multiple empirically developed
techniques. Globally, they disable the non-linear arith-
metic solver (anecdotally prone to instability), reduce
F⋆’s fuel/ifuel settings (which control unrolling
of recursive functions and inductive data types), and
minimize the use of ambient lemmas (that tend to bloat
solver context). They also minimize the use of (user-
introduced, F⋆-level) quantifiers, and manually pick good
quantifier triggers. Particularly complex proofs neces-
sitated even more drastic measures: using F⋆’s tactic
framework to perform manually-controlled normaliza-
tion of terms before verification condition generation.
They note that neither the original un-normalized nor the
fully-normalized forms were amenable to stable proofs;
only the manually controlled normalization worked.

While few projects can afford this level of manual
effort, these results suggest that developers and pro-
gram verification frameworks can potentially shape their
queries to minimize instability.

RQ3: Do Longer Time Limits Mitigate Instability?

As we discussed in Section III-D, the choice of time
limit Tlimit could impact our experimental results. Indeed,
one might expect that unstable queries will eventually
turn into stable ones given large enough time limits.
To test this hypothesis, we extended the experiments
using the most recent Z3 (version 4.12.1) with a time
limit of 150s (2.5 × 60s).

In Figure 4 we report the proportion of unsolvable
and unstable queries for each Tlimit in KomodoD
and VeriBetrKVD. We observe that the unsolvable
proportion drops as Tlimit increases. This is expected, as
a query might only become solvable with a longer time.

However, the unstable proportion stays remark-
ably consistent after initial fluctuations. That is, certain
unstable queries remain unstable, even with a

10 30 60 90 120 150
0

2

4

6

8
KomodoD Z3 4.12.1

10 30 60 90 120 150
0

2

4

6

8
VeriBetrKVD Z3 4.12.1

unsolvable

unstable(+0s)

unstable(+10s)

unstable(+30s)

unstable(+60s)p
ro

p
or

ti
on

of
q
u

er
ie

s
(%

)

time limit (seconds)

Fig. 4. Comparing Time Limit Choices. The proportion of
unstable queries stays around the same level after some fluctuations.

longer time limit. To analyze this further, we report
the intersection of unstable queries at Tlimit and
Tlimit+step, for steps of 10, 30 and 60 seconds. One can
interpret a Tlimit + step curve as follows: if some queries
are unstable at Tlimit, it reports how many of them
will remain unstable at Tlimit + step.

We observe that for a step of 10s, the difference is
small. This means that most unstable queries remain
unstable if given 10 more seconds, which is expected.
For a step size of 60s, the difference is larger but still
not significant. In VeriBetrKVD, it has almost no impact
beyond 30s. Therefore, while a longer time limit could
help mitigate instability, it is not a silver bullet.

RQ4: Do Results from Mutation Methods Overlap?

We covered multiple mutation methods in our study.
A natural question is whether these methods are equally
effective in detecting instability.

184

10 20 30 40 50 60
0

1

2

3

4

5

KomodoD Z3 4.12.1

unstable(all methods)

shuffling

renaming

reseeding

intersect

10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

2.5

3.0

VeriBetrKVD Z3 4.12.1

unstable(all methods)

shuffling

renaming

reseeding

intersectp
ro

p
or

ti
on

of
q
u

er
ie

s
(%

)

time limit (seconds)

Fig. 5. Comparing Mutation Methods. Mutation methods differ in
their ability to detect instability. Z3 4.12.1 has the most instability
found through shuffling. The intersection of methods is also shown as
a reference. Note that each sub-graph uses a different y-axis scale.

In Figure 5, we show the unstable proportions identi-
fied using each mutation method, along with the overall
unstable proportion. Recall that the latter is a superset
of the individual mutations, as discussed in Section III-E.
Since the choice of Tlimit may impact the categorization,
we present results for different Tlimit as well.

Our results indicate that the effectiveness of mu-
tation methods differ. For example, in KomodoD and
VeriBetrKVD, the unstable proportion is the highest
for shuffling, followed by renaming, then reseeding,
regardless of Tlimit. In fact, of the unstable queries
in KomodoD at 60s, 36.9% are uniquely identified by
shuffling, 6.8% by renaming, and 3.9% by reseeding.

RQ5: How Stable are Stable Queries?

The Standard Deviation of Mutant Response Times
is a metric we introduced in Section III-F, where a
large value indicates less actual stability, even if mutants
consistently succeed. Figure 6 shows the distribution
of standard deviation from stable queries, which are
mostly less than 1s, but there are exceptions exceeding
10s, which is significant given the 60s limit.

RQ6: Is the Original Query Special?

In our methodology, the original query is treated as a
member of the mutant set. It might be reasonable to ask
how does the original query differ from its mutants in
terms of performance.

In Figure 7, we show the verification time of the
original query and the median of its mutants, using
the data from our extended time limit experiment. In
KomodoD, which has the highest unstable proportion
among the six projects, the run time of the original and
its mutants are generally within ±50% of each other. In
vWasmF , where the unstable proportion is the lowest,
the two have nearly identical performance.

1 5 10 15 20
0

2

4

6

8

10

KomodoD Z3 4.12.1

shuffling

renaming

reseeding

1 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

DICE?
F Z3 4.12.1

shuffling

renaming

reseeding

p
ro

p
or

ti
on

of
q
u

er
ie

s
ex

ce
d

in
g

(%
)

time standard deviation (seconds)

Fig. 6. Degree of Stability in Stable Queries. The proportions are
taken over stable queries only, some of which still exhibit large
standard deviations in time among mutants. Mutation methods also
differ in their impact. Each sub-graph uses a different y-axis scale.

10−1 100 101 102
10−1

100

101

102

KomodoD Z3 4.12.1

unsolvable

unstable

stable

inconclusive
x

1.5 < y < 1.5x

10−1 100 101 102
10−1

100

101

102

vWasmF Z3 4.12.1

unsolvable

unstable

stable

inconclusive
x

1.5 < y < 1.5x

original time (seconds)

m
ed

ia
n

m
u

ta
n
t

ti
m

e
(s

ec
on

d
s)

Fig. 7. Comparing Original and Mutant Queries. The original query
has a run time similar to the median of the mutants. In KomodoD, a few
cases have the original query time out while some mutants succeed.

V. THE MARIPOSA BENCHMARK

Our experiments over a total of 17,043 original queries
generate more than 3 million mutants and take more than
578 CPU days to evaluate. To facilitate future research,
we distill the experiment queries into the Mariposa
benchmark set. We hope this first version of Mariposa
will incentivize improvement and prevent regressions in
SMT solver stability for program verification workloads.

The Mariposa benchmark includes both unstable and
stable queries for the projects we experimented with, as
shown in Table III. Each is further divided into a core
and an extension, where the core contains fewer but more
representative queries.

The unstable core set contains the queries from each
project that are categorized as unstable in both the
artifact solver and the latest solver. These queries have
been consistently unstable, which might be indicative of
a long-term problem. The extension set contains all the
additional unstable queries in the latest Z3 version.

185

Project Original Unstable Stable
core ext. core ext.

KomodoD 2,054 8 95 30 97
KomodoS 773 2 2 30 9
VeriBetrKVL 5,600 22 153 30 102
VeriBetrKVD 5,325 25 130 30 81
DICE⋆

F 1,536 3 9 30 13
vWasmF 1,755 0 4 30 0

Total 17,043 60 393 180 302

TABLE III
THE MARIPOSA BENCHMARK

The stable core set contains 30 randomly selected
stable queries from each project, with mutant time
standard deviation less than one second. This set is meant
to prevent stability regression, since each member has a
consistent result and run time. The extension set contains
all the stable queries that have a standard deviation
of more than six seconds. Given that the time limit is
60 seconds, such large standard deviations may indicate
potential instability, as discussed in Section III-F.

VI. LIMITATIONS

Our experiments draw from six verification projects,
which we cannot claim are fully representative of all the
SMT-based program verification projects. Nevertheless,
we believe our experiments offer valuable insights and
serve as a starting point for future work.

Our experiments are performed only with Z3. As ex-
plained earlier, popular automated verification languages
such as Dafny and F⋆ emit queries that are overfitted to
Z3. Hence, our results may not extend to other solvers,
such as cvc5.

Our mutation methods are not exhaustive. This study
explores a few common mutations, but there are many
other mutation methods that might be of interest. For
example, mixing mutations may expose more instability,
e.g., performing shuffling and renaming at the same
time. We leave the exploration of additional mutation
methods to future work.

Our results are dependent on our choice of configura-
tion parameters, e.g., the time limit, the alpha level, etc.
In our experiments and analysis, we have tried to analyze
the impact of these choices (e.g., via our additional
experiments with extended time limits). However we
cannot guarantee that our results are not sensitive to our
particular choice of configurations.

Our results likely under represent actual instability
in the development process. We note that the projects
we studied are the cleaned up final versions of the
code. During development, although developers do not
typically test for instability, they usually try to fix the
most obnoxiously unstable proofs.

VII. CONCLUSION

In this work we have studied the phenomenon of SMT
instability, specifically in program verification projects,
where changes are expected, responsiveness is preferred,
and stability is critical. We have proposed a new method-
ology for detecting and measuring instability, which can
inform program verification tools of instability in gener-
ated queries. We have also constructed a new benchmark
suite, which can be used by SMT solvers to evaluate and
optimize for stability. We have applied our methodology
to evaluate a number of existing verification projects on
various solver versions. Our results show that:
1) Stability is the common case, but instability exists

non-trivially: 2.6% of the queries in our experiment
are unstable with the most recent Z3. In specific
projects, this ratio can be as high as 5.0%.

2) Stability may deteriorate with solver upgrades: three
out of six projects in our experiment show notably
worse stability on newer solver versions.

3) Mutation methods differ in their effectiveness in
detecting instability. Specifically, currently employed
detection methods based on random seeds only cap-
ture a fraction of the problem.

4) Mutants of a given query can exhibit large run-time
variance, even if consistent in verification results.

5) Source-level program changes may reduce instability,
but this currently requires extensive manual engineer-
ing. For example, limiting the use of quantifiers, non-
linear arithmetic, or undecidable theories may help.

6) Increasing the time limit for queries can improve
stability, but it offers diminishing returns.

ACKNOWLEDGMENTS

Chris Hawblitzel and Doug Woos contributed to an
initial exploration of SMT instability in 2016. Mariposa
is a complete rewrite and a fresh set of experiments.
We thank Andrew Reynolds for his help with cvc5
configuration; Jinjin Tian for her advice on our statistical
analysis; Guido Martinez and Nikolaj Bjørner for sharing
their work on patching Z3; and Joshua Gancher, Nikhil
Swamy, and the anonymous reviewers for their helpful
feedback on the paper.

This work was supported in part by the National Sci-
ence Foundation (NSF) under grants 1901136, 2015445,
and 2224279, grants from the Intel Corporation and
Rolls-Royce, Amazon Research Awards (Fall 2022
CFP), the Prabhu and Poonam Goel Graduate Fel-
lowship, and the Future Enterprise Security initiative
at Carnegie Mellon CyLab (FutureEnterprise@CyLab).
Any opinions, findings, conclusions, or recommenda-
tions expressed in this material are those of the authors
and do not reflect the views of these supporters.

186

REFERENCES

[1] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. Setty, and B. Zill,
“IronFleet: Proving Practical Distributed Systems
Correct,” in Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), 2015.

[2] L. Nelson, J. Bornholt, R. Gu, A. Baumann, E. Tor-
lak, and X. Wang, “Scaling Symbolic Evaluation
for Automated Verification of Systems Code with
Serval,” in Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2019.

[3] T. Hance, A. Lattuada, C. Hawblitzel, J. Howell,
R. Johnson, and B. Parno, “Storage Systems are
Distributed Systems (So Verify Them That Way!),”
in Proceedings of the USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI),
2020.

[4] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel,
M. Polubelova, K. Bhargavan, B. Beurdouche,
J. Choi, A. Delignat-Lavaud, C. Fournet, N. Ku-
latova, T. Ramananandro, A. Rastogi, N. Swamy,
C. Wintersteiger, and S. Zanella-Beguelin, “Ev-
erCrypt: A Fast, Verified, Cross-Platform Cryp-
tographic Provider,” in Proceedings of the IEEE
Symposium on Security and Privacy, May 2020.

[5] Y.-F. Fu, J. Liu, X. Shi, M.-H. Tsai, B.-Y.
Wang, and B.-Y. Yang, “Signed Cryptographic
Program Verification with Typed CryptoLine,” in
Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS),
2019. [Online]. Available: https://doi.org/10.1145/
3319535.3354199

[6] N. Swamy, T. Ramananandro, A. Rastogi, I. Spiri-
donova, H. Ni, D. Malloy, J. Vazquez, M. Tang,
O. Cardona, and A. Gupta, “Hardening Attack
Surfaces with Formally Proven Binary Format
Parsers,” in Proceedings of the ACM Conference
on Programming Language Design and Imple-
mentation (PLDI), June 2022. [Online]. Available:
https://www.fstar-lang.org/papers/EverParse3D.pdf

[7] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif,
J. Lee, R. Soulé, H. Wang, C. Caşcaval, N. McK-
eown, and N. Foster, “P4v: Practical Verification
for Programmable Data Planes,” in Proceedings
of ACM SIGCOMM. New York, NY, USA:
Association for Computing Machinery, 2018, pp.
490–503.

[8] A. Permenev, D. Dimitrov, P. Tsankov,
D. Drachsler-Cohen, and M. Vechev, “Verx:
Safety Verification of Smart Contracts,” in
Proceedings of the IEEE Symposium on Security
and Privacy, 2020.

[9] J. Bornholt, R. Joshi, V. Astrauskas, B. Cully,

B. Kragl, S. Markle, K. Sauri, D. Schleit, G. Slat-
ton, S. Tasiran et al., “Using Lightweight Formal
Methods to Validate a Key-Value Storage Node in
Amazon S3,” in Proc. of the ACM Symposium on
Operating Systems Principles (SOSP), 2021.

[10] A. Chudnov, N. Collins, B. Cook, J. Dodds,
B. Huffman, C. MacCárthaigh, S. Magill,
E. Mertens, E. Mullen, S. Tasiran et al.,
“Continuous Formal Verification of Amazon
s2n,” in Proceedings of the Conference on
Computer Aided Verification (CAV), 2018.

[11] M. Dodds, “Formally Verifying Industry Cryp-
tography,” IEEE Security and Privacy Magazine,
vol. 20, no. 3, 2022.

[12] C. Barrett and C. Tinelli, Satisfiability Modulo
Theories. Springer, 2018.

[13] C. Barrett, A. Stump, C. Tinelli et al., “The SMT-
lib Standard: Version 2.0,” in Proceedings of the
Workshop on Satisfiability Modulo Theories, 2010.

[14] L. De Moura and N. Bjørner, “Z3: An Efficient
SMT Solver,” in Tools & Algorithms for the Con-
struction and Analysis of Systems (TACAS), 2008.

[15] H. Barbosa, C. Barrett, M. Brain, G. Kremer,
H. Lachnitt, M. Mann, A. Mohamed, M. Mohamed,
A. Niemetz, A. Nötzli et al., “cvc5: A Versatile
and Industrial-Strength SMT Solver,” in Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS), 2022.

[16] C. A. R. Hoare, “An Axiomatic Basis for Com-
puter Programming,” Communications of the ACM,
vol. 12, no. 10, 1969.

[17] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill, “Ironclad Apps:
End-to-End Security via Automated Full-System
Verification,” in Proceedings of the USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI), October 2014.

[18] K. R. M. Leino and C. Pit-Claudel, “Trigger Se-
lection Strategies to Stabilize Program Verifiers,”
in Proceedings of the International Conference on
Computer Aided Verification (CAV), S. Chaudhuri
and A. Farzan, Eds., 2016.

[19] K. R. M. Leino, “Dafny: An automatic program
verifier for functional correctness,” in Logic for
Programming, Artificial Intelligence, and Reason-
ing, E. M. Clarke and A. Voronkov, Eds., 2010.

[20] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi,
A. Delignat-Lavaud, S. Forest, K. Bhargavan,
C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K.
Zinzindohoue, and S. Zanella-Béguelin, “Depen-
dent Types and Multi-Monadic Effects in F*,” in
Proceedings of the ACM Symposium on Principles
of Programming Languages (POPL), 2016.

[21] “Debugging Unstable Verification,”

187

https://doi.org/10.1145/3319535.3354199
https://doi.org/10.1145/3319535.3354199
https://www.fstar-lang.org/papers/EverParse3D.pdf

http://dafny.org/dafny/DafnyRef/DafnyRef.html#
1365-debugging-unstable-verification.

[22] “Repeating Proofs with Quake,” http:
//www.fstar-lang.org/tutorial/book/under_the_
hood/uth_smt.html#repeating-proofs-with-quake.

[23] C. Barrett, L. de Moura, and A. Stump, “SMT-
COMP: Satisfiability modulo theories competition,”
in Computer Aided Verification, 2005.

[24] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and
B. Parno, “Komodo: Using Verification to Disen-
tangle Secure-Enclave Hardware from Software,” in
Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2017.

[25] N. Froleyks, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, “SAT Competition 2020,” Artificial
Intelligence, vol. 301, 2021.

[26] T. Weber, “Scrambling and Descrambling SMT-
LIB Benchmarks,” in SMT @ IJCAR, 2016.

[27] A. Biere and M. Heule, “The Effect of Scram-
bling CNFs,” in Proceedings of Pragmatics of SAT,
vol. 59, 2019.

[28] D. Blotsky, F. Mora, M. Berzish, Y. Zheng, I. Kabir,
and V. Ganesh, “StringFuzz: A Fuzzer for String
Solvers,” in Proceedings of the Conference on
Computer Aided Verification (CAV), 2018.

[29] D. Winterer, C. Zhang, and Z. Su, “On the Unusual
Effectiveness of Type-Aware Operator Mutations
for Testing SMT Solvers,” vol. 4, no. OOPSLA.
Association for Computing Machinery, Nov. 2020.

[30] J. Park, D. Winterer, C. Zhang, and Z. Su,
“Generative Type-Aware Mutation for Testing
SMT Solvers,” Proc. ACM Program. Lang., vol. 5,
no. OOPSLA, oct 2021. [Online]. Available:
https://doi.org/10.1145/3485529

[31] P. Yao, H. Huang, W. Tang, Q. Shi, R. Wu, and
C. Zhang, “Skeletal Approximation Enumeration
for SMT Solver Testing,” in Proceedings of the
ACM Symposium on the Foundations of Software
Engineering (FSE), 2021.

[32] A. Niemetz, M. Preiner, and C. Barrett, “Murxla:
A Modular and Highly Extensible API Fuzzer for
SMT Solvers,” in Computer Aided Verification,
2022.

[33] A. Bugariu and P. Müller, “Automatically Testing
String Solvers,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engi-
neering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p.
1459–1470.

[34] M. Bringolf, D. Winterer, and Z. Su, “Finding
and Understanding Incompleteness Bugs in SMT
Solvers,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software
Engineering, ser. ASE ’22. New York, NY,

USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/
3551349.3560435

[35] W. Feller, An Introduction to Probability Theory
and its Applications, Volume 2. John Wiley &
Sons, 1991, vol. 81.

[36] G. S. Brodal and R. Fagerberg, “Lower Bounds for
External Memory Dictionaries,” in Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2003.

[37] I. T. Kassios, “Dynamic Frames: Support for Fram-
ing, Dependencies and Sharing Without Restric-
tions,” in Proceedings on the International Sym-
posium on Formal Methods (FM), 2006.

[38] J. Li, A. Lattuada, Y. Zhou, J. Cameron, J. Howell,
B. Parno, and C. Hawblitzel, “Linear Types for
Large-Scale Systems Verification,” in Proceedings
of the ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications
(OOPSLA), December 2022.

[39] A. Marochko, D. Mattoon, P. England,
R. Aigner, R. Spiger (CELA), and
S. Thom, “Cyber-Resilient Platforms Overview,”
Microsoft Research, Tech. Rep. MSR-TR-
2017-40, September 2017. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/
publication/cyber-resilient-platforms-overview/

[40] Z. Tao, A. Rastogi, N. Gupta, K. Vaswani, and A. V.
Thakur, “DICE*: A Formally Verified Implemen-
tation of DICE Measured Boot,” in Proceedings of
the USENIX Security Symposium, Aug. 2021.

[41] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer,
M. Holman, D. Gohman, L. Wagner, A. Zakai, and
J. Bastien, “Bringing the Web up to Speed with
WebAssembly,” in Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2017.

[42] J. Bosamiya, W. S. Lim, and B. Parno, “Provably-
Safe Multilingual Software Sandboxing using We-
bAssembly,” in Proceedings of the USENIX Secu-
rity Symposium, August 2022.

[43] C. Barrett, C. L. Conway, M. Deters, L. Hadarean,
D. Jovanović, T. King, A. Reynolds, and C. Tinelli,
“CVC4,” in Proceedings of the International Con-
ference on Computer Aided Verification (CAV),
2011.

[44] Y. Zhou, J. Bosamiya, Y. Takashima, J. Li,
M. Heule, and B. Parno, “Mariposa: Measuring
SMT Instability in Automated Program Verification
(Technical Report),” Carnegie Mellon University,
Tech. Rep., August 2023. [Online]. Available:
https://doi.org/10.1184/R1/23905905

[45] J. Bosamiya, W. S. Lim, and B. Parno, private
communication, 2023.

188

http://dafny.org/dafny/DafnyRef/DafnyRef.html#1365-debugging-unstable-verification
http://dafny.org/dafny/DafnyRef/DafnyRef.html#1365-debugging-unstable-verification
http://www.fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#repeating-proofs-with-quake
http://www.fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#repeating-proofs-with-quake
http://www.fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#repeating-proofs-with-quake
https://doi.org/10.1145/3485529
https://doi.org/10.1145/3551349.3560435
https://doi.org/10.1145/3551349.3560435
https://www.microsoft.com/en-us/research/publication/cyber-resilient-platforms-overview/
https://www.microsoft.com/en-us/research/publication/cyber-resilient-platforms-overview/
https://doi.org/10.1184/R1/23905905

Formal Methods in Computer-Aided Design 2023

A Procedure for SyGuS Solution Fitting
via Matching and Rewrite Rule Discovery
Abdalrhman Mohamed† , Andrew Reynolds∗ , Clark Barrett† , and Cesare Tinelli∗

†Stanford University, Stanford, CA, USA, � abdal@stanford.edu ∗The University of Iowa, Iowa City, IA, USA

Abstract—Syntax-guided synthesis (SyGuS) is a recent soft-
ware synthesis paradigm in which an automated synthesis tool
is asked to synthesize a term that satisfies both a semantic
and a syntactic specification. We consider a special case of the
SyGuS problem, where a term is already known to satisfy the
semantic specification but may not satisfy the syntactic one. The
goal is then to find an equivalent term that additionally satisfies
the syntactic specification, provided by a context-free grammar.
We introduce a novel procedure for solving this problem which
leverages pattern matching and automated discovery of rewrite
rules. We also provide an implementation of the procedure
by modifying the SyGuS solver embedded in the CVC5 SMT
solver. Our evaluation shows that our new procedure significantly
outperforms the state of the art on a large set of SyGuS problems
for standard SMT-LIB theories such as bit-vectors, arithmetic,
and strings.

I. INTRODUCTION

Program synthesis is a powerful technique with many
potential applications, including program optimization, loop
invariance generation, and protocol synthesis [1], [2], [3], [4].
Syntax-guided Synthesis [5] (SyGuS) is a particular paradigm
for program synthesis in which the goal is to generate correct
functional code from a high-level description of the desired
program behavior. This high-level description is typically
represented as a set of semantic constraints, logical formulas
expressing the properties the program should satisfy, and
syntactic constraints, which dictate the structure and syntax of
the program and are commonly encoded as a formal grammar.

Program synthesis is generally undecidable and is con-
sidered to be a challenging task, even in restricted settings.
Nevertheless, in the past decade, several efficient SyGuS
solvers have emerged [6], [7], [8], [9], [10]. These solvers
are typically enumerative, with a few notable exceptions [6],
[10]. In an enumerative approach to syntax-guided synthesis,
the solver uses the provided grammar to generate a list of terms
that meet the syntactic constraints. These terms are then passed
to a backend reasoner, often an SMT solver, to determine
whether or not they meet the semantic constraints as well.

We consider a special case of the SyGuS problem in which
the semantic specification for the function f(x⃗) to synthesize
is already known to be satisfied by a given solution term t[x⃗]
with free variables x⃗. The problem, which we call the SyGuS
solution fitting problem, is to synthesize from t and a given
grammar G a term t′ that is equivalent to t and is generated
by G. It can also be seen an instance of the SyGuS problem,
where the semantic specification is the formula ∀x⃗. f(x⃗) ≈
t[x⃗]. Procedures for solving this problem can be understood as

refinement procedures, where additional syntactic restrictions
are imposed.

We propose a procedure for the SyGuS solution fitting prob-
lem that leverages both matching and rewrite rule synthesis to
find a term in the language of G that is equivalent to the
input term t. At a high level, the procedure matches t with
terms generated by the production rules of the input grammar,
thereby generating a set S of smaller terms to synthesize.
We then augment S by using rewrite rule synthesis to find
new terms that are equivalent to those in S. Finally, we use
enumerative SyGuS to find derivations for a subset of S that
is sufficient to construct a term equivalent to t.

One possible use case for our procedure is when a user
has successfully solved a SyGuS conjecture for a (complete)
semantic specification φ and a grammar G, and then needs
a solution in the language of a revised grammar G′, which
perhaps includes desirable and more stringent syntactic re-
quirements. If the previous solution term t does not fit the
updated grammar, our procedure can be used to construct from
t an equivalent term that does. A second use case occurs
within certain approaches for solving SyGuS problems [10]
that focus solely on satisfying the semantic component of
specifications. Our procedure can then be used to impose a
posteriori syntactic constraints on the solution.

Contributions: We propose a novel approach for the SyGuS
solution fitting problem. Our contributions include:

• A new procedure for this problem which combines
matching, dynamic rewrite rule discovery, and enumer-
ative SyGuS, and is parametric in the background theory
of the semantic constraints.

• An implementation of this approach in the SyGuS solver
of CVC5.

• A detailed evaluation of the procedure showing sig-
nificant performance improvements over other SyGuS
solvers on a set of crafted benchmarks, as well as a set
of mutated benchmarks from the standard SyGuS library.
Notably, the procedure scales well across multiple stan-
dard SMT-LIB theories, including bit-vectors, arithmetic,
and strings.

We present related approaches and preliminaries in the rest of
this section. Our approach and contributions are detailed in
Section II. We evaluate our approach against other methods
in Section III and conclude by outlining potential future
directions in Section IV.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_27 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0003-1414-7073
https://orcid.org/0000-0002-3529-8682
https://orcid.org/0000-0002-9522-3084
https://orcid.org/0000-0002-6726-775X
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_27
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_27
https://creativecommons.org/licenses/by/4.0/

A. Related Work

Typical methods for solving SyGuS problems are enumera-
tive in nature. However, some works have explored divide-
and-conquer methods to solve restricted classes of SyGuS
problems. For example, the SyGuS solver STUN [11] divides
the input space of the function f to synthesize into subsets,
enumerates expressions that are correct in these subsets, and
then combines them using a unification operator (e.g., the if-
then-else operator). STUN is fairly effective in solving general
SyGuS problems. However, it requires domain knowledge to
identify suitable unification operators and efficient program
generation algorithms. Moreover, the desired unification oper-
ator may not be available in the provided grammar.

EUSolver [6] adopts a similar approach to STUN by using
the ite operator and selected predicates to define the target
function by cases, reformulating the SyGuS problem as a
decision tree learning problem. This approach led to successful
results in the SyGuS solver competition in 2016 and 2017 [12],
[13]. A major limitation is that EUSolver requires point-wise
specifications of the semantic constraints (relating an input
point to its output, but not the outputs of different inputs)
and a grammar that both contains the ite operator and can be
decomposed into a term grammar and a predicate grammar.

Other work [10], implemented in the CVC4 SMT solver, ad-
dresses a class of synthesis problems called single-invocation
problems, where the occurrences of the target function in
the semantic constraints are all applied to the same input
tuple. For these problems, CVC4 first looks for a solution
satisfying just the semantic constraints and then tries to find an
equivalent term within the grammar using an ad-hoc procedure
based on matching against the grammar rules of the syntactic
specification ([10], Section 5). This procedure is efficient but
it often fails to find any equivalent term.

B. Technical Preliminaries

The goal in Program Synthesis is to generate functions that
meet a set of specified constraints. These constraints can be
formulated in terms of many-sorted second-order logic, using
a set of non-empty sorts S = {σ1, σ2, ...}. If the function
we aim to synthesize has a rank of σ1 · · ·σnσ, then we can
express the synthesis problem as:

∃f : σ1 · · ·σnσ, ∀x⃗ : σ1 · · ·σn. P [f, x⃗]

where f is a second-order variable representing the target
function, x⃗ is a tuple of first-order variables representing f ’s
input, and P is a predicate that encodes the semantic con-
straints imposed on f within a particular background theory
T . In the context of SyGuS, additional syntactic constraints are
imposed, specifically that the body of the synthesized function
f be in the language of a specified grammar G. We write
t ∈ L(G) to denote that a term t is in the language L(G)
generated by a grammar G. In that case, we will also say that
t is generated by G.

In this paper, we consider a specific class of SyGuS prob-
lems in which a term t[x⃗] over the free variables x⃗ that satisfies
the semantic part of the synthesis problem is also provided.

We can view this problem as the subclass of SyGuS problems
in which the semantic specification has the form:

∃f : σ1 · · ·σnσ, ∀x⃗ : σ1 · · ·σn. f(x⃗) ≈ t[x⃗].

The goal of our procedure, given t and G, is to find a term t′

that is generated by G and is equivalent to t in the background
theory T , denoted as t′ ≈T t.

Our procedure can be used in combination with approaches
that are limited only to solving semantic specifications. We
mentioned previous work [10] that introduced an efficient
synthesis approach for single-invocation problems. This class
of problems can be expressed by the conjecture:

∃f : σ1 · · ·σnσ, ∀x⃗ : σ1 · · ·σn. P [f(x⃗), x⃗] (1)

where P [f(x⃗), x⃗] is a first-order formula over the free variables
f, x⃗. This conjecture is equivalent to the first-order formula:

∀x⃗ : σ1 · · ·σn,∃y : σ. P [y, x⃗] (2)

A witness term t[x⃗] for the quantifier in formula (1) can
be constructed efficiently in practice from formula (2) by
quantifier elimination (QE) if the theory T admits QE or, more
generally, from a refutation in T of the negation of (2) [14].
However, finding then an equivalent term t′ generated by a
specified grammar G remains a challenge.

One approach is to use enumeration techniques developed
for solving general SyGuS problems, however, those tech-
niques do not scale well for large terms. Another option [10],
is to match the structure of the term t against the rules in
G to break down the synthesis problem into smaller, more
manageable sub-problems. Unfortunately, this approach has
its own limitations, since terms that slightly deviate from the
grammar can be generated only by enumeration.

C. Motivating Example

The following SyGuS problem demonstrates some of the
shortcomings discussed above. We explain how to address
them efficiently using matching and rewriting.
Example 1. Consider the synthesis problem

∀x, y, u : Int. f(x, y, u) ≈ x− ite(y + u > 0, y + u, 0)

over the theory of integers and let t be the right-hand side of
the equation. Assume our goal is to find an implementation of
f whose body is generated by a grammar G with start symbol
A and the following production rules:

A → 0 | 1 | x | y | u | 0−A | A+A | ite(B,A,A)
B → A ≈ A | A > A

The minimal solution to this problem, as measured by the
length of its shortest derivation in the grammar, is prohibitively
large for enumerative approaches, which typically explore the
solution space by increasing term size. We observed that such
approaches check 5K terms or more before finding a solution
in this example, due to the combinatorial explosion in the set
of terms generated by G as a function of derivation length.

Alternatively, we can directly try to match t with the
right-hand side of production rules of the grammar, treating

190

non-terminals like A and B above as match variables. This
makes it easy to detect, for instance, if t is already in L(G).
Unfortunately, this approach fails immediately in our example
since x−ite(y+u > 0, y+u, 0) does not match any right-hand
sides in G’s production rules.1

We can expand the possible patterns for term matching using
rewriting modulo the background theory. Note, for example,
that if we could add the rule A → A − A to the original
grammar G, then matching t against A − A would lead to
a solution, as both x and ite(y + u > 0, y + u, 0) in turn
match a rule for A. Now, we cannot add this rule directly
as it would change the language of the grammar.2 However,
we can simulate doing so by considering the production rule
A→ A+(0−A), derived from A→ A+A and A→ 0−A.
This is because every term of the form t1+(0−t2) is equivalent
to the term t1− t2 in the theory, something that can be easily
shown using simple theory-specific rewrite rules. Based on this
reasoning, we thus conclude that x+ (0− ite(y + u > 0, y +
u, 0)) is a solution for this example, being both equivalent to
t and generated by the provided grammar.

Note how this process is driven by matching against the
grammar rules. This is much more direct than having to wait
for terms to be constructed with enumerative methods. In the
above example, the matching is made more flexible by uti-
lizing term rewriting, which effectively provides a controlled
form of matching modulo the background theory, loosening the
limitations of relying just on the rules in the input grammar.
Our experimental evaluation shows that this flexibility boosts
the effectiveness of the matching-based approach considerably,
as we discuss in Section III.

For convenience, we will call an expression derivable in a
grammar G (like the one in Example 1) a pre-term (generated
by G) if it contains non-terminals. For instance, in Example 1,
0− (A+A) is a pre-term, whereas 0− (x+ y) is not.

II. A PROCEDURE FOR SYGUS SOLUTION FITTING

In this section, we describe and discuss our procedure for
solution fitting in SyGuS, starting with a high-level overview.
We then sketch the invariants that are maintained by the
procedure, and briefly discuss its properties. In particular, the
procedure is solution sound: it returns only terms that are in-
deed a solution of the given synthesis problem. The procedure
is also relatively terminating: it is guaranteed to terminate with
a (correct) solution if its underlying enumerative approach
terminates with a solution.

A. The Term Reconstruction Procedure

The reconstruction procedure, rcons, is described in Al-
gorithm 1. It uses two main auxiliary procedures, match
(Algorithm 2) and markSolved (Algorithm 3), to abstract
the high-level structure from the finer details. We start by
outlining the overall procedure and then elaborate on its key
data structures and auxiliary functions. Finally, we illustrate

1Note that it does not match with 0 − A because the terminal symbols x
and 0 do not match.

2Observe that A−A is not derivable from A in the original grammar.

Algorithm 1 rcons(G, t0)

Require: t0 : typeOf(N0) and N0 is start symbol of G
1: k0 ← newVar(K, N0)
2: Obs ← {(k0, t0↓)}
3: Pool ,CandSols,Sol ← ∅, ∅, ∅
4: Targets ← {(N0, t0↓)}
5: while k0 ̸∈ dom(Sol) do
6: for non-terminal N of G do ▷ Enumeration Phase
7: s← nextEnum(N)
8: if FV(s) = ∅ then
9: if there is (k, t) ∈ Obs s.t. t ≈T s then

10: markSolved(k, s)
11: else
12: k ← newVar(K, N)
13: Obs ← Obs ∪ {(k, s)}
14: markSolved(k, s)
15: end if
16: else
17: Pool ← Pool ∪ {(N, s)}
18: Targets ′ ← {match(t, s) | (N, t) ∈ Targets}
19: end if
20: end for
21: while Targets ′ ̸= ∅ do ▷ Match Phase
22: Targets ← Targets ∪ Targets ′

23: Targets ′ ←
24: {match(t, s) | (N, t) ∈ Targets ′, (N, s) ∈ Pool}
25: end while
26: end while
27: return Sol(k0)

through an example how the various components are integrated
in rcons.

We assume two countably infinite sets K and Z of (meta-
level) variables. The variables in K are placeholders for terms
that require reconstruction within the grammar. Those in Z
are matching variables; they represent holes in the patterns
used for matching. Variables in K and Z are associated with
two mappings, nonTerminalOf and typeOf, which respectively
return a non-terminal in the given grammar G and a type for
the variable. We denote by FV(t) the set of variables occurring
in term t. Note that for the purposes of the procedure, only
elements of K and Z are considered variables. We also assume
a rewriting procedure that rewrites each term t to a term t↓, the
rewritten form of t. We require that the procedure be sound,
that is, t↓ ≈T t for the background theory T , but not that it
be confluent. This means that t↓ and s↓ may be distinct for
some T -equivalent terms t and s.

The procedure rcons updates the following global program
variables.

• Obs stores a set of pairs of the form (k, t), where k is
a variable from K and t is a term. We refer to variable
k as an obligation and say it is closed if we succeed
in finding a term t′ equivalent to t and generated by
nonTerminalOf(k).

• Pool stores a set of pairs of the form (N, t), where N

191

Pool

Targets

Fig. 1. The relationship between the set of patterns, Pool , and the set of terms
to be reconstructed, Targets , can be depicted by the vertical and horizontal
bars, respectively. The vertical bars represent the enumeration phases, while
the horizontal bars represent the matching phases.

is a non-terminals of the grammar G and t is a term
possibly with free variables from Z . Those free variables
in t are used as holes for matching. If a match from an
enumerated term against t succeeds, then this match is
used to generate further obligations.

• CandSols stores a set of pairs of the form (k, t), where
t is a potential solution to the obligation k. Terms t in
this mapping may contain variables from K, meaning they
may be built from terms corresponding to obligations that
have yet to be closed.

• Sol stores a mapping consisting of pairs k ↦→ t, where t
is an actual solution to the obligation k for being a term
generated by nonTerminalOf(k). We write Sol(s) for the
result of applying Sol as a substitution to the term s.

The procedure rcons maintains a number of invariants over
these sets, described in detail in Section II-D.

Procedure rcons: The main procedure, rcons, takes as
input a term t0 to be reconstructed in a grammar G. It first
creates the main obligation to reconstruct, (k0, t0↓), where k0
is a variable used to refer to t0↓ in the procedure. The set
of terms to reconstruct, Targets , is initialized with t0↓. The
procedure is divided into two phases: the enumeration phase
and the match phase.

In the enumeration phase, new patterns for each non-
terminal in the grammar are enumerated using the iterator
nextEnum. If a pattern s returned by nextEnum is a ground
term (i.e., FV(s) = ∅), then we check if s closes any obligation
k. If it does, we call markSolved(k, s) to notify other candidate
solutions that depend on k. Otherwise, a new obligation (k, s)
is created on the fly, and s, for being in L(G), becomes the
solution to this obligation. This is done in case an equivalent
term is encountered in the future. If the pattern s is not
a ground term, then it is matched against all the terms in
Targets , and any potential subterms to reconstruct are saved
in a new set Targets ′. Additionally, s is added to the set Pool
of patterns as it may be useful in matching against new terms
to reconstruct in the match phase.

In the match phase, the new subterms in Targets ′ are
appended to the set Targets and matched against the set
of patterns that have been enumerated so far. Any subterms
returned by this step are stored in Targets ′ and the process

Algorithm 2 match(t, s)

Require: FV(t) = ∅, FV(s) ⊆ Z , typeOf(t) = typeOf(s)
1: Targets ′ ← ∅
2: if patternMatch(s↓, t) = σ then
3: τ ← ∅
4: for (z, st) ∈ σ do
5: if there is (sk, t′) ∈ Obs s.t. t′ ≈T st then
6: Obs ← Obs ∪ {(sk, st)}
7: τ ← τ ∪ {z ↦→ sk}
8: else
9: SN ← nonTerminalOf(z)

10: sk ← newVar(K, SN)
11: τ ← τ ∪ {z ↦→ sk}
12: Obs ← Obs ∪ {(sk, st)}
13: Targets ′ ← Targets ′ ∪ {(SN, st)}
14: end if
15: let k be s.t. (k, t) in Obs
16: CandSols ← CandSols ∪ {k ↦→ τ(s)}
17: if FV(Sol(τ(s))) = ∅ then
18: markSolved(k, τ(s))
19: end if
20: end for
21: end if
22: return Targets ′

is repeated until no new subterms are returned, indicating that
all patterns have been matched against all terms.

Once the matching phase is complete, the solution status
of the main obligation k0 is evaluated. If it is solved, the
reconstruction process is complete. If not, then the current
pool of enumerated patterns cannot derive a solution, and the
enumeration phase is resumed, to generate new patterns.

The alternating behavior of the enumeration and matching
phases is depicted in Figure 1. The vertical bars represent the
enumeration phases, during which new patterns are added to
Pool . It is possible for multiple enumeration phases to occur
before a match is successful. Once a match succeeds, terms to
be reconstructed are added to Targets , and the matching phase
begins. The horizontal bars represent the matching phases,
during which each new term is matched against all the patterns
in Pool .

Procedure newVar: This subprocedure can be invoked
with either K or Z to obtain a fresh variable v for nonterminal
N from K or Z , respectively. The procedure updates the
mapping nonTerminalOf so that nonTerminalOf(v) = N .

Procedure nextEnum: This is a stateful procedure, called
on line 7 of the main procedure rcons, parametrized by a non-
terminal N of the grammar. Let T (N) be the set of all terms
and pre-terms generated by N . Each call to nextEnum(N)
returns the next term in a (fair) enumeration of the set obtained
from T (N) by replacing all occurrences of non-terminals with
variables from Z . For non-terminal A in the grammar of
Example 1, this set of terms would include, for instance, 0−z1,
z1 + z2, and ite(z1, z2, z3) where z1, z2, z3 ∈ Z . In practice,
nextEnum is implemented by modifying standard methods for

192

Algorithm 3 markSolved(k, s)

Require: FV(s) = ∅ and s ≈T t for some (k, t) ∈ Obs.
1: Sol ← Sol ∪ {(k, s)}
2: CandSols ← CandSols ∪ {(k, s)}
3: repeat
4: CandSols ′ ← CandSols
5: CandSols ← {(k,Sol(s)) | (k, s) ∈ CandSols ′}
6: for (k, s) ∈ CandSols do
7: if k ̸∈ dom(Sol) then
8: Sol ← Sol ∪ {k ↦→ s}
9: end if

10: end for
11: until CandSols ′ = CandSols

fast term enumeration [9].
The terms returned by nextEnum serve two purposes in the

main procedure: those with no free variables from Z are used
to discharge terms to synthesize, on lines 9-15 (as we will see
later in subprocedure markSolved); those with free variables
from Z are used as new patterns for matching on lines 17-18.

Procedure match (Algorithm 2): This function takes
in a term t to be reconstructed and a pattern s. The term t is
assumed to be in rewritten form (i.e., t = t↓), However, this is
not necessarily the case for s as it must preserve the syntactic
structure enforced by the grammar.

The first step is to rewrite s and attempt to match the struc-
ture of t. If the match succeeds, match returns the substitution
σ (from variables in Z to subterms from t) required to unify
s↓ and t. This substitution represents the subterms that must
be synthesized before s can be marked as a solution. For each
pair (z, st) in σ, match finds a corresponding sk in Obs or
creates a new obligation sk and adds the pair (sk, st) to Obs .
match then creates a new substitution τ from z to sk and
applies it to s to construct a candidate solution, τ(s), for k
(the variable whose obligation is t). If there are no subterms
to synthesize, τ(s) is a solution to k, and markSolved(k, τ(s))
is called.

Example 2. Consider the following obligations and candidate
solution sets: Obs = {(k0, x − y), (k1, x)} and CandSols =
{(k1, x)}. If we invoke match with s = z0 + (0 − z1) and
t = x−y, then matching will succeed (assuming s↓ = z0−z1)
and return a substitution σ = {z0 ↦→ x, z1 ↦→ y}. The check
at line 5 will determine that x is already in Obs , so there is
no need to create a new obligation for it. However, y is not
in Obs , so a new obligation (k2, y) will be added.

As we process the substitutions in σ, we construct a new
substitution τ = {z0 ↦→ k1, z1 ↦→ k2} and apply it to s to
construct a candidate solution for k0, namely k1 + (0 − k2).
The match procedure returns {(A, y)} as the set of subterms
to reconstruct, resulting in the following updated sets:

Obs = {(k0, x− y), (k1, x), (k2, y)}
CandSols = {(k1, x), (k0, k1 + (0− k2))}

Procedure markSolved (Algorithm 3): The set
CandSols contains candidate solutions s to obligations k.

Specifically, term s is a solution if it does not contain variables.
Whenever that is the case, markSolvedis called to update all
other potential solutions that depend on k. During this process,
complete solutions for other obligations may be discovered.
Thus, we repeat this step until no further such terms appear
(i.e., a fixed point is reached). Algorithm 3 provides a basic
implementation of this procedure.

Example 3. As an illustration, consider the following sce-
nario, which uses the grammar from Example 1. Let
CandSols = {(k0, x+k1), (k1, 0−k2)} and Sol = ∅. Invoking
markSolved(k2, y) results in:

CandSols = {(k0, x+ k1), (k1, 0− k2),

(k2, y), (k1, 0− y), (k0, x+ (0− y))}
Sol = {k0 ↦→ x+ (0− y), k1 ↦→ 0− y, k2 ↦→ y}

B. Rewrite Rule Discovery

There are two situations in which our overall procedure
utilizes theory reasoning to synthesize new rewrite rules.
The first instance occurs in line 9 of Algorithm 1, where
we aim to establish if a ground term we derived from the
grammar is T -equivalent to one of the target terms in Obs
that we want to synthesize. The second instance occurs in
line 5 of Algorithm 2 after a match against a pattern is
successful and generates a substitution. We again utilize theory
reasoning there to determine if there are any obligations that
are T -equivalent to the substitution that match asks us to
synthesize. This line creates an equivalence class of terms to
synthesize, where synthesizing any term in the class amounts
to synthesizing all of them.

We use an SMT solver to discover new rewrite rules.
Calling the solver every time to find a term’s equivalence class,
however, is inefficient. Instead, we follow the approach in
Nötzli et al. [15] and build a trie whose leaves are equivalence
classes and whose nodes are points where the equivalence
classes differ. Those points can be obtained by requesting a
model when the SMT solver determines that two terms are
not T -equivalent.

Note that calling the SMT solver is more costly than just
calling the rewriter, but doing so leads to larger equivalence
classes, thereby providing a greater selection of terms for
reconstruction. In particular, simpler terms may become avail-
able, which can greatly accelerate the reconstruction process.
Although the approach in Nötzli et al. [15] reduces the
number of solver calls required, some calls may still take too
long. In practice then, we set a time limit for each call and
conservatively assume non-equivalence when a call times out.

C. Revisiting the Motivating Example

We return now to the motivating example from Section I-C
to give a detailed run-through of the rcons procedure, which
we simplify slightly to keep the presentation manageable. The

193

objective is to reconstruct the term t0 = x − ite(y > 0, y, 0)
to an equivalent one in the language of the grammar below.

A→ 0 | 1 | x | y | 0−A | A+A | ite(B,A,A)

B → A ≈ A | A > A

rcons starts by initializing the data structure values with:

Obs = {(k0, t0)} Pool = CandSols = Sol = ∅

where k0 is a fresh variable. During the enumeration phase,
rcons begins by enumerating the set of terminal symbols of
the grammar: 0, 1, x, and y. None of them match with t0, but
they are assigned as solutions to artificial obligations, in case
they turn out to be equivalent to subterms of t0.

Obs = {(k0, t0), (k1, 0), (k2, 1), (k3, x), (k4, y)}
CandSols = {(k1, 0), (k2, 1), (k3, x), (k4, y)}

Sol = {k1 ↦→ 0, k2 ↦→ 1, k3 ↦→ x, k4 ↦→ y}

The procedure then proceeds to the next stage of enumeration,
deriving more complex patterns from T (A) and T (B). The
patterns that can be instantiated are stored in Pool . For brevity,
we explicitly list only the significant patterns below.

Pool = {(A, 0− z0), (A, z1 + z2), (A, ite(z3, z4, z5)),

(B, z6 > z7), ...}

rcons continues its process of deriving patterns from the
grammar in an effort to reconstruct t0. At some point, it
arrives at the pattern z8 + (0 − z9), whose rewritten form
is z8 − z9, matching t0. The match creates a substitution
σ = {z8 ↦→ x, z9 ↦→ ite(y > 0, y, 0)}, mapping variables
from Z to subterms to reconstruct. Since we do not know
how to reconstruct all subterms yet, match creates another
substitution, τ = {z8 ↦→ k3, z9 ↦→ k5}, which replaces the
subterms with (potentially new) corresponding obligations.
Substitution τ is then applied to s to create a candidate solution
τ(z8 + (0− z9)) = k3 + (0− k5) for k0. Now we have:

Obs = {(k0, t0), (k1, 0), (k2, 1), (k3, x), (k4, y), ...,
(k5, ite(y > 0, y, 0))}

Pool = {..., (A, ite(z3, z4, z5)), (B, z6 > z7), ...,

(A, z8 + (0− z9))}
CandSols = {(k1, 0), (k2, 1), (k3, x), (k4, y), ...,

(k0, k3 + (0− k5))}
Sol = {k1 ↦→ 0, k2 ↦→ 1, k3 ↦→ x, k4 ↦→ y, ...}

At this point, match returns {(A, ite(y > 0, y, 0))}, the
new term to synthesize. Since Targets ′ is not empty, rcons
enters the match phase for the first time, matching ite(y >
0, y, 0) against all patterns stored in Pool . Matching against
ite(z3, z4, z5) succeeds and generates the substitutions below.

σ = {z3 ↦→ y > 0, z1 ↦→ y, z2 ↦→ 0}
τ = {z3 ↦→ k6, z4 ↦→ k4, z5 ↦→ k1}

match then adds τ(ite(z3, z4, z5)) = ite(k6, k4, k1) as a
candidate solution for k5.

This process is then repeated for the term y > 0. This time,
rcons matches y > 0 against z6 > z7 generating the candidate
solution k4 > k1. Since both k1 and k4 are solved obligations,
markSolved(k6, k4 > k1) is invoked to construct complete
solutions for k6 and any other obligations that depend on it,
such as k5 and k0.

Obs = {(k0, t0), (k1, 0), (k2, 1), (k3, x), (k4, y), ...,
(k5, ite(y > 0, y, 0)), (k6, y > 0)}

CandSols = {(k1, 0), (k2, 1), (k3, x), (k4, y), ...,
(k0, k3 + (0− k5)), (k5, ite(k6, k4, k1)),

(k6, k4 > k1), ...}
Sol = {k0 ↦→ x+ (0− ite(y > 0, y, 0)), ...}

With the solution to k0 contained in Sol , rcons exits the main
loop and returns Sol(k0) = x+ (0− ite(y > 0, y, 0)).

D. Properties

Procedure rcons maintains several invariants that are essen-
tial to its correctness. Those invariants are listed below. We say
that a substitution σ respects grammar G if for all v ↦→ t ∈ σ,
term t is generated by nonTerminalOf(v) of G.

Invariant 1. Obs is a set of pairs of the form (k, t), where
k is an obligation to reconstruct the term t in the grammar,
such that:

1) t : typeOf(k);
2) FV(t) = ∅;
3) s ≈T t for all (k, s) ∈ Obs .

Invariant 2. Pool is a set of pairs of the form (N, t), where
t is a pattern shared by some terms generated from the non-
terminal N , such that:

1) t : typeOf(N);
2) FV(t) ⊆ Z;
3) the ground term σ(t) is generated by N for all substi-

tutions σ over Z that respect grammar G.

Invariant 3. CandSols is a set of pairs of the form (k, t),
where t is a potential solution to the obligation k, such that:

1) t : typeOf(k);
2) FV(t) ⊆ K;
3) The ground term τ(t) is generated by nonTerminalOf(k)

for all substitutions τ over K that respect grammar G;
4) if t is ground, s ≈T t for all (k, s) ∈ Obs .

Invariant 4. Sol is a mapping with pairs of the form k ↦→ t,
where t is a solution to the obligation k, such that:

1) t : typeOf(k);
2) FV(t) = ∅;
3) t is generated by nonTerminalOf(k);
4) s ≈T t for all (k, s) ∈ Obs .

Correctness: The main correctness property of procedure
rcons can be summarized as follows.

Proposition 1. If rcons(G, t0) successfully terminates with a
solution term t, then:

194

1) t ≈T t0, and
2) t is generated by the start symbol N0 of grammar G.

Thus, the returned term t is semantically equivalent to the
input term t0 and satisfies the syntactic restrictions G as well.

Proof sketch. One can show that each update in rcons of
the globals sets maintains invariants 1–4. Points (1) and (2)
above follow from those invariants. In particular, the returned
solution t is Sol(k0), where (k0, t0↓) ∈ Obs due to the
initial value of Obs . By Invariant 4, t ≈T t0↓ ≈T t0.
Furthermore, by Invariant 3, we have that Sol(k0) is generated
by nonTerminalOf(k0) = N0.

Termination: We briefly remark on the termination of rcons
by examining the enumeration and match phases. We argue
that the procedure terminates whenever a term t ≈T t0 can be
produced by enumeration from the grammar, and the underly-
ing theory T has a decision procedure for term equivalence.
Even if the matching components of the procedure fail to make
progress, the enumerator will still arrive at a solution since
enumeration approaches terminate in this setting. So, it is suffi-
cient to show that both phases of the procedure terminate. The
enumeration phase terminates because T -equivalence checks
terminate. In the match phase, every call to match returns
smaller subterms as it only matches against the syntactic
structure of the terms to synthesize. As a result, eventually,
the algorithm will reach a point where matching fails or the
terms can no longer be broken down further. In either case,
match returns an empty set and the match phase terminates.

Unrealizability: It is possible that t0 may be unrealizable
with respect to G, meaning that there is no term t ∈ L(G) such
that t ≈T t0. In its current version, rcons lacks a mechanism to
detect and report unrealizability; it simply diverges. However,
we can draw upon techniques from existing enumeration ap-
proaches, which rcons builds upon, to detect simple cases. An
alternative approach would involve checking the realizability
of syntactic constraints during the matching phase, potentially
requiring a recursive invocation of SyGuS on sub-target terms.
However, for performance reasons and due to rcons not being
designed for handling this situation, we do not incorporate
these mechanisms. For a more comprehensive treatment of
unrealizability, we refer readers to the work by Hu et al. [16].

III. EXPERIMENTAL EVALUATION

We have implemented the rcons procedure as a module
within CVC5’s synthesis solver. Our implementation is com-
prised of roughly 800 lines of C++ code. We evaluated it on
two classes of SyGuS benchmarks: the first was designed to
assess the procedure’s performance under a range of grammars
and theories, while the second consists of benchmarks from
the SyGuS 2019 competition for which the procedure directly
applies. The benchmarks for both classes had a common
structure consisting of four components:

1) Miscellaneous declarations and definitions.
2) The function f to synthesize.
3) Syntactic constraints on f via a grammar G.

4) One semantic constraint of the form ∀x⃗. f(x⃗) ≈ t[x⃗],
where t is the solution we want to fit into G.

In evaluating the effectiveness of rcons, we compared its
performance against the winning solvers of previous SyGuS
competitions: EUSolver3 [6] and CVC4 [17] (and its latest
iteration, CVC5 [18]). We used EUSolver in its default con-
figuration. We considered purely enumerative configurations of
CVC4 and CVC5 (referred to as cvc4-enum and cvc5-enum,
respectively), the procedure from Section 5 of [10] (cvc4-
rcons), as well as our new rcons procedure (cvc5-rcons).
An additional configuration, cvc5-match, uses a modified
version of rcons, with the enumeration phase disabled, and
Pool only holding the patterns found in the given grammar.
This configuration builds the solution solely through matching,
serving as a baseline for our comparisons.

We ran our comparative evaluation on the StarExec plat-
form [19], with a time limit of 30 minutes per instance.

A. Crafted Benchmarks

In the first set of experiments, we randomly generated
SyGuS solution refinement benchmarks for three SMT-LIB
theories of interest: bit-vectors, integer arithmetic, and strings.
We followed the steps below to craft the benchmarks:

1) We constructed a reference grammar for each of the
three theories, each comprising a majority of the sym-
bols for that specific theory.4 We used the reference
grammars to craft our set of benchmarks.

2) We developed a procedure to generate random terms
from the reference grammars, with the derivation length
of the terms adhering to a geometric distribution.

3) We used the reference grammars to construct random
grammars containing the original non-terminals (with
modified rules) and new non-terminals.

Using the simple grammar A → 1 | x | y | A + A as an
example, the procedure used in Step 2 above works as follows.
A string containing only the start symbol, A, is first generated.
A coin is then flipped to determine whether or not to replace
a non-terminal with a randomly selected rule containing non-
terminals (only A+A in our case). For example, if the first two
coin flips yield heads, then A will be replaced with A+A and
either the first or second A (randomly chosen) with A + A.
This would result in either (A + A) + A or A + (A + A).
The process continues until a tails is seen, at which point all
remaining non-terminals are replaced with randomly selected
terminal symbols (0, x, or y in our case) and the resulting
SyGuS term (e.g., 0+ (x+x)) is returned. To ensure that the
derivation length of the terms follows a geometric distribution,
we crafted the reference grammars so that each non-terminal
symbol has at least one terminal rule and at least one rule
containing a non-terminal symbol.

3We updated EUSolver with bug fixes and added missing support for theory
symbols to conform to the latest revisions of SMT-LIB’s standard and theories.

4Some redundant theory symbols were omitted for simplicity. Our reference
grammars along with the benchmarks we considered are available at https:
//github.com/cvc5/artifact-fmcad23-sygus.

195

https://github.com/cvc5/artifact-fmcad23-sygus
https://github.com/cvc5/artifact-fmcad23-sygus

Solver\Fragment bv (1K) nia (1K) slia (1K) Total (3K)

cvc4-enum 518 90 248 856
cvc4-rcons 427 113 66 606
cvc5-enum 530 222 305 1057
cvc5-match 17 6 6 29
cvc5-rcons 955 810 604 2369
EUSolver 498 243 405 1146

TABLE I
THE TABLE SHOWS THE NUMBER OF SYNTHESIZED BENCHMARKS SOLVED

BY EACH SOLVER CONFIGURATION.

The construction in Step 3 works as follows. First, rules
containing non-terminals (A + A for A in the example) are
examined. A coin is flipped to decide whether or not to add
this rule to the random rules for A in the new grammar. If the
rule is added, each non-terminal within the rule is examined
and either kept or replaced with a different (potentially new)
non-terminal of the same type. We add at least one terminal
rule for each non-terminal to ensure that the random grammar
is well defined. Those two steps are repeated for each original
and new non-terminal. The procedure is forced to terminate by
making the probability of adding new non-terminals inversely
proportional to the number of existing non-terminals. An
example of a random grammar that can be generated from
the grammar above is:

A → x | A1 +A2 A1 → 1 | A2 +A3

A2 → x | y | A1 +A A3 → x | A1 +A3

0 500 1,000 1,500 2,000

10−2

10−1

100
101
102
103

Tests solved

Ti
m

e
(s

ec
s)

cvc4-enum cvc4-rcons cvc5-enum
cvc5-match cvc5-rcons EUSolver

Fig. 2. Cactus plot comparing performance of solvers on crafted benchmarks.

Results: The results presented in Table I demonstrate a
marked superiority of our new implementation compared to
other solver configurations. Specifically, cvc5-rcons was able
to successfully solve 846 benchmarks that were not solved by
any other configuration. Conversely, only 44 benchmarks were
solved by other configurations but not by cvc5-rcons. This
disparity becomes even more pronounced when comparing
cvc5-rcons against individual configurations, such as 1,334
vs. 22 uniquely solved benchmarks for cvc5-enum and 1,256
vs. 33 for EUSolver.

Furthermore, our rcons procedure consistently exhibits
faster performance when solving commonly solved bench-
marks. This is particularly pronounced in the case of bit-
vector benchmarks, where significant speedups of one order
of magnitude are observed (16, 17, and 74 times faster than

Solver\Fragment General (877)

cvc4-enum 438
cvc4-rcons 205
cvc5-enum 672
cvc5-match 82
cvc5-rcons 721
EUSolver 640

TABLE II
THE TABLE SHOWS THE NUMBER OF SYGUS 2019 COMPETITION

BENCHMARKS SOLVED BY EACH SOLVER CONFIGURATION.

EUSolver, cvc4-rcons, and cvc5-enum respectively). While
more modest, still significant speedups are observed in the
theories of integers (up to 21 times) and strings (up to 13
times), this is largely due to the other solvers timing out on
most benchmarks in those fragments. The cactus plot presented
in Figure 2 provides a summary of the results.

The number of benchmarks solved by cvc5-match is negli-
gible when compared to that of the other configurations. This
result shows that relying solely on the patterns provided in the
grammar is not effective and generating new patterns through
enumeration is critical for the success of rcons.

B. SyGuS Competition Benchmarks

We also evaluated rcons on a subset of the SyGuS bench-
marks [20], a set of 877 benchmarks used in previous SyGuS
competitions [21], [22], [12], [13], which come from a variety
of user applications. The subset contains only SyGuS solution
fitting problems, the focus of rcons.

The results are shown in Table II and Figure 3. Again,
cvc5-rcons outperformed the competition. In particular, it
managed to solve 49 and 81 more benchmarks than cvc5-
enum and EUSolver, respectively. Overall, cvc5-rcons solved
42 benchmarks that were not solved by any other solver.

The cactus plot from Figure 3 provides further evidence
of the robustness of our approach with respect to previous
solutions. In particular, the graph shows that a previous
approach for matching and enumeration (cvc4-rcons) is able to
solve many benchmarks quickly, but is eventually eclipsed in
performance by cvc4-enum. In contrast, cvc5-rcons solves an
even larger percentage of benchmarks quickly and continues to
compete with cvc5-enum for the entire 30 minute timeout. We
note that cvc5-enum performs well in this set of benchmarks
because 66% of it consists of circuit synthesis problems, which
are not well-suited for unification and matching approaches.
Nevertheless, cvc5-rcons still surpasses cvc5-enum by solving
25 additional problems in this category.

C. Key Insights

Our analysis reveals two factors that have a significant
impact on the performance of rcons across both benchmark
categories.

The first significant factor concerns the extent of rewrites
supported by a particular theory. The presence of an increased
number of rewrite rules often allows rcons to generate solu-
tions that markedly differ from those produced by enumerative

196

0 200 400 600

10−2

10−1

100
101
102
103

Tests solved

Ti
m

e
(s

ec
s)

cvc4-enum cvc4-rcons cvc5-enum
cvc5-match cvc5-rcons EUSolver

Fig. 3. Cactus plot comparing performance of solvers on SyGuS Competition
benchmarks.

Parameter General (877)

0.5 643
0.9 616
0.99 634
0.999 643
0.9999 721
0.99999 718

TABLE III
THE TABLE SHOWS THE NUMBER OF SYGUS 2019 COMPETITION

BENCHMARKS SOLVED BY CVC5-RCONS WITH DIFFERENT PARAMETERS.

approaches. For instance, within Table I, we observe that cvc5-
rcons outperforms alternative solver configurations in the bit-
vector benchmarks. This enhanced performance is primarily
attributed to the prevalence of rewrite rules within this theory.
Conversely, when dealing with circuit synthesis benchmarks,
where meaningful boolean rewrite rules are lacking, cvc5-
rcons exhibits only marginal improvements over cvc5-enum,
as it frequently converges to solutions identical to those found
by cvc5-enum.

The second significant factor revolves around the number
of patterns employed. The core principle guiding rcons is
to mitigate the constraints imposed by the provided gram-
mar rules by producing patterns that offer greater flexibility
for matching purposes. Nonetheless, an excessive number
of patterns can lead to extended durations in the match
phase, thereby degrading overall performance. Our approach
involves initially generating a substantial number of patterns
and subsequently transitioning to enumerating ground terms.
The optimal number of patterns depends on the specific
grammar and theory. In our implementation, we leverage a
geometric distribution to regulate pattern generation. Table III
underscores the substantial impact of varying the geometric
distribution parameter on the performance of cvc5-rcons.

IV. CONCLUSION AND FUTURE WORK

We have presented a novel procedure for the SyGuS solution
fitting problem. The procedure enabled the development of
an advanced enumerative solver that significantly outperforms
other state-of-the-art SyGuS solvers. Our experimental results
show that our procedure finds solutions efficiently by deriving
complex patterns through enumeration, and using them for
matching. The procedure is not restricted to a particular

background theory and can be used in combination with any
theory solver that supports rewrites and equivalence checks.

We conjecture that the scalability of our procedure can
be leveraged in synthesis problems involving optimization
constraints. One class of problems is software optimization, as
applied in compilers for embedded SQL queries, linear algebra
operations, and circuit synthesis [23], [24], [25]. Current
approaches based on synthesis rely on enumerative techniques
to generate optimal programs, which does not scale well. A
more practical approach could be to first synthesize an initial
program, which may not be as efficient as the optimal one,
and then gradually optimize it by optimizing its subterms.
Although this does not always guarantee optimal performance,
it is much more scalable for larger programs. We plan to
investigate enhancements to the rcons procedure to handle
weighted grammars and support this use case.

REFERENCES

[1] R. Alur, M. M. K. Martin, M. Raghothaman, C. Stergiou, S. Tripakis,
and A. Udupa, “Synthesizing finite-state protocols from scenarios and
requirements,” in Hardware and Software: Verification and Testing - 10th
International Haifa Verification Conference, HVC 2014, Haifa, Israel,
November 18-20, 2014. Proceedings (E. Yahav, ed.), vol. 8855 of Lecture
Notes in Computer Science, pp. 75–91, Springer, 2014.

[2] A. Solar-Lezama, “Program sketching,” Int. J. Softw. Tools Technol.
Transf., vol. 15, no. 5-6, pp. 475–495, 2013.

[3] A. Solar-Lezama, L. Tancau, R. Bodík, S. A. Seshia, and V. A. Saraswat,
“Combinatorial sketching for finite programs,” in Proceedings of the
12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2006, San Jose, CA,
USA, October 21-25, 2006 (J. P. Shen and M. Martonosi, eds.), pp. 404–
415, ACM, 2006.

[4] S. Srivastava, S. Gulwani, and J. S. Foster, “Template-based program
verification and program synthesis,” Int. J. Softw. Tools Technol. Transf.,
vol. 15, no. 5-6, pp. 497–518, 2013.

[5] R. Alur, R. Bodík, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-
Gazit, P. Madhusudan, M. M. K. Martin, M. Raghothaman, S. Saha,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in Dependable Software Systems Engineering
(M. Irlbeck, D. A. Peled, and A. Pretschner, eds.), vol. 40 of NATO Sci-
ence for Peace and Security Series, D: Information and Communication
Security, pp. 1–25, IOS Press, 2015.

[6] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling enumerative program
synthesis via divide and conquer,” in Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part I (A. Legay and T. Margaria, eds.), vol. 10205
of Lecture Notes in Computer Science, pp. 319–336, 2017.

[7] K. Huang, X. Qiu, P. Shen, and Y. Wang, “Reconciling enumerative
and deductive program synthesis,” in Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, June 15-20, 2020 (A. F.
Donaldson and E. Torlak, eds.), pp. 1159–1174, ACM, 2020.

[8] S. Padhi, R. Sharma, and T. D. Millstein, “Data-driven precondition
inference with learned features,” in Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016
(C. Krintz and E. D. Berger, eds.), pp. 42–56, ACM, 2016.

[9] A. Reynolds, H. Barbosa, A. Nötzli, C. W. Barrett, and C. Tinelli,
“cvc4sy: Smart and fast term enumeration for syntax-guided synthesis,”
in Computer Aided Verification - 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II
(I. Dillig and S. Tasiran, eds.), vol. 11562 of Lecture Notes in Computer
Science, pp. 74–83, Springer, 2019.

[10] A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. W. Barrett,
“Counterexample-guided quantifier instantiation for synthesis in SMT,”
in Computer Aided Verification - 27th International Conference, CAV

197

2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II
(D. Kroening and C. S. Pasareanu, eds.), vol. 9207 of Lecture Notes in
Computer Science, pp. 198–216, Springer, 2015.

[11] R. Alur, P. Cerný, and A. Radhakrishna, “Synthesis through unification,”
in Computer Aided Verification - 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II
(D. Kroening and C. S. Pasareanu, eds.), vol. 9207 of Lecture Notes in
Computer Science, pp. 163–179, Springer, 2015.

[12] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama, “SyGuS-Comp
2016: Results and analysis,” in Proceedings Fifth Workshop on Synthesis,
SYNT@CAV 2016, Toronto, Canada, July 17-18, 2016 (R. Piskac and
R. Dimitrova, eds.), vol. 229 of EPTCS, pp. 178–202, 2016.

[13] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama, “SyGuS-Comp
2017: Results and analysis,” in Proceedings Sixth Workshop on Synthe-
sis, SYNT@CAV 2017, Heidelberg, Germany, 22nd July 2017 (D. Fisman
and S. Jacobs, eds.), vol. 260 of EPTCS, pp. 97–115, 2017.

[14] A. Reynolds, V. Kuncak, C. Tinelli, C. W. Barrett, and M. Deters,
“Refutation-based synthesis in SMT,” Formal Methods Syst. Des.,
vol. 55, no. 2, pp. 73–102, 2019.

[15] A. Nötzli, A. Reynolds, H. Barbosa, A. Niemetz, M. Preiner, C. W.
Barrett, and C. Tinelli, “Syntax-guided rewrite rule enumeration for SMT
solvers,” in Theory and Applications of Satisfiability Testing - SAT 2019
- 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12,
2019, Proceedings (M. Janota and I. Lynce, eds.), vol. 11628 of Lecture
Notes in Computer Science, pp. 279–297, Springer, 2019.

[16] Q. Hu, J. Breck, J. Cyphert, L. D’Antoni, and T. W. Reps, “Proving
unrealizability for syntax-guided synthesis,” in Computer Aided Verifi-
cation - 31st International Conference, CAV 2019, New York City, NY,
USA, July 15-18, 2019, Proceedings, Part I (I. Dillig and S. Tasiran,
eds.), vol. 11561 of Lecture Notes in Computer Science, pp. 335–352,
Springer, 2019.

[17] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings (G. Gopalakrishnan and S. Qadeer,
eds.), vol. 6806 of Lecture Notes in Computer Science, pp. 171–177,
Springer, 2011.

[18] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir,
M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar, “cvc5: A
versatile and industrial-strength SMT solver,” in Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Con-
ference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April
2-7, 2022, Proceedings, Part I (D. Fisman and G. Rosu, eds.), vol. 13243
of Lecture Notes in Computer Science, pp. 415–442, Springer, 2022.

[19] A. Stump, G. Sutcliffe, and C. Tinelli, “Starexec: A cross-community
infrastructure for logic solving,” in Automated Reasoning - 7th Interna-
tional Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings
(S. Demri, D. Kapur, and C. Weidenbach, eds.), vol. 8562 of Lecture
Notes in Computer Science, pp. 367–373, Springer, 2014.

[20] S. Padhi, A. Reynolds, A. Udupa, and E. Polgreen, “SyGuS bench-
marks.” https://github.com/SyGuS-Org/benchmarks, 2019.

[21] R. Alur, D. Fisman, S. Padhi, R. Singh, and A. Udupa, “SyGuS-Comp
2018: Results and analysis,” CoRR, vol. abs/1904.07146, 2019.

[22] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama, “Results and
analysis of SyGuS-Comp’15,” in Proceedings Fourth Workshop on Syn-
thesis, SYNT 2015, San Francisco, CA, USA, 18th July 2015 (P. Cerný,
V. Kuncak, and P. Madhusudan, eds.), vol. 202 of EPTCS, pp. 3–26,
2015.

[23] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis, vol. 2 of
The Kluwer International Series in Engineering and Computer Science.
Springer, 1984.

[24] S. Chaudhuri, “An overview of query optimization in relational systems,”
in Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 1-3, 1998, Seattle,
Washington, USA (A. O. Mendelzon and J. Paredaens, eds.), pp. 34–43,
ACM Press, 1998.

[25] M. Willsey, Y. R. Wang, O. Flatt, C. Nandi, P. Panchekha, and
Z. Tatlock, “egg: Easy, efficient, and extensible e-graphs,” CoRR,
vol. abs/2004.03082, 2020.

198

https://github.com/SyGuS-Org/benchmarks

Formal Methods in Computer-Aided Design 2023

Partitioning Strategies for Distributed SMT Solving

Amalee Wilson∗ , Andres Noetzli† , Andrew Reynolds‡ , Byron Cook§, Cesare Tinelli‡ , and Clark Barrett∗
∗Stanford University, Stanford, USA {amalee, barrett}@cs.stanford.edu

†Cubist, Inc., San Diego, USA n@cubist.dev
‡The University of Iowa, Iowa City, USA {andrew-reynolds, cesare-tinelli}@uiowa.edu

§Amazon Web Services, Seattle, USA byron@amazon.com

Abstract—For many users of Satisfiability Modulo Theo-
ries (SMT) solvers, the solver’s performance is the main bottle-
neck in their application. One promising approach for improving
performance is to leverage the increasing availability of parallel
and cloud computing. However, despite many efforts, the best
parallel approach to date consists of running a portfolio of
solvers, meaning that performance is still limited by the best
possible sequential performance. In this paper, we revisit divide-
and-conquer approaches to parallel SMT, in which a challenging
problem is partitioned into several subproblems. We introduce
several new partitioning strategies and evaluate their perfor-
mance, both alone as well as within portfolios, on a large set
of difficult SMT benchmarks. We show that hybrid portfolios
that include our new strategies can significantly outperform
traditional portfolios for parallel SMT.

I. INTRODUCTION

State-of-the-art Satisfiability Modulo Theories (SMT)
solvers such as Bitwuzla [1], CVC5 [2], MathSAT [3],
OpenSMT [4], Yices2 [5], and Z3 [6] are widely used as
reasoning engines in the context of verification [7], model
checking [8], security [9], synthesis [10], test case genera-
tion [11], scheduling [12], and optimization [13].

For many users of SMT solvers, the solver’s performance
is a bottleneck for their application, and so improving solver
performance continues to be a top priority for solver develop-
ers. Today, most of the aforementioned solvers remain single-
threaded, and performance improvements have primarily been
achieved through new solving techniques and heuristics. With
the increasing availability of CPUs with large numbers of
cores, high-performance computing (HPC), and cloud com-
puting, a natural question is whether these resources together
with parallel algorithms for SMT could be used to significantly

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research,
Department of Energy Computational Science Graduate Fellowship under
Award Number DE-SC0020347. Disclaimer: This report was prepared as an
account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or
any agency thereof. This work was also supported by an Amazon Research
Award and the Stanford Center for Automated Reasoning.

boost solver performance. Current research in this area can be
divided into two main directions: portfolio solving and divide-
and-conquer solving.

Portfolio solving is an approach in which multiple solvers
(or different configurations of a solver), attempt to solve the
same (or perturbed but equivalent) SMT problem in parallel
[14]. It is well-known that SMT solvers are highly sensi-
tive to small perturbations, which can dramatically improve
or degrade their performance. While efforts to reduce this
sensitivity are an interesting research direction, it is difficult
because of the inherent instability of the heuristics used and
the uneven nature of the search space. Portfolio solving aims
to leverage this sensitivity by sampling from the possible
configurations with the hope of finding one that performs well.
In fact, this strategy can produce significant speed-ups and
is currently considered the best way to leverage distributed
computing resources to improve performance.

Of course, naive portfolio solving is always limited by the
best possible sequential performance, meaning that beyond
some point, additional parallel resources do not help. Also,
portfolios are empirically ineffective for some classes of
benchmarks. For these reasons, it is appealing to pursue the
alternative “divide-and-conquer” strategy. In this approach, a
problem is partitioned into independent subproblems in such
a way that solving the subproblems provides a solution to the
original problem. The hope is that because the subproblems
have smaller search spaces, solving them in parallel will be
faster than solving the original problem. Divide-and-conquer
has the potential to dramatically outperform the best sequential
performance, but only if an effective partitioning algorithm can
be discovered. Such an algorithm has been elusive.

One promising direction is to adapt the cube-and-
conquer [15] approach that has been successfully applied to
the more basic problem of Boolean satisfiability (SAT). In
this approach, a partitioning heuristic is used to select a set
of n Boolean variables. Typically, a lookahead heuristic [16]
is used, which chooses variables that, when assigned, most
significantly prune the search space. These variables are used
to partition the problem into 2n independent subproblems,
which are then solved in parallel. Unfortunately, attempts to
adapt this approach for SMT have had limited success. In fact,
for some cases, it has been observed that more partitioning is
associated with larger, not smaller, runtimes [17].

In this paper, we introduce several new partitioning strate-

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 28 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0002-3315-815X
https://orcid.org/0000-0001-8669-0011
https://orcid.org/0000-0002-3529-8682
https://orcid.org/0000-0002-6726-775X
https://orcid.org/0000-0002-9522-3084
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_28
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_28
https://creativecommons.org/licenses/by/4.0/

gies which build on—but also go beyond—the basic cube-and-
conquer approach. In particular, we look at different ways of
combining sources for collecting atoms (the SMT version of
variables) with ways of using those atoms to create differ-
ent partition types. We evaluate an implementation of these
strategies in CVC5 on a diverse set of benchmarks from the
SMT-COMP cloud track and from previous work on parallel
SMT. We show that a portfolio of partitioning strategies
outperforms individual strategies, and we introduce the notion
of a graduated portfolio which performs particularly well. We
also show that hybrid portfolios combining partitioning and
traditional portfolio strategies perform even better. Finally,
we show that using a multijob scheduling algorithm for the
partitioning portfolio accelerates performance even more. We
also demonstrate that these approaches scale, i.e., we continue
to get additional speedup with more parallelism.

In summary, our contributions are the following:
• the introduction of several novel partitioning strategies

for parallel divide-and-conquer SMT solving;
• the introduction of graduated and hybrid partitioning

portfolio strategies; and
• an implementation and evaluation of these strategies on

a large set of benchmarks, including the first empirical
results demonstrating a parallel solving technique that
significantly outperforms a traditional non-partitioning
portfolio and continues to do so as the number of parti-
tions is increased.

II. PRELIMINARIES

We assume the standard many-sorted first-order logic setting
with the usual notions of signature, term, and interpretation.
A theory is a pair T = (Σ, I) where Σ is a signature and I
is a class of Σ-interpretations. For convenience, we assume
a fixed background theory T with signature Σ including
the Boolean sort BOOL. We further assume that all terms
are Σ-terms, that entailment (|=) is entailment modulo T ,
equivalence is equivalence modulo T , and that interpretations
are T -interpretations. An atom is a term of sort BOOL that
does not contain any proper sub-terms of sort BOOL. A literal
is either an atom or the negation of an atom. A cube is a
conjunction of literals. A formula φ is a term of sort BOOL
and is satisfiable (resp., unsatisfiable) if it is satisfied by some
(resp., no) interpretation in I. A formula whose negation is
unsatisfiable is valid.

In this paper, we discuss partitioning algorithms that make
use of the CDCL(T) framework employed by modern SMT
solvers. We give a brief overview of the CDCL(T) framework
and introduce the relevant terminology. Then, we describe how
partitioning can be used for parallel SMT solving.

CDCL(T)-based SMT solvers solve problems via the coop-
eration of a SAT solver and one or more theory solvers [18].
The role of the SAT solver in this framework is to build
a truth assignment M that satisfies the Boolean abstraction
of the problem. Typically, M is built incrementally, and
each time the SAT solver assigns a value to an atom, it

calls the theory solvers to check whether M is consistent
with T . Theory solvers return conflict clauses and optionally
new lemmas to the SAT solver. A conflict clause is a valid
disjunction of literals that is falsified by M , and a lemma is
any other heuristically-chosen valid formula. When lemmas
and conflict clauses are received by the SAT solver, they
are added to the original problem. The process of finding
satisfying assignments is repeated until one of two outcomes
is achieved: either M is a complete SAT assignment and
no conflicts are detected by the theory solvers, meaning the
problem is satisfiable; or, an unrecoverable conflict is derived,
and the problem is therefore unsatisfiable.

Parallel SMT Solving with Partitioning The satisfiability
of a formula ϕ can be determined in parallel by dividing it
into n independent subproblems ϕ1, . . ., ϕn. Provided the
disjunction ϕ1 ∨ · · · ∨ ϕn is equisatisfiable with ϕ, if any of
the subproblems are satisfiable, then the original problem is
satisfiable, and if all of the subproblems are unsatisfiable, then
the original problem is unsatisfiable. In this simple scenario,
no synchronization is necessary during solving, because the
subproblems are independent.

A partitioning strategy constructs subproblems ϕi of the
form ϕ∧ pi. We call each pi a partitioning formula and refer
to each subproblem as a partition. Though not required for
correctness, it is generally desirable for the partitions to be
disjoint (i.e., for each i ̸= j, the formula ϕ ∧ pi ∧ pj is
unsatisfiable) to avoid performing duplicate work. In the cube-
and-conquer partitioning strategy, a set of N atoms is selected,
and each of the 2N possible cubes using these atoms is used
as a partitioning formula, resulting in 2N partitions. Scatter-
ing [19] is an alternative strategy which differs from cube-
and-conquer in that it creates partitioning formulas that are not
cubes. Instead, scattering produces a series of N partitioning
formulas as follows. The first partitioning formula is some
cube C1. The second is ¬(C1)∧C2 for some new cube C2. The
next is ¬C1∧¬C2∧C3 for a new cube C3, and so on. The N th

partitioning formula is simply ¬C1∧· · ·∧¬CN−1. Note that by
construction, the partitioning formulas are disjoint. However,
there is considerable freedom in how the cubes are chosen.

III. RELATED WORK

As mentioned, much of the existing research literature on
parallel and distributed SMT solving focuses on portfolios.
A portfolio consists of multiple solver instances running in
parallel, each of which attempts to solve the same problem.
The instance that finishes first produces the result and ends
the portfolio run. Each instance differs from the others in
some way: a different solver or configuration is used, or
the problem has been perturbed in some equisatisfiable way.
Some portfolio frameworks enhance this basic strategy by
sharing information (e.g., learned lemmas or clauses) among
the solver instances running in parallel. Z3 was one of the
first solvers to support portfolio solving with sharing [14].
SMTS [20] is a parallel framework that also supports port-
folio solving with sharing [21]. In fact, SMTS implements

200

the parallelization tree formalism [22] [23], which involves
recursively combining both partitioning and portfolio solving.
Our work mainly explores partitioning. We focus on finding
specific effective partitioning strategies, which could then be
integrated into a framework such as SMTS. Interestingly, the
two approaches (portfolio solving and partitioning) can be
effectively combined as observed in [20] and as we discuss
in Section V. Note that we do not (yet) consider information
sharing, as this would add another layer of complexity, and
there is enough to understand without it.

There is also previous work on partitioning strategies. Cube-
and-conquer [15] and other types of splitting [24] have
been successfully applied to SAT problems, but there is no
consensus on how these approaches should be lifted to the
SMT context. OpenSMT2 supports two different lookahead
strategies for creating cubes in a cube-and-conquer-like par-
titioning strategy [17]. One is based on the global number
of free atoms, and the other is based on the number of
unassigned atoms in the clauses. Previous evaluations using
these strategies were mixed, with the strategies performing
well on some benchmarks but not on others. OpenSMT2 also
supports a scattering strategy that was originally developed for
solving SAT problems [19]. In their implementation, each cube
is obtained by taking atoms from the decisions made up along
a particular search branch during a run of OpenSMT2. The
number of literals in each cube varies according to a heuristic.
Details can be found in [19], [21], [23]. When the scattering
partitioning strategy was compared to portfolio solving in [21],
they found that portfolio performed better on quantifier-free
linear real arithmetic (QF LRA) benchmarks, especially on
unsat problems. We compare all of the OpenSMT2 strategies
with our own strategies in our evaluation.

PBoolector [25], a parallel SMT solver built on top of the
Boolector SMT solver [26], uses a cube-and-conquer style
strategy for QF BV SMT formulas, with the goal of evaluating
whether lookahead methods work well in combination with
term-rewriting rules and bit-blasting techniques. On quantifier-
free bitvector (QF BV) benchmarks, PBoolector saw familiar
results: each configuration of their solver performed well on a
subset of the benchmarks while performing poorly on others.
Because of our focus on partitioning strategies rather than
implementations and the similarity of its partitioning strategy
(lookahead-based) to that of OpenSMT2, we do not directly
compare with PBoolector.

Previous work on partitioning has also been limited in terms
of which SMT-LIB logics were supported: benchmarks over
quantifier-free uninterpreted functions (QF UF) were used
in [23], QF BV benchmarks in [25], and both QF UF and
QF LRA benchmarks in [17], [20], [21]. We are the first to
implement a general-purpose partitioning strategy that works
for all SMT-LIB logics. We comment on which types of
problems are well-suited for our partitioning algorithms in
Section V.

IV. PARTITIONING

In this section, we introduce a set of partitioning strategies
parameterized in four dimensions: atom source, selection
heuristic, partition type, and partition timing. Pseudocode for
partitioning based on these parameters is given in Algorithm 1.
More details on these parameters and their relationship to
Algorithm 1 are given in the following subsections, but briefly,
the atom source and selection heuristic specify what the
partitions are made of, the partition type specifies how the
partitions are made, and the partition timing specifies when
the partitions are made.

In all cases, partitions are made by invoking an instrumented
version of an SMT solver that calls Algorithm 1 periodically
during the solving process. We call this solver the partitioning
solver. By instrumenting an existing solver, our approach takes
advantage of well-tested infrastructure for parsing, preprocess-
ing, and reasoning about SMT problems. The first step in
Algorithm 1 is to check whether, according to the partition
timing heuristic (see Section IV-C), it is the right time to make
a partition. If not, nothing is done. Otherwise, a set of atoms
is collected from the specified source (see Section IV-A). If
an insufficient number of atoms is collected, again, nothing
is done. Otherwise, makePartitions is called. Note that the
behavior of makePartitions depends on the partition type (see
Section IV-B). If ptype is CUBE, then makePartitions will
emit all partitioning formulas and return true, and Algorithm 1
will not be called again. If ptype is SCATTER, then as long
as the number of partitinos generated so far is less than N−2,
makePartitions creates a single partitioning formula and
returns false. In this case, the partitioning solver also blocks
the part of the search space corresponding to the generated
partitioning formula by adding the negation of the cube part
of the partitioning formula as a lemma (called a blocking
lemma). The partitioning solver then continues to work on
solving the problem until its next call to Algorithm 1. If ptype
is SCATTER and the number of partitions generated is N−2,
then makePartitions creates the last 2 partitions (as described
in Sec. IV-B, below) and returns true.

It is possible that the partitioning solver actually solves
the problem. If the solver determines that the problem is
satisfiable, or if it finds that the problem is unsatisfiable
before any partitions have been made, then the problem has
been solved, and there is no need to continue or to solve
any partitioned formulas. However, if the partitioning solver
returns unsatisfiable after having emitted some partitions, then
these partitions still need to be solved. This is because of the
blocking lemmas that were added which prune the parts of
the search space (in the partitioning solver) covered by the
emitted partitions.

A. Atom Source and Selection Heuristics

There are two parameters for atom selection: atomSource
and atomSelHeur . The atomSource parameter describes
where the atoms should come from. We explore three different
sources of atoms for our partitioning strategies: the SAT heap,
which is a priority queue of Boolean variables in the SAT

201

Algorithm 1 Partitioning strategy pseudocode.
Input: N ≥ 2, cubeSize = log2(N)
Input: atomSource ∈ {HEAP, DECISION, CL}
Input: atomSelHeur ∈ {RAND, SPEC}
Input: ptype ∈ {CUBE, SCATTER}
Input: t1, t2 ≥ 0, tHeur ∈ {CHECK, TIME}
Output: returns true iff done partitioning

1: timeToPart ← isTimeToPartition(t1, t2, tHeur)
2: if timeToPart then
3: atoms ← collectAtoms(atomSource, atomSelHeur)
4: if atoms.size() ≥ cubeSize then
5: atoms.resize(cubeSize)
6: if makePartitions(ptype, atoms, N) then
7: return true
8: end if
9: end if

10: end if
11: return false

solver; the decision trail of the SAT solver, which contains
the decisions made by the SAT solver along its current search
branch; and conflict-or-lemma (CL) atoms, which are atoms
contained in the lemmas and conflict clauses sent from the
theory solver to the SAT solver. These sources of atoms
correspond to HEAP, DECISION, and CL in Algorithm 1, re-
spectively. The atomSelHeur parameter describes how atoms
should be selected from the available atoms in the source.
Every source supports selecting atoms at random (RAND in
Algorithm 1). The other option is to use a heuristic specific
to the source (SPEC). We describe these below. To guarantee
that partitions can be made quickly, each of the heuristics is
lightweight and does not rely on sophisticated or computation-
ally expensive score calculations.

As mentioned above, when atomSource is HEAP, the
source of atoms is an internal data structure in the SAT solver.
Typically, SAT solvers make decisions based on the activity
score of each variable. The activity of a variable is determined
by how often it appears in conflicts [27], and the variable
with the highest score is used when the SAT solver makes
decisions. When using HEAP as its source, the SPEC heuristic
simply chooses the cubeSize variables with the highest activity
scores. The rationale is that highly active variables may be
a good choice for helping shape partitions. Note that this
heuristic requires no additional computation by the partitioning
algorithm because the SAT solver already orders the variables
by their activity.

Variables that are good for SAT decisions may not always be
ideal for SMT partitions. For example, some high-activity vari-
ables may be closely related to other high-activity variables,
because they represent theory atoms that contain similar terms.
Ideally, however, variables used in partitions should be as
independent as possible, so that each partition has roughly the
same difficulty. The DECISION option attempts to address this
weakness. It uses the decision trail as a source of atoms. The
decision trail contains all the variables that have been decided

on along a particular branch of the search tree during the
solving process. The rationale is that variables in the decision
trail are, roughly speaking, more likely to be independent (for
example, if two variables entail each other, then deciding on
one will always propagate the other, so they cannot both be
in the decision trail at the same time). When selecting atoms
from the decision trail, the SPEC heuristic chooses the earliest
decisions in the trail. As before, this heuristic requires no
additional computation by the partitioning algorithm, because
the decisions are stored in the trail from least to most recent.

Finally, the CL option uses conflict clauses and lemmas
coming from theory solvers as the atom source. Intuitively,
atoms that appear in conflict clauses and lemmas are those that
are “contributing” in some way to the solution process. While
the appearance of an atom in a conflict clause is reflected in its
activity score, an appearance in a lemma has no effect on the
activity score. This is because when lemmas are generated,
they are simply added as additional clauses. The role of a
lemma is to help guide the search in a theory-specific way.
Thus, we expect that atoms appearing in lemmas may be
important. When selecting atoms from conflict clauses and
lemmas, the SPEC heuristic selects those atoms that occur
most frequently. These atoms are tracked as they are sent from
the theory solver to the SAT solver, and a counter is maintained
for each atom.

There are two additional issues to consider when selecting
atoms: the number of atoms to use for each partition and
filtering out unusable atoms. In Algorithm 1, we fix the number
of atoms per partition, cubeSize, to be log2(N) where N is the
number of requested partitions. However, as we discuss below,
for the SCATTER partition type, this is not necessary and
cubeSize could be set as an additional parameter. Regarding
filtering, because the construction of partitions is done by
appending a partitioning formula to the original formula,
anything appearing in the partitioning formula must make
sense in this context. In particular, if an atom contains some
symbol generated internally by the solver (i.e., not appearing
in the original problem), we filter that atom out. This filtering
is done during the collectAtoms routine.

B. Partition Type

We consider two ways of creating partitioning formulas
from the selected atoms. The first, the CUBE partition type,
follows the cube-and-conquer approach. The second, the
SCATTER partition type, uses a scattering strategy.

1) Cubes: The cube strategy requires log2(N) atoms to be
selected during the atom selection phase. Once the required
number of atoms has been collected, they are immediately used
to create N mutually exclusive cubes. The partitioning solver
then terminates. These cubes, C1 through C2n , correspond to
each possible conjunction of atoms that can be created from
the selected atoms. For example, if the two atoms selected are
x1 and x2, then the following partitions would be emitted:
C1 = x1 ∧ x2, C2 = ¬x1 ∧ x2, C3 = x1 ∧ ¬x2, and C4 =
¬x1 ∧ ¬x2.

202

2) Scattering: Scattering is a dynamic strategy for creating
partitioning formulas. When the partition type is SCATTER,
Algorithm 1 produces only a single partition with each call to
makePartitions . The partitioning formula constructed at each
call takes the current cube and conjoins it with the negation
of previous cubes, as described in Section II. After each
generated partition, the negation of the partitioning formula
is added as a lemma to the partitioning solver, to ensure that
it explores a different part of the search space during the rest
of its run.

Note that cubeSize does not have to be equal to log2(N)
when using scattering. Indeed, it can even vary from partition
to partition. In [23], a particular strategy is suggested that does
vary the cubeSize across partitions. In this paper, we simply
use log2(N), for the cubeSize.

Note that it takes at least N − 1 calls to Algorithm 1
to compute N partitions with the SCATTER partition type.
The final partition is emitted immediately after the N − 1st

partition, because the final partition is simply the negation of
all previously used cubes.

C. Partition Timing

Partition timing specifies when partitions should be made.
There is a trade-off between collecting sufficient information
to create good partitions and avoiding spending unnecessary
time on partitioning that could have been used for solving.
Algorithm 1 supports two different kinds of partition tim-
ing. The first, when tHeur is CHECK, simply counts the
number of times that Algorithm 1 has been called (in our
implementation, this is done during the check phase as we
explain in Section V below). The second possibility is TIME,
which simply measures the amount of time that has passed.
In Algorithm 1, two inputs, t1 and t2, are used for timing.
The t1 parameter determines how long to wait (either number
of checks or time in seconds) before the partitioning solver
creates any partitions. The idea of this parameter is to allow
the partitioning solver to make some progress and get into an
interesting state before starting partitioning. The t2 parameter
determines how long (again in either checks or seconds) to
wait between each pair of partitions. Note that for the CUBE
partition type, t2 is irrelevant, because all partitions are created
at once.

There is another trade-off between predictability of parti-
tioning time and predictability of partitioning formulas. When
counting checks, the partitioning formulas are deterministic
(as long as the execution of the SMT solver is deterministic).
When using time, however, there can be variation in the current
state of the solver at time t from one run the to next. Thus, it
may seem like check counting is preferable. The problem is
that the number of checks varies greatly from one problem
to the next. One SMT formula may trigger thousands of
checks in the solver in the first minute of solving, while
other SMT formulas have only a handful. Thus, for predictable
partitioning time (though less predictable partitions), it can be
better to use time instead of check counting to help ensure that

the time to create partitions is relatively stable across many
problems. We discuss this further in Section V-A, below.

V. EVALUATION OF PARTITIONING STRATEGIES

We instrumented CVC5 to be a partitioning solver by (i)
implementing Algorithm 1 in CVC5; and (ii) having CVC5
call Algorithm 1 after each decision made by its internal SAT
solver. Below, we report on several sets of experiments with
this instrumented version of CVC5. We ran all experiments
reported here on a cluster with 26 nodes running Ubuntu 20.04
LTS, each with 128 GB of RAM, and two Intel Xeon CPU
E5-2620 v4 CPUs with 8 cores per CPU. Although both CVC5
and OpenSMT2 are used as partitioning solvers, all partitions,
scrambles, and original formulas are solved using CVC5.

In our evaluation, we compare several configurations of
our CVC5-based partitioning solver and an OpenSMT2-based
partitioning solver on a set of benchmarks drawn from the
cloud track of the 2022 edition of SMT-COMP [28], the SMT-
LIB QF LRA benchmarks, and the SMT-LIB QF UF bench-
marks [29]. The SMT-COMP cloud benchmarks were selected
by the SMT-COMP organizers to be challenge problems for
parallel solving and are thus a good target for this work. The
QF LRA and QF UF benchmarks have been the subject of
previous studies on parallel solving [17], [23], [21].

We exclude benchmarks based on several criteria. First,
we exclude any benchmark with quantifiers. The challenges
for quantified benchmarks are typically the result of too
many possible quantifier instantiations. In contrast, partitioning
targets challenges stemming from large Boolean search spaces.
Second, we exclude benchmarks that are solved in less than
600 seconds by the sequential version of CVC5. This is
simply to focus on problems that are challenging for sequential
solvers. Third, if no partitions can be made by the partitioning
solver, the benchmark is excluded. This can happen if the
SAT solver makes no or almost no decisions and Algorithm
1 is not called enough times to create partitions. We consider
such benchmarks poor candidates for solving via partitioning.
Finally, benchmarks that are solved during partitioning by any
partitioning solver are excluded, again because we consider
them easy, and furthermore, our aim is to compare partitioning
strategies, not partitioning solvers. One way that a problem can
be solved during partitioning if it is trivial and is solved before
any calls to makePartitions in Algorithm 1. The other way a
problem can be solved during partitioning can only happen if
the SCATTER partitioning strategy is used and the problem is
satisfiable. In this case, it is possible that after some number
of calls to makePartitions , each of which blocks some part
of the search space, the partitioning solver stumbles upon a
satisfying solution before the next call to makePartitions .
After these filters are applied, we are left with 214 challenging
benchmarks in 5 SMT-LIB logics: QF LRA (139), QF IDL
(48), QF LIA (16), QF UF (7), and QF RDL (4).

To measure the performance of a particular partitioning
strategy on a given benchmark, we first measure the time to
partition it. Then, we run each partition on the cluster (with a
maximum of 16 jobs per node, i.e., one per core, and 8 GB

203

TABLE I
EFFECT OF WAIT TIMES ON CUBING OF 125 QF LRA BENCHMARKS

Time Solved PAR-2
1s 40 223636
3s 42 219187
15s 42 219313

of memory per job) using the CVC5 SMT-COMP 2022 script
(which runs a theory-dependent sequential instance of CVC5)
and record the time. Then, we record the total solving time for
the benchmark as the sum of the partitioning time and either
the maximum time required to solve any of its partitions, if
the benchmark is unsatisfiable, or the minimum runtime of the
satisfiable partitions, if the benchmark is satisfiable. Note that
this simulates a parallel run in which all of the partitions are
run simultaneously on separate cores.

To evaluate a partitioning strategy on the set of benchmarks
as a whole, we use the PAR-2 score [30], which is also used
for scoring the annual SAT competition. The PAR-2 score is
the sum of the runtimes for all solved instances plus twice the
timeout value multiplied by the number of unsolved instances.
The lower the PAR-2 score is, the better. We use the PAR-
2 score because it provides a single metric that incorporates
both runtime and number of benchmarks solved. In this work,
we are primarily interested in the scalability of the different
partitioning strategies, so most experiments measure the PAR-
2 score for different numbers of partitions. We use a 20 minute
timeout when solving partitions, which includes both the time
to partition and the time to solve.

In the following subsections we explore a broad design
space and, in the spirit of transparency, we chose to share the
outcomes of both successful and less successful partitioning
strategies. We chose to share as much as possible in an effort
to both document our process and enrich future research in
this area. When first developing our partitioning strategies,
we tested them on 23 problems, a little more than 10% of the
total problems in our set of challenge benchmarks. It was not
until after extensive testing on this smaller subset that we ran
the full set of 214 benchmarks with our various strategies to
produce the data for the graphs that follow.

A. Partitioning Strategies

We first explore the different partitioning strategies in the
parameter space of Algorithm 1, starting with the partition
timing parameter.

First, we measure the impact of t1 when using TIME for
tHeur . In general, we find that if the value of t1 is too small,
then the partitioning solver does not have enough time to
provide good atoms, but beyond a threshold there is little
additional benefit. To demonstrate this, Table I shows a set
of results using different values of t1. For these runs, we set
atomSource to HEAP, ptype to CUBE, and atomSelHeur to
SPEC, and run on a subset of benchmarks consisting of 125
QF LRA benchmarks. We see that with t1 = 3, we are able to
solve more problems and obtain a better PAR-2 score than with

t1 = 1. At the same time, increasing t1 to 15 does not result in
any additional problems being solved and has a small negative
effect on the PAR-2 score. Additional experiments (not shown
here) using other parameter settings and benchmarks show
similar results. Based on these observations, we use t1 = 3
when using TIME.

Next, we compare tHeur = CHECK and tHeur = TIME.
For these experiments, we use ptype = SCATTER (since
otherwise t2 plays no role) and atomSelHeur = SPEC. For
tHeur = TIME, we use t1 = 3 and t2 = 0.1, so the first call
to Algorithm 1 is after three seconds, and each subsequent
call is after an additional tenth of a second. For the CHECK
runs, we use t1 = 1 and t2 = 1, so the first call is after
the first check, and each subsequent call is after the next
check. Figure 1 shows the results1 of our experiments for
different atom sources and partition sizes. This figure shows
that when atomSource is DECISION or HEAP, TIME clearly
outperforms CHECK. With CL, the results are not conclusive,
with both strategies performing similarly.

One likely reason for the poor performance of CHECK in
the first two cases is that with t1 = 1 we start partitioning
on the first call to Algorithm 1. As we mentioned above, it is
usually better to wait some time before partitioning. However,
there is a tremendous amount of variation in the number of
calls to Algorithm 1 across different benchmarks. This makes
it difficult to find values other than 1 for t1 and t2 that work
consistently across all benchmarks. On the other hand, using
TIME with t1 = 3 and t2 = .1 tends to perform well across
different benchmarks and parameters. For these reasons, we
use these parameters in the remaining experiments.

It is worth noting that the disadvantage of nondeterminism
when using TIME remains. In future work, we hope to find
a way to get the consistency of TIME while also having
deterministic results.

We now turn our attention to the other parameters of
Algorithm 1. Figure 2 shows the six possible strategies us-
ing atomSelHeur = SPEC compared with a random strat-
egy (TIME-HEAP-CUBE-SPEC) as a baseline (other random
strategies are similar). The HEAP strategies consistently per-
form worse than the random strategy, which suggests that
relying on the SAT solver’s priority queue heuristic is not
particularly effective for making partitions.

The DECISION strategies, on the other hand, both per-
form quite well, beating the random strategy most of the
time. This suggests that selecting the earliest decisions
from the decision trail is a useful heuristic when select-
ing atoms for partitioning. The CL strategies are mixed.
The CUBE variant performs favorably compared to random,
while the SCATTER variant generally does not. Based on
these results, we choose three configurations as our top
partitioning strategies, and refer to them in the following
as decision-cube (TIME-DECISION-CUBE-SPEC), decision-
scatter (TIME-DECISION-SCATTER-SPEC), and cl-cube
(TIME-CL-CUBE-SPEC).

1These and subsequent experiments are on the full set of 214 benchmarks.

204

(a) Decision Scattering (b) Heap Scattering (c) CL Scattering

Fig. 1. Comparison of using TIME vs CHECK for tHeur when scattering.

Fig. 2. Various partitioning strategies vs a random strategy.

Clearly, there are many more possible strategies and variants
that could be explored. We expect this to be a fruitful direction
for future work.

B. Comparison to OpenSMT2 Partitioning Strategies

The most extensive studies on partitioning strategies in pre-
vious work are from the OpenSMT2 team. We next compare
our best partitioning strategies, decision-cube, cl-cube, and
decision-scatter, to the three partitioning strategies available
in OpenSMT2. Recall that none of the selected benchmarks
are solved during partitioning, so this is a comparison only
of the partitioning strategies, not the solvers. Figure 3 shows
the results of this comparison. The two lookahead partitioning
strategies in OpenSMT2 perform worse than our three best
strategies. This is partly because they are slow and often time
out during partitioning. On the other hand, the OpenSMT2
scattering strategy performs very well. In particular, their
scattering strategy outperforms our individual partitioning
strategies, though decision-cube is quite close. Interestingly,
the OpenSMT2 scattering strategy also uses decisions as its
source of atoms, making it very similar to our decision-scatter
strategy. However, they have a few additional parameters that
have been fine-tuned. For example, they vary the number of
literals per partitioning formula, something that our strategy
does not do. This suggests that our decision-scatter strategy
could likely be improved in a similar way. In the spirit of
“if you can’t beat them, join them,” we replace our decision-
scatter strategy with the OpenSMT2 scattering strategy in our

Fig. 3. CVC5 partitioning strategies vs OpenSMT2 partitioning strategies

list of top performing strategies going forward and refer to it
as osmt-scatter.

VI. PORTFOLIOS OF PARTITIONING STRATEGIES

One consistent observation in this and previous work is that
there is a lot of variation in how well strategies work across
benchmarks. Every strategy fails on some benchmarks and
works well on others. Given the success of portfolio solving in
general, a natural question is whether a portfolio of partition-
ing strategies can outperform individual partitioning strategies.
It is not immediately obvious whether this should be true,
since, to be fair, we require that partitioning portfolios divide
up their partitioning budget. For example, we would compare
a partitioning portfolio using 2 strategies, each creating 16
partitions to an individual strategy that can use 32 partitions.
We explore four different types of portfolios, each with a
common goal of maximizing the diversity of solving strategies
while minimizing the number of solver instances.

A. Types of Portfolios of Partitioning Strategies

The first type of portfolio is a partitioning portfolio where
multiple strategies are used to create the same number of
partitions as a single strategy. The goal of using this type
of portfolio is to allow for different partitioning strategies to
compensate for the weaknesses of the other strategies included
in the partitioning portfolio. Figure 4a shows the results
of using two different partitioning portfolios and compares
them to the best individual strategy, osmt-scatter. Portfolio 1
creates N/2 partitions with each of decision-cube and cl-cube,

205

(a) Partitioning Portfolios (b) Graduated Portfolio (c) Graduated Portfolio Comparisons

Fig. 4. Comparison of various partitioning portfolios.

and the results demonstrate that a portfolio of two (worse)
strategies can do better than the best individual strategy.
Portfolio 2 creates N/2 partitions with decision-cube, N/4
partitions with cl-cube, and N/4 partitions with osmt-scatter
and demonstrates that adding more variety in the portfolio
can result in even better performance. These results suggest
that the orthogonality of the individual strategies is high and
that adding more strategies at the expense of the number of
partitions can be beneficial.

The next type of portfolio is a graduated portfolio which
takes the above idea of maximizing diversity a bit further.
Since diverse strategies are helpful, we can also diversify
within a single strategy by instantiating that strategy several
times, each time using a different number of partitions. To con-
struct a graduated portfolio with a single partitioning strategy,
the strategy is used to create 2 partitions, then it is used to
create 4 partitions, and so on until the total desired number
of partitions is nearly met (powers of 2 may not perfectly
add up to the total number of desired partitions) but never
exceeded. To visualize the value of graduated partitioning,
Figure 4b compares the stand-alone osmt-scatter strategy with
a graduated partitioning portfolio version of the same strategy.
To see the difference, note that for N = 16, the stand-alone
strategy runs osmt-scatter once to make 16 partitions, whereas
the graduated portfolio runs osmt-scatter three times, making
2, 4, and 8 partitions, respectively. Notice that although the
graduated portfolio uses two fewer partitions for every plotted
value of N , it clearly outperforms the stand-alone strategy,
especially as the number of partitions is increased. Strategies
with the fewest partitions require the least resources, so in
some sense, they are providing the greatest diversity at the
lowest cost. Thus, we use graduated portfolios to achieve the
most diversity at the lowest cost.

Notice that the above two strategies can be combined into a
third type of portfolio called a graduated partitioning portfo-
lio. A graduated partitioning portfolio based on m individual
partitioning strategies is constructed as follows. First, take each
of the m individual strategies and parameterize them by N for
values of N that are powers of 2, e.g., osmt-scatter-2 is the
strategy that uses osmt-scatter to make 2 partitions, and cl-
cube-64 is the strategy that uses cl-cube to make 64 partitions.
Now, rank all of the strategies, with smaller values of N being
ranked higher. To break ties when m > 1, use a ranking on

individual strategies (for our top performing strategies, we rank
osmt-scatter-N higher than decision-cube-N higher than cl-
cube-N). Finally, to obtain the graduated portfolio strategy
for N partitions, simply collect strategies from this list, in
order, until it is no longer possible to add strategies without
exceeding N . For example, for N = 32 and m = 3, we would
choose all of the 2-partition strategies, all of the 4-partition
strategies, and the osmt-scatter-8 strategy, for a total of 26
partitions. We do not attempt to use the remaining 6 partitions
in our “partition budget.”

We experimented with all possible combinations of m =
1, 2, 3 and our top performing strategies. Figure 4c shows
selected results (and also the best strategies from Figures 3,
4a and 4b for comparison). Portfolio 3 is the graduated par-
titioning portfolio with m = 3 using all three top-performing
strategies: osmt-scatter, decision-cube, and cl-cube. Portfolio 3
outperforms portfolio 2 for large numbers of cores. However,
the strongest portfolio uses m = 2 and only combines osmt-
scatter and decision-cube (in this case, it appears that the
diversity of cl-cube does not compensate for the lack of
additional versions of the other two strategies). We refer
to this as the “recommended portfolio.” Our recommended
portfolio strategy has consistently better performance than all
other strategies we have considered, even though it uses fewer
partitions than the other strategies.

The fourth and final type of portfolio we refer to as a
hybrid portfolio. This type of portfolio combines a traditional
portfolio and a portfolio of partitioning strategies. For this
approach, given N cores, we simply run a recommended
portfolio of size N/2 and a traditional portfolio with the re-
maining cores. Once again, the goal is to diversify the solving
approaches while keeping the number of solver instances as
low as possible. Results for this approach are discussed in the
following section.

B. Comparison to a Traditional Portfolio

Finally, we conclude by trying to address a very practical
question. Given our results, how should one go about using
N -way parallelism to solve a challenging SMT problem? In
particular, how do the best partitioning approaches compare
with traditional portfolio approaches. To represent the latter,
we use a scrambling portfolio. Given a problem and a value of
N , we construct a scrambling portfolio of size N by running
N versions of the problem: the original problem plus N − 1

206

Fig. 5. Comparison of different portfolios. Hybrid and recommended portfo-
lios are graduated.

TABLE II
NUMBER OF PROBLEMS SOLVED WITH 256 CORES

Strategy Solved (out of 214)
sequential 54
scrambling portfolio 107
recommended portfolio 109
hybrid 111
recommended portfolio (multijob) 112
hybrid (multijob) 114

copies obtained using the SMT-COMP scrambler [31] with
different random seeds. The runtime for the scrambling port-
folio on the problem is then the minimum of these runtimes
(we include the time required to scramble in the individual
runtimes, but this is typically negligible).

Figure 5 compares, for different values of N , a scrambling
portfolio with our recommended portfolio, based on a simu-
lation where each partition or scramble is run on a separate
core in parallel (it also includes the performance of a single
sequential run for comparison). We see that the scrambling
portfolio does indeed outperform the recommended partition-
ing portfolio for N < 32, but the recommended portfolio wins
as the number of cores gets larger.

The result of using the hybrid portfolio is shown as “hybrid”
in Figure 5. Recall that for this approach, half the cores are
used to run a recommended portfolio while the other half run a
scrambling portfolio. Remarkably, the hybrid strategy clearly
outperforms the scrambling portfolio, even for small numbers
of cores. We note that, to our knowledge, this is the first
time any parallel strategy has been shown to be consistently
superior to a traditional portfolio.

Finally, there is one more optimization that we can apply:
we can use the multijob strategy referenced in the original
cube-and-conquer paper [15]. The key idea is that because
partitions can be very uneven (in runtime), using one core per
partition means that many cores (the ones that get assigned
easy partitions) will be idle most of the time. The multijob
strategy simply consists of using many more partitions than
cores, and then scheduling the partitions as cores become
available. This automatically load-balances the partitions and
results in being able to include the results from more par-
titions without much additional (wall-clock) runtime. This

optimization always improves the performance of partitioning
approaches, but it has no effect on traditional portfolios since
a traditional portfolio cannot benefit from load-balancing.
Consider a problem that is unsolved by the (non-multijob)
hybrid strategy. For this problem to be unsolved, all scrambling
jobs must time out and at least one of the partitions for each
partitioning strategy must also time out. We observe that, in
practice, many of the partitions finish quickly, meaning that
the resources allocated to those partitions are idle while the
other jobs run to timeout. The multijob strategy simply uses
these additional available resources to run more partitioning
strategies.

The recommended portfolio (multijob) line shows the result
of simulating a recommended portfolio that includes all ver-
sions of osmt-scatter and decision-cube (from 2 up to 128) for
different numbers of cores. We schedule the smaller partitions
first, and no core is allowed to do more than 20 minutes
of work. The hybrid (multijob) shows the results of using
N/2 cores for a scrambling portfolio and running the multijob
scheduling algorithm on the other N/2 cores. The best strategy
is hybrid (multijob) and with 256 cores, it improves the PAR-2
score by 34% (compared to a single sequential solver). Table
II shows the total number of problems solved by each strategy
when 256 cores are used. Note that each additional problem
solved represents a significant step forward as these are very
difficult problems unsolved by the previous techniques. These
results show that in order to achieve robustness and consistent
performance improvement, advanced portfolio techniques that
incorporate multiple partitioning strategies should be preferen-
tially used over more fragile individual partitioning strategies.

VII. CONCLUSION

We have shown that a portfolio of partitioning strategies,
hybrid portfolios in particular, can outperform traditional
portfolio solving for a range of SMT problems. These new
strategies are a step toward better utilization of HPC and
cloud systems for solving SMT problems. Additionally, we
show that these new portfolio techniques perform much better
than individual partitioning strategies and even manage to
outperform a traditional portfolio.

There are many promising directions for future work that
we are looking forward to investigating. For individual par-
titioning strategies, we plan to systematically explore the
cubeSize parameter for SCATTER, improve our decision-
scatter algorithm to work similar to OpenSMT2’s version,
explore additional atom selection heuristics, and find a way to
achieve the consistency of TIME for tHeur without sacrificing
determinism. We also plan to implement information sharing,
explore recursive partitioning, push the multijob optimization
further, and expand the benchmarks for evaluation, including
other quantifier-free logics and quantified benchmarks.

REFERENCES

[1] A. Niemetz and M. Preiner, “Bitwuzla at the SMT-COMP 2020,”
CoRR, vol. abs/2006.01621, 2020. [Online]. Available: https://arxiv.org/
abs/2006.01621

207

https://arxiv.org/abs/2006.01621
https://arxiv.org/abs/2006.01621

[2] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt,
M. Mann, A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli,
A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and
Y. Zohar, “cvc5: A versatile and industrial-strength SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems
- 28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I, ser. Lecture Notes in Computer Science, D. Fisman and G. Rosu,
Eds., vol. 13243. Springer, 2022, pp. 415–442. [Online]. Available:
https://doi.org/10.1007/978-3-030-99524-9 24

[3] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani, “The Math-
SAT5 SMT Solver,” in Proceedings of TACAS, ser. LNCS, N. Piterman
and S. Smolka, Eds., vol. 7795. Springer, 2013.

[4] A. E. J. Hyvärinen, M. Marescotti, L. Alt, and N. Sharygina,
“OpenSMT2: An SMT solver for multi-core and cloud computing,”
2016.

[5] B. Dutertre, “Yices 2.2,” in Computer-Aided Verification (CAV’2014),
ser. Lecture Notes in Computer Science, A. Biere and R. Bloem, Eds.,
vol. 8559. Springer, Jul 2014, p. 737–744.

[6] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, p. 337–340.

[7] L. Cordeiro and B. Fischer, “Verifying multi-threaded software using
SMT-based context-bounded model checking,” in Proceedings of the
33rd International Conference on Software Engineering, ser. ICSE ’11.
New York, NY, USA: Association for Computing Machinery, 2011, p.
331–340. [Online]. Available: https://doi-org.stanford.idm.oclc.org/10.
1145/1985793.1985839

[8] A. Komuravelli, A. Gurfinkel, and S. Chaki, “SMT-based model check-
ing for recursive programs,” Formal Methods in System Design, vol. 48,
pp. 175–205, 2014.

[9] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and
S. Maffeis, “Refinement types for secure implementations,” ACM Trans.
Program. Lang. Syst., vol. 33, no. 2, feb 2011. [Online]. Available:
https://doi-org.stanford.idm.oclc.org/10.1145/1890028.1890031

[10] A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. Barrett,
“Counterexample-guided quantifier instantiation for synthesis in smt,”
in Computer Aided Verification, D. Kroening and C. S. Păsăreanu, Eds.
Cham: Springer International Publishing, 2015, pp. 198–216.

[11] J. Peleska, E. Vorobev, and F. Lapschies, “Automated test case gener-
ation with SMT-solving and abstract interpretation,” in NASA Formal
Methods, M. Bobaru, K. Havelund, G. J. Holzmann, and R. Joshi, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 298–312.

[12] W. Steiner, “An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks,” in 2010 31st IEEE Real-Time Systems
Symposium, 2010, pp. 375–384.

[13] R. Sebastiani and P. Trentin, “OptiMathSAT: A tool for optimization
modulo theories,” Journal of Automated Reasoning, pp. 1–38, 2015.

[14] C. M. Wintersteiger, Y. Hamadi, and L. de Moura, “A concurrent
portfolio approach to SMT solving,” in Computer Aided Verification,
A. Bouajjani and O. Maler, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 715–720.

[15] M. J. H. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and
conquer: Guiding CDCL SAT solvers by lookaheads,” in Hardware and
Software: Verification and Testing, K. Eder, J. Lourenço, and O. Shehory,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 50–65.

[16] M. J. H. Heule and H. van Maaren, “Look-ahead based sat solvers,” in
Handbook of Satisfiability, 2021.

[17] A. E. J. Hyvärinen, M. Marescotti, and N. Sharygina, “Lookahead in
partitioning SMT,” in 2021 Formal Methods in Computer Aided Design
(FMCAD), 2021, pp. 271–279.

[18] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
modulo theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to dpll(t),” J. ACM, vol. 53, no. 6, p. 937–977, nov 2006.

[19] A. E. J. Hyvärinen, T. Junttila, and I. Niemelä, “A distribution method
for solving sat in grids,” in Theory and Applications of Satisfiability
Testing - SAT 2006, A. Biere and C. P. Gomes, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 430–435.

[20] M. Marescotti, A. Hyvärinen, and N. Sharygina, “SMTS: Distributed,
visualized constraint solving,” in Logic Programming and Automated
Reasoning, 2018.

[21] M. Marescotti, A. E. J. Hyvärinen, and N. Sharygina, “Clause sharing
and partitioning for cloud-based SMT solving,” in Automated Technol-
ogy for Verification and Analysis, C. Artho, A. Legay, and D. Peled,
Eds. Cham: Springer International Publishing, 2016, pp. 428–443.

[22] A. Hyvärinen and C. M. Wintersteiger, “Parallel satisfiability modulo
theories,” in Handbook of Parallel Constraint Reasoning, 2018.

[23] A. E. J. Hyvärinen, M. Marescotti, and N. Sharygina, “Search-space
partitioning for parallelizing smt solvers,” in Theory and Applications
of Satisfiability Testing – SAT 2015, M. Heule and S. Weaver, Eds.
Cham: Springer International Publishing, 2015, pp. 369–386.

[24] G. Andersson, P. Bjesse, B. Cook, and Z. Hanna, “Design automation
with mixtures of proof strategies for propositional logic,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 22, no. 8, pp. 1042–1048, 2003.

[25] C. Reisenberger, “Pboolector: a parallel smt solver for qf bv by com-
bining bit-blasting with look-ahead,” Ph.D. dissertation, Master’s thesis,
Johannes Kepler Univesität Linz, Linz, Austria, 2014.

[26] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0,” J. Satisf.
Boolean Model. Comput., vol. 9, no. 1, pp. 53–58, 2014. [Online].
Available: https://doi.org/10.3233/sat190101

[27] A. Biere and A. Fröhlich, “Evaluating cdcl variable scoring schemes,” in
Theory and Applications of Satisfiability Testing – SAT 2015, M. Heule
and S. Weaver, Eds. Cham: Springer International Publishing, 2015,
pp. 405–422.

[28] H. Barbosa, F. Bobot, and J. Hoenicke, “SMT-COMP 2022.”
[29] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo

Theories Library (SMT-LIB),” http://smtlib.cs.uiowa.edu, 2016.
[30] N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda, “SAT

competition 2020,” Artificial Intelligence, vol. 301, p. 103572, 2021.
[31] T. Weber, A. Niemetz, J. Hoenicke, A. Hyvärinen, H. Barbosa, and

M. Schlaipfer, “SMT-COMP benchmark scrambler,” https://github.com/
SMT-COMP/scrambler, 2023.

208

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi-org.stanford.idm.oclc.org/10.1145/1985793.1985839
https://doi-org.stanford.idm.oclc.org/10.1145/1985793.1985839
https://doi-org.stanford.idm.oclc.org/10.1145/1890028.1890031
https://doi.org/10.3233/sat190101
http://smtlib.cs.uiowa.edu
https://github.com/SMT-COMP/scrambler
https://github.com/SMT-COMP/scrambler

Formal Methods in Computer-Aided Design 2023

CRV: Automated Cyber-Resiliency Reasoning
for System Design Models

Daniel Larraz∗ , Robert Lorch∗ , Moosa Yahyazadeh∗ , M. Fareed Arif† ,
Omar Chowdhury‡ , Cesare Tinelli∗

∗The University of Iowa, Iowa City, USA, � daniel-larraz@uiowa.edu
†The University of Oxford, Oxford, UK ‡Stony Brook University, Stony Brook, USA

Abstract—We present the design and implementation of an
automated static analysis approach and corresponding diagnostic
tool, called Cyber Resiliency Verifier (CRV), to check whether
a system design satisfies its end-to-end guarantees when the
integrity of one or more of its components cannot be guaranteed.
CRV’s key insight is to reason about effects of integrity attacks
instead of concrete attacks, enabling it to reason also about the
impact of future attacks having the same captured effects. We
demonstrate CRV’s effectiveness with a case study on a realistic
design of an unmanned aerial delivery drone.

I. INTRODUCTION

Security vulnerabilities in critical systems can have catas-
trophic impacts. Even when a vulnerability is discovered,
performing root cause analysis and then adding security
mechanisms a posteriori can be expensive, challenging, or
infeasible. Exploitable weaknesses in a system’s design are
arguably harder to mitigate after deployment due to back-
ward compatibility requirements, operational cost, and QoS
constraints. This paper focuses on enabling system architects
to identify and mitigate such design weaknesses at the system
design stage.

A major reason systems have exploitable design weaknesses
is that during the design phase, security considerations often
take a secondary role to other requirements such as time to
market. In addition, current design analysis tools and method-
ologies often pay scant attention to security considerations.
The lack of sophisticated capabilities for the identification of
security vulnerabilities at an abstract design level is an imped-
iment for the model-based system design paradigm to reach
its full potential. Although it is impossible to fully avoid vul-
nerabilities in the implementation, model-based analysis tools
can nevertheless help designers design systems with cyber-
resiliency in mind, that is, design systems whose functionality
and integrity guarantees degrade gracefully under attack. We
broadly define a system’s integrity properties/guarantees as
functional properties that must be satisfied for achieving its
desired functionality. We propose a general approach and a
highly automated tool, CRV, whose rich diagnostic infor-
mation allows a system architect to assess under different
threat models the resiliency of a system design with respect
to desired integrity properties. A static analysis tool like CRV
allows a system architect to account for security considerations
already in the design phase. In particular, it enables what-if -
type analyses exploring the effect that violations of integrity

properties in a sub-system or software component may have on
the overall system guarantees, avoiding surprises like a recent
supply chain attack [29].

A typical workflow prescribed by CRV starts with the
system architect developing a system model in a suitable
modeling language and identifying critical functional prop-
erties that the system must maintain even when subject to
attacks that compromise one or more system components. A
system’s design model (or, system design) contains system
architecture information as well as behavioral information on
one or more components. For cyber-resiliency analysis, the
designer additionally selects a subset of the model’s compo-
nents and/or connections whose integrity cannot guaranteed.
CRV then automatically instruments the design to account for
the integrity issues. This instrumentation reduces the problem
of assessing the cyber-resiliency of the design to a model
checking problem: the satisfaction of the original functional
properties also in the instrumented model. A violation of one
of these properties implies that the original design (before
instrumentation) is not resilient in the presence of attacks
captured by the chosen threat model. When CRV discovers
a violation, it provides as evidence an execution trace of
the instrumented system for each violated property. These
traces demonstrate the viability of attacks from the chosen
threat model, as well as their effects on system properties.
Additionally, for each violation, CRV provides a list of system
components whose misbehavior may have contributed to the
violation. For each property that remains satisfied even under
attack, CRV provides a list of critical sub-components that
may have contributed to satisfaction of the property. We
demonstrate the effectiveness of CRV by evaluating it with
respect to a case study of an UDD.

Contributions. In summary, this work makes the following
technical contributions: (i) a general framework and tool for
analyzing the resiliency of a system design with respect to de-
sired functional properties against one or more threat models,
including replay attacks; (ii) a novel notion of attack/threat
effects that allows for the automatic instrumentation of design
models and takes into account both known and unknown
integrity attacks by reducing resiliency analysis to model
checking; (iii) a formalization of attack effects in terms of the
Dolev-Yao model, a formal model common in cryptographic
protocol verification; (iv) a new automated process, blame
assignment, to identify compromised components of a system

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 29 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0001-5305-7340
https://orcid.org/0000-0001-9242-019X
https://orcid.org/0000-0002-3524-0317
https://orcid.org/0000-0002-4228-8343
https://orcid.org/0000-0002-1356-6279
https://orcid.org/0000-0002-6726-775X
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_29
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_29
https://creativecommons.org/licenses/by/4.0/

Fig. 1: CRV Architecture and Workflow Diagram.

design whose misbehavior can contribute to the violation of
one or more functional properties of the system; (v) an au-
tomated process, merit assignment, that identifies components
of a system design that positively impact the satisfaction of
desired properties; and (vi) a case study of CRV against a
model of an unmanned delivery drone.1

II. DESIGN OVERVIEW OF CRV

We start this section with the problem definition. We then
present CRV’s architecture, describe its interactions with the
system designer, and discuss the underlying challenges.

A. Problem Definition and Scope

CRV automatically checks if a system design provides the
required functional guarantees when the integrity of some of
its sub-component cannot be ensured. CRV reasons about a
hierarchical system design D specifying the system architec-
ture, the function behavior of each component, one or more
functional guarantees Φi, and a threat model Tm indicating
which components and connections are vulnerable to attacks.
CRV attempts to prove whether D can maintain Φi even when,
based on Tm, the integrity of one or more components or
connections is compromised.

We consider only systems whose designs can be expressed
as synchronous (finite- or infinite-state) transition systems. For
such systems, CRV focuses on integrity properties, functional
properties that can be violated by compromising the integrity
of their components or their interconnections. Technically,
CRV currently analyzes only system properties that can be
expressed as temporal safety properties of the form □

⋀︁
i ai →

□
⋀︁

j gj where ai and gj are quantifier-free, first-order past-
time LTL formulas and □ is the always/globally operator.

A large set of desired system-level integrity properties can
be modeled as temporal safety properties of the form supported
by CRV. Examples of such properties for the model in our
case study (see Section VI) would be the requirement that the
delivery drone never deliver a package to an off-limits location
or that it deliver a package to a given drop location only if the
location is clear. Many other examples exist in practice (see,
e.g., [19], [20], [15]).

Currently outside the scope of CRV are confidentiality,
authentication, and availability properties. Traditional analy-
ses of confidentiality properties such as non-interference only

1A VM image containing tool, models, and related instructions is available
to the reviewers at: http://clc.cs.uiowa.edu/fmcad23/.

consider attacks on system-level inputs, as opposed to attacks
on individual components of the system under analysis. Sup-
porting that traditional analysis in CRV would not be difficult.
Both the approach and the tool could be easily extended to
compose the input system design with itself (i.e., have two
copies of the system running in parallel) while asserting the
top-level safety property that the public outputs are equal
whenever the public inputs are equal. In contrast, in our case
study, where we also look at attacks on system components,
considering non-interference would require a new class of
properties whose violation may include both confidentiality
and integrity guarantee violations at the component level.

Authentication properties are relevant only to protocols
that use cryptographic constructs, as they are easily violated
without such constructs. For those cases, a cryptographic
protocol verifier could be incorporated in principle into CRV’s
workflow to enable reasoning about cryptographic constructs.
Investigating this integration is left to future work.

Although CRV could potentially reason about availability
properties (e.g., under the right conditions, the delivery drone
will make a successful delivery), adding this capability would
be more challenging in general. The reason is that such proper-
ties translate to liveness properties, and current model checking
technology is not advanced enough to prove (unbounded)
liveness for most realistic models of infinite-state systems.
However, we intend to provide support for some restricted
classes of availability properties in the future.

B. CRV Architecture and Workflow

The high-level architecture of CRV and its interaction with
the system designer is shown in Figure 1. The designer
starts by developing, in a suitable modeling language, the
design of the system to be analyzed. Currently, CRV is
available [32] through a plug-in of the OSATE IDE for the
Architecture Analysis and Design Language (AADL) [21]
extended with AGREE [11] contract language. The design
describes the system’s architecture in terms of system compo-
nents, component interfaces and interconnections, and a list of
components and connections considered vulnerable to attack.
In addition, the design also contains behavioral information for
some components, expressed in the form of assume-guarantee
contracts, capturing how input and internal state values are
converted to outputs and state updates. Finally, the architect
adds system-level properties that the model should satisfy,
expressed as guarantees of the top-level component in the
design.

When invoked, CRV’s front-end translates the design and
the system level properties into an intermediate representation
(IR). CRV can support other modeling languages with the
addition of the corresponding IR translators. The IR and
one or more user-selected threat models are then fed into
the threat instrumentor module which modifies the model’s
IR to include adversarial influences according to the list of
vulnerable components and connections. Finally, the threat-
instrumented model is fed to the Kind 2 model checker [9],

210

http://clc.cs.uiowa.edu/fmcad23/

[25] in order to prove or disprove that the model satisfies the
desired properties.

For each satisfied property, CRV’s merit assignment module
identifies system components and connections in the design
which are critical for satisfying the property. Dually, for
each violated property, the blame assignment module identifies
the vulnerable components/connections that contributed to the
violation. An attack trace, describing the attacker’s behavior
and the system’s response, is also presented as evidence.

C. Challenges

CRV addresses the following three analysis challenges.
Scalability. The complexity of model checking problems
CRV solves ranges from NP-hard to undecidable. CRV ad-
dresses this scalability challenge by leveraging Kind 2’s
reasoning support for complex, hierarchical systems in the
form of compositional verification where verification results
for sub-systems/components are used to discharge verification
conditions of higher-level components.
Behavioral modeling. Capturing components’ behavior in a
design model at the right abstraction level for a successful
analysis is a challenging task. More abstract behaviors simplify
the automated analysis but can lead to an increased number
of false positives: execution traces that falsify the property
but are not actual executions of the modeled system. In
contrast, more detailed behavior decreases or eliminates false
positives but can increase the analysis complexity to the point
of overwhelming the model checker. We prescribe capturing
abstract behavioral information in sufficient detail in the form
of assume-guarantee contracts for selected components. Such
contracts state that as long as a component’s environment
satisfies the contract’s assumptions, the component’s behavior
will satisfy the contract’s guarantees.
Threat instrumentation. The final challenge is how to in-
corporate the adversarial influence in the design. One possi-
ble approach is to explicitly consider concrete attacks (such
as buffer overflow, malware attacks, and so on). Unfortu-
nately, this approach has serious shortcomings: (i) listing
all possible integrity attacks can be cumbersome and time-
consuming; (ii) the attacker model becomes outdated with the
discovery of newer attacks; (iii) the design may not contain
implementation-level details for the sake of scalability, making
it difficult to describe specific attacks (e.g., SQL injection);
(iv) no guarantees can be provided against zero-day attacks.
To address these challenges we consider attack effects instead
of concrete attacks, as explained in the next section.

III. DESIGN MODEL INSTRUMENTATION

In this section, we explain the notion of attack effects and
then discuss the automatic instrumentation of the model.
The Problem. The threat instrumentation process in CRV
solves the following main problem: Given a formal description
of a system component in terms of its input/output interface
and behavior, how do we capture all possible integrity attacks
that can impact the component’s behavior? The problem can
be further decomposed into two technical questions:

(Q1) how to consider all possible integrity attacks efficiently;
(Q2) how to incorporate the different attacks, some of which
can be implementation-specific, into a design containing only
abstract information.

A. Attack Effects

Our main insight for addressing question Q1 above is to
switch attention from attacks to their effects. More precisely,
we argue that, in the context of resiliency analysis, it is
sufficient to consider the effects of integrity attacks on a
system component’s behavior instead of the concrete attacks
themselves. Capturing the effects frees us from having to
worry about the details of how each attack is achieved in
concrete. Effects of integrity attacks can be viewed as attack
abstractions which group together integrity attacks according
to their consequences on a system. In addition to simplifying
reasoning, this sort of abstraction allows us to reason at once
about all integrity attacks having a certain set of effects.

In general, an integrity attack can have the following three
effect types: (E1), or standard attacker, lets the adversary
modify the behavior of the attacked component at will—as
done, for instance, in buffer overflow attacks; (E2), or replay
attacker, lets the adversary replay previous values of data sent
across vulnerable network connections; and (E3) which can
render the component unresponsive—for instance, by making
it crash. Note that (E1) is strictly stronger than (E2)— the
user chooses between (E1) and (E2) based on the system and
adversary under consideration. Both cases include (E3). In our
context, these effect classes are sufficient to account for any
kind of integrity attack in a system design.
Capturing Attack Effects In view of our classification of
attack effects, question (Q2) becomes how to incorporate the
three types of effects (E1–E3) into the design automatically.
When instrumenting a component or connection with effects
of type (E1), CRV does not constrain in any way the behavior
an adversary would choose. This allows it to reason about
all relevant attack strategies that violate the desired functional
properties. When instrumenting a connection with effects of
type (E2), CRV constrains the adversary’s behavior to only
inject values that were previously sent along the connection.

Technically, we model adversarial actions by adding nonde-
terminism in selected places in the model, accounting for un-
constrained adversary behavior, and letting the model checker
find a concrete behavior (i.e., an execution trace) that results
in a property violation. In essence, we let the model checker
play the adversary by allowing it to replace the output of a
compromised component by any value (of the correct type)
of its choosing or, in the case of a replay attacker, by any
previous output value.

In terms of the Dolev-Yao model [13], a formal model
common in cryptographic protocol verification, CRV effec-
tively places a restricted Dolev-Yao-style adversary after each
output of a vulnerable component, allowing the adversary to:
arbitrarily change an output, mimicking (E1) attacks; replay a
previous value, mimicking (E2) attacks; or drop an output,
mimicking (E3) attacks. Note that the standard Dolev-Yao

211

A B

A B

A B

(a)

(b)

(c)

Sell

Sell Sell

Sell Donate

AB
Off

AB
On

Fig. 2: (a) Non-instrumented channel between A and B; (b) instrumented but
not enabled channel between A and B; and (c) enabled instrumented channel

between A and B.

model considers a network adversary to be placed only on
public channels where it has the following capabilities: (a)
it can sniff, (b) drop, and (c) modify any message passing
through the channels; (d) it can send messages impersonating
the protocol participants; moreover, (e) it can exercises ca-
pabilities (a)–(d) while conforming to cryptographic assump-
tions. Our restriction of the model does not include capabilities
(a) and (e) as CRV does not currently consider confidentiality
properties nor reasons about cryptographic constructs.2 Our
instrumentation further deviates from the Dolev-Yao model by
placing an adversary in a non-public channel (i.e., encrypted
and integrity protected) when the sender in the channel is
marked by the designer as vulnerable to integrity attacks.

As an example, consider the design fragment shown in
Figure 2(a) where component A feeds its single output, of
enumeration type {Sell,Donate}, only to component B. If A is
vulnerable to integrity attacks (e.g., buffer overflow) impacting
its integrity, then we instrument the model by placing a new
component AB between A and B, effectively simulating a
vulnerable public communication channel as in the Dolev-Yao
model. The new component has two inputs, namely the output
of A and a Boolean input corresponding to an enabling switch
(analogous to an activation variable in fault analysis), and a
single output sent as input to B. When the switch is off (see
Figure 2(b)), the AB component behaves as a benign lossless
channel, faithfully forwarding the output of A to the output
of B. When the switch is on, the AB component can behave
maliciously by replacing the output of A with a different
value chosen non-deterministically (see Figure 2(c)). We use
the switch inputs because they are essential for generating
diagnostic information (i.e., blame assignment), where each
switch is treated symbolically as a model parameter.

B. Utility of CRV’s What-if Analyses and Threat Models

CRV comes with a set of user-selectable built-in threat
models, which allow it to determine automatically vulnera-
ble components and connections. To use these, the designer
annotates model components and connections with a few
security-related meta-level attributes, for example, the pedi-
gree of a component expressed by an enumerated type like
{COTS,Sourced, inHouse}. (See [14] for a detailed list of
such meta-level attributes.) Then, CRV identifies components
and connections that should be considered vulnerable to attack

2Capability (e) can be simulated by incorporating a cryptographic protocol
verifier into CRV’s workflow.

in the selected threat model(s). The details of the built-in threat
models in CRV are presented in Section III-C.

Based on our presentation so far, a system designer can
pose what-if queries of the sort: What happens if a set
X of vulnerable components and connections is subject to
integrity attacks? Does the system design still ensure the
satisfaction of the desired properties? To illustrate the utility
of the underlying what-if analyses of CRV, we describe how
a system architect (i) could model supply chain attacks and
(ii) design zero trust networks.

To model a supply chain attack [29], the system designer an-
notates each model component corresponding to an outsourced
subsystem as vulnerable to attack. Given this information,
CRV determines if violations of the outsourced component’s
contract (in this case, due to supply chain vulnerabilities caus-
ing the component to misbehave) lead to violations of system-
level integrity properties. If so, the designer should consider
mitigating actions such as producing the subsystem component
in-house or pursuing additional supply chain protections. If
not, the model is resilient to supply chain attacks.

Zero trust networks are networks where every component
performs input validation, rather than assuming that internal
network connections are safe from attack [28]. As input val-
idation can be computationally expensive, a system designer
might want to verify if validation can be safely skipped for
some input channels. To model this situation, the designer
marks the corresponding model connections as vulnerable, and
CRV will report if attacks on such connections affect system-
level properties. If no system-level properties are violated
under the chosen threat model(s), the system is cyber-resilient
enough for the designer to consider forgoing validations steps
on inputs coming through the marked connections.

C. Built-in Threat Models

CRV can automatically identify the vulnerable model com-
ponents and connections according to some built-in threat
models. A threat (effect) model, in this context, conservatively
describes the criteria under which certain components and
channels can be considered vulnerable to attacks (such as,
logic bomb, remote code injection, and malware) that impact
the control-flow integrity of the components/channels match-
ing the criteria.

More operationally, we express threat models as queries on
the design model data that specify the criteria for classifying
components or channels as vulnerable to certain integrity
attacks. Concretely, a specific threat model can be expressed
as a query whose result is a set of components/connections
that satisfy specific constraints on the meta-level attributes.

As an example, a component is automatically classified as
susceptible to logic bomb or software Trojan attacks if (i)
the component’s type is software or software hybrid; (ii) its
pedigree is either COTS, or Sourced without supply chain
protection or tamper protection; and (iii) the component has
not gone through static analysis or adversarial testing for logic
bombs. A list of threat model descriptions currently used by
CRV is given in [14]. Note that it is easy to expand such a list

212

since new meta-level attributes and threat model descriptions
can be added modularly.

IV. MODEL CHECKING AND DIAGNOSTICS

We now discuss how CRV takes advantage of automated
reasoning to perform resiliency analysis and generate mean-
ingful traceability and diagnostic information from it.
Model Checking for Resiliency Analysis. We reduce the
problem of checking the resiliency of a system design to
integrity attacks to a model checking problem for the threat-
instrumented version of the design. In CRV’s workflow, the
threat instrumented model and the desired functional proper-
ties are fed to the Kind 2 model checker [9]. Using induction-
based techniques, Kind 2 tries to prove that each property is
satisfied for any possible execution, including those containing
the attacks contemplated by the instrumentation. In parallel
with that, Kind 2 uses bounded model checking techniques to
exhaustively search for execution traces in the instrumented
model that violate one or more of the given properties. For
each property, Kind 2 can output three possible verification re-
sults: SAFE, meaning that the instrumented design satisfies the
property; UNSAFE, meaning that the design allows executions
violating the property; and UNKNOWN, returned for instance
when the model checker times out. For each definite answer
(SAFE or UNSAFE), Kind 2 provides additional diagnostic
information, as discussed below. The UNKNOWN case is due to
the undecidability of the model checking problem for infinite-
state systems in general and to the high computational com-
plexity of the problem in decidable subcases. We emphasize
that Kind 2 employs sound proving techniques which are,
however, necessarily incomplete in the case of infinite-state
systems.
End-to-End Security Properties. A designer may wonder if
they could simply model each component in isolation, rather
that dealing with a complex, hierarchical model spanning the
entire system. Thanks to CRV the latter strategy is preferable
as it enables the designer to reason formally about end-to-
end properties that reference output from multiple components.
To start, end-to-end reasoning enables the user to prove that
system-level properties hold in the benign case, which is an
important initial sanity check. More important, CRV’s analysis
may show that property violations for one or more individual
sub-components do not actually lead to system-level attacks
— which is the case when CRV proves that system-level
properties are still preserved. In contrast, without a tool like
CRV, the designer has to manually reason about whether
attacks on individual components can compose to a violation
of a system-level property.

A. Attack Traces

For each property that it proves UNSAFE, the model checker
returns as evidence to CRV an input/output counterexample
trace, in effect an attack trace. The trace contains detailed
information of the attacker’s actions (i.e., the non-deterministic
choices made in the instrumented channels) as well as the
reactions of the other components to those actions.

A CAB
On

B BC
On

AD
On

D DE
On

E EC
On

attack
found

Fig. 3: An example instrumented design with all components being
vulnerable.

AB
On

BC
On

AD
On

minimal cut set

AB
On

BC
On

AD
On

AB
Off

BC
On

AD
On

attack
found

attack
found

no
attack

(a)

(b)

(c)

BC
On

AD
On

DE
On

EC
On

m
inim

al cut set

minimal cut set minimum cut set

(d)

On

AB

Fig. 4: An example of minimal and minimum cut-set.

B. Blame Assignment

For each property determined to be UNSAFE, in addition to
the attack trace, CRV can also generate information regarding
misbehaving components that may have contributed to the
violation. We call this functionality blame assignment. CRV
supports a locally optimized [24] and a globally optimized [23]
form of blame assignment, both achieved by posing a series
of queries to the backend model checker.

To understand blame assignment, consider as an example
the threat-instrumented system design sketched in Figure 3
where all components are vulnerable according to the threat
model specified by the user. This is reflected by the presence
of an adversarial component (e.g., AB) between each pair
of connected components (e.g., A and B). Each adversarial
component is switched on, that is, it is enabled to perturb
the communication between the components it links. Once
the model checker finds an attack trace that demonstrates
the violation of a property, the blame assignment module of
CRV will try to minimize the number of enabling switches
that must be turned on to cause a violation of the property.
Technically, this is analogous to finding a minimal cut set [1],
[23] for these switches. Suppose it is enough to turn on just
components AD, AB, and BC in Figure 3 for the model checker
to come back with an UNSAFE verdict for the property (see
Figure 4(a)). Then these three switches form a minimal cut set
only if turning off any of them (say, switch AB) changes the
verification verdict to SAFE (see Figures 4(b)). Since there
may be many different minimal cut sets for the complete
set of switches, CRV tries to find the one with the smallest
cardinality (e.g., {EC} in Figure 4(d)).

C. Merit Assignment

If, after its resiliency analysis, the model checker returns a
SAFE verdict for a given desired property, CRV also provides
a list of components whose behavior might be critical for
the satisfaction of the property. The conditional is necessary

213

A CAB
On

B BC
On

AD
On

D DE
On

E EC
On

Validated

Con
tra

ct

Con
tra

ct

Con
tra

ct

Con
tra

ct

Con
tra

ct

Top
Con

tra
ct

Fig. 5: The top component’s contract is respected given all internal
components’ contract are validated.

Contract

A
Contract

B
Contract

C
Contract

D
Contract

E
Contract

Top, , , , ⊨
inductively

entails

Contract

A
Contract

D
Contract

E
Contract

Top, , ⊨
inductively

entails

(a)

(b)

minimized cardinality

Fig. 6: Merit assignment problem as finding a minimal subset of the set in
(a) that still inductively entails a given guarantee in the system’s contract.

because, for efficiency reasons, the user has the option of
requesting an over-approximation of the critical list. This
functionality called merit assignment is useful for two reasons:
(i) it provides better traceability in the model by confirming
whether the defenses put in place by the designer in response
to a (previous) violation of the property indeed play a role
in maintaining the property; (ii) it provides additional infor-
mation for system developers, who then know that behavioral
changes to the components outside the merit assignment set
will not affect the property and that, instead, extra precautions
should be taken when implementing components in that set.

Merit assignment in CRV relies on the computation of a
minimal inductive validity core (MIVC) [17], another func-
tionality provided by Kind 2. As in other symbolic model
checkers, Kind 2 represents an input model internally as a
transition system consisting of an initial state predicate I
characterizing the system’s initial state(s) and a two-state
transition relation T describing the system’s behavior. The
relation T can be expressed as conjunction or, equivalently, a
set of constraints over states and their successors. A MIVC for
a particular property P satisfied by a transition system (I, T)
is a minimal subset T ′ of T such that (I, T ′) also satisfies P .
The name MIVC comes from the fact that the model checker
proves that a transition system satisfies P , i.e. that the property
is valid in every execution of the system, by using inductive
arguments. In that case, one can say that the system inductively
entails the property.

To illustrate the concept, let us consider the example in
Figure 5. Suppose the model checker is able to prove that
the composition of the top component’s behavior and that
of each of its subcomponents, expressed by its contract,
inductively entails a desired system-level property, expressed
as a guarantee in the top-level contract (see Figure 6(a)).

Merit assignment provides a minimal subset of subcompo-
nents whose contracts suffice for the proof. Concretely, if
the contracts of the subcomponents A, D, and E are both
sufficient and necessary to construct a proof of the guarantee
(see Figure 6(b)), then A, D, and E, and only those, will
be included in the merit assignment. Furthermore, for each
included subcomponent, CRV will single out the individual
guarantees in the subcomponent’s contract that are enough to
prove the desired top-level property.

In our case, due to inherent runtime complexity reasons, we
resort to identifying approximate MIVC, i.e. (not-necessarily
minimal) supersets of a MIVC, another functionality provided
by Kind 2. Experimental results by Larraz et al. [23] show
that approximate MIVC typically approximate true MIVC very
closely while requiring significantly less time to compute.

V. IMPLEMENTATION OF CRV

Although designed to be incorporated in various modeling
environments, CRV is currently available as a functionality of
VERDICT, a larger cyber-resilience analysis tool developed
with partners at GE Research [27]. In this section, we provide
some details specific to CRV’s implementation.
Modeling Language. We instantiated CRV for the AADL
modeling framework [16]. An AADL model can capture
the architecture of a synchronous reactive system in terms
of components and their interconnections. Components of
an AADL model are systems, which group together other
components (or subsystems), and data, which define the data
types used by the various systems. To model interactions
among (sub)systems one defines an interface for each of them
consisting of data ports, event ports, and connections. AADL
can be extended by users in two ways. The first is the addition
of user-defined attributes, called properties in AADL. This
allows us to capture whether components or their connections
should be considered vulnerable to attack. AADL also has an
extension mechanism based on language annexes with which
one can embed a domain-specific language (DSL) in AADL
and use it to enrich the design description. One such annex
contains the AGREE DSL [11] which allows one to express
behavioral information for synchronous components formally
and declaratively. Component behavior is specified in AGREE
either as an assume-guarantee contract or as an implementation
consisting of equational constraints on ports and internal state
variables.
Front-end Translator. We developed a translator for CRV,
written in Java, that takes as input an AADL design model en-
riched with security-related AADL properties and component-
level behavioral specs in AGREE, and translates it to an
intermediate textual representation (IR). Our IR is general
enough to accommodate a wide variety of modeling lan-
guages supporting the synchronous model of computation
(e.g., Simulink+Stateflow). The IR is close in structure to
the synchronous dataflow language Lustre [18].
Threat Instrumentor. The threat instrumentor module of
CRV is written in Java. It takes the IR version of the design
model and the selected list of vulnerable components and

214

connections, and returns a threat-instrumented design, also
written in the IR language.
Standard Attacker. When CRV generates the instrumented
model, a component is automatically generated to specify
the adversary’s behavior. A standard attacker, such as in
Figure 2(c), is modeled as an intermediate component which
takes messages from component A as input and produces
adversarially-instrumented messages to pass to component B.
Bounded Replay Attacker. A replay attacker component is
obtained by adding a contract to a standard attacker that re-
stricts its output messages to be equal to previous (legitimate)
messages from the last n time steps. This models adversaries
that can only replay past outputs and have a bounded memory.
The number n is configurable by the user in CRV’s front end.
Unbounded Replay attacker. We also include support for a
replay attacker with unbounded memory, i.e., the ability to
replay messages that were sent arbitrarily far in the past. This
is achieved by representing the sequence of past outputs in the
model as an uninterpreted function from time steps to output
values that is progressively constrained at each step with the
current output value, and by allowing the model checker to
query the function at any step up to the current one.
Model Checker. As already discussed, CRV uses the Kind
2 model checker in the backend for its analysis. An internal
translator in CRV, not shown in the architecture in Figure 1,
translates the instrumented IR to a system model written in
Kind 2’s input language, an extension of Lustre with support
for assume-guarantee contracts [8]. CRV then asks Kind 2 to
prove the correctness of the top-level component in the model,
standing for the entire system, with respect to its contract.
Kind 2 returns its results to CRV incrementally as it proves or
disproves each top-level (i.e. system-level) guarantee. In turn,
CRV converts those results in terms of diagnostic information
on the input AADL model and provides it to the user.
Diagnostic Information. The basic level of diagnostic infor-
mation tells the user if each system-level guarantee is satisfied,
violated, or undetermined (because of a timeout). It also
provides a counterexample trace for each violated guarantee.
The next level includes blame assignment for the violated
guarantees and merit assignment for the satisfied ones. We
implemented the bulk of the blame and merit assignment
functionality directly as an extension of Kind 2, which is
written in OCaml. The two features collectively span over 2K
lines of OCaml code. For locally optimized blame assignment,
we rely on the MaxSMT functionality provided by the Z3 SMT
solver [12].
OSATE Plugin. We provide CRV’s functionalities through
a plugin developed with our industrial collaborators [32] for
OSATE [31], a development and analysis environment for
AADL models.

VI. A CASE STUDY ON UNMANNED DELIVERY DRONE

We now discuss a case study on analyzing a realistic model
of a hypothetical unmanned delivery drone (UDD).
Goal. The case study had the following objectives: (i) pro-
vide evidence that CRV can analyze complex designs; (ii)

GNC

GPS

IMU

CameraConnector

Radio

Delivery Item Mechanism

Delivery Planner

Position Estimator

Flight Controller

Actuator

satellite0 pos.

satellite1 pos.

constellation

launch pos.

health status

camera out

camera in

bus in

bus out

comm. in

health status

radio out

radio in

pack. is secure

del. status out

del. cmd in

GPS pos.

health
status

probe constellation

IMU pos.

probe launch pos.

health
status

probe abort mode

dest. pos.

current pos.

nav. cmd

probe nav. cmd
probe bus out

probe init. mode

pos. act.estimated pos.

statemove

probe dest. pos.

actuation
response

motor
cmd

probe act. response

Navigator

Fig. 7: System architecture of unmanned delivery drone (UDD)

concretely illustrate the responsibility of the human designer
in the CRV workflow (i.e., the manual steps); (iii) show the
interaction of the system designer with CRV; (iv) assess the
value of CRV’s blame and merit assignment features for de-
bugging the design; (v) evaluate CRV’s runtime performance.
High-level UDD system description. The drone is a part of
a last-mile delivery unit consisting of a van with packages to
be delivered to suburban locations, and one or more delivery
drones, also stored in the van. Once the van arrives at a
location close to multiple delivery sites, each delivery drone is
initialized with its current position and delivery location, and
is loaded with the package for that delivery location. Once the
drone takes off with the package, it uses inputs from a GPS
receiver and an Inertial Measurement Unit (IMU) to navigate
to the delivery location. When it reaches the delivery location,
the drone uses an on-board camera to capture an image of the
delivery site to confirm that the landing location is clear and
so it is safe to drop the package. For high-value packages, the
delivery drone uses radio communication to get confirmation
from the operator in the van. If there are no obstacles in the
delivery location and a confirmation (if needed) is received
from the operator, the drone’s controller activates a delivery
mechanism to drop off the package. The drone then returns to
the van for another delivery or storage.
Scenarios. For our case study, we consider two scenarios and
7 functional properties to demonstrate CRV’s effectiveness.
As a result, we identified one design weakness/attack for
each property. In Sections VI-A through VI-C we focus on
one scenario consisting of a single property. The remaining
scenarios and properties are presented in Section VI-D.

A. System Architecture of UDD

The system designer first develops the architecture of the
UDD, which can be visualized graphically with a diagram
like the one in Figure 7. In AADL, this is done by defining
the top-level component and each of its subcomponents as
individual AADL systems, and then specifying their interface
and connections. As an example, here is a specification of the
interface of the DeliveryItemMechanism system in our model:
system DeliveryItemMechanism
features
delivery_cmd_in: in data port PackageDeliveryCmd;
delivery_status_out: out data port DeliveryStatus;
package_is_secure: out data port Boolean;

end DeliveryItemMechanism;

215

For each component, the designer identifies a set of input
and output ports used by the component to communicate with
its environment, and specifies the type of data exchanged in
each port. In addition to basic types, such as Boolean and
Integer, AADL allows the use of user-defined types for ports.

After that, the architect can describe the internal structure
of each composite system, by adding a system implementation
(not shown here) that lists the system’s subcomponents and
specifies how they are connected together.

B. Design Model of UDD

Next, the designer specifies the behavior of each leaf
component of the architecture, i.e., a component with no sub-
components. This is achieved by associating to it an assume-
guarantee contract written in AGREE. Intuitively, assumptions
describe the expectations the component has on its inputs and
on the global values it has access to, while guarantees describe
restrictions on the output values it produces. Behaviorally, each
component is a reactive system, instantaneously producing
output based on its current input and internal state. Assume-
guarantee contracts in AGREE are essentially statements in
a linear temporal logic rich enough to precisely describe a
component’s reactive behavior from the point of view of an
observer that, at all times, has access to all the input and
output values generated until then. Atomic formulas in this
logic are first-order predicates that relate the values of the
various ports and intermediate variables. Contracts provide a
mechanism for capturing the information needed to specify
and reason about component-level safety properties at the
desired level of abstraction. Now, let us assume that for the
DeliveryItemMechanism component the following is known:

1) Initially the delivery has not started.
2) If a delivery command is issued, the delivery status must

become different from not started.
3) If no command is issued or an abort command is

received, then the delivery status resets to not started.
This is a minimal amount of information about the expected
behavior of the DeliveryItemMechanism component. We ex-
plain how to formalize it in AGREE below, using abstract
syntax for conciseness.

To formalize (1), we add the following guarantee stating
that the delivery status s (abbreviating delivery_status_out)
is equal to not started initially:

G1: s = (not started → true)

The infix initialization operator → is an AGREE operator.
An expression of the form e1 → e2 evaluates to the value of
expression e1 initially and to the value of e2 at all later steps
of the system’s execution. To formalize aspect (2), we add the
following guarantee where c abbreviates delivery_cmd_in:

G2: true → (c = release ⇒ s ̸= not started)

Similarly, we capture aspect (3) with this guarantee:
G3: true →

(c = no op ∨ c = abort ⇒ s = not started)

So far, we have only added constraints about the output port
delivery_status_out. Any system execution that satisfies

those constraints will be considered valid during the analysis
performed by CRV.
Desired Functional Requirements. The next step is to review
the list of functional (or safety) requirements for the system
that may affect its integrity, and formalize them as cyber-
resiliency properties in AGREE. For instance, suppose we have
the following cyber-requirement for DeliveryDroneSystem

which forbids package delivery to certain locations (while
allowing the UDD to still fly-over them):

P7. The drone will never initiate a packet release in an
off-limits location.

To formalize P7, we have to first identify the components
and ports of the system that are relevant to this property. In
our example, DeliveryPlanner is the component that issues
the command to release a package by setting the output port
delivery_cmd to release, while DeliveryItemMechanism is the
component that receives the command and proceeds with the
delivery. Moreover, to know where the drone should release
the package, the DeliveryPlanner reads the delivery location
from the input port bus in through the Connector component
when the drone is in the van, and then it passes this value
to the Navigation component. In addition, we also need to
know when a location is off-limits. For that, we can define a
new predicate InRA over locations that evaluates to true if and
only if its input location is within a restricted area.

Then we can express the cyber-property with the following
top-level guarantee where dl is the delivery location:

P7 : InRA(dl) ⇒ s = not started

Vulnerable Components and Connections. To make the
design amenable to CRV’s analysis, designers also need to
annotate components and links that are vulnerable to attack.
For instance, suppose that DeliveryPlanner is considered vul-
nerable to attack (e.g., it is an outsourced software component
that has no supply chain security and no tamper protection,
and has not been statically analyzed).

C. CRV Analysis

Analysis in the Benign Case. The designer must check that
the system design model satisfies its guarantees in the benign
scenario where no threat models are enabled. For our example,
CRV finds an execution that violates P7 because the delivery
location information provided as input during initialization
is actually an off-limits location. In this case, there are two
possibilities: (S1) the designer decides to prohibit that initially
provided delivery locations be off-limits; (S2) the designer
decides to treat initialization with an off-limit location as a
realistic possibility, perhaps as a consequence of malicious
code in the (external) software (in the van) that provides
initialization values for the UDD system. Assume (S2) cannot
happen in the benign scenario. Then the designer adds the
following assumption to the contract of DeliveryDroneSystem
to capture (S1) where tl is the target location provided through
the system’s input bus:

A1 : ¬InRA(tl)

216

In this case, with no threats enabled, CRV is able to prove
property P7 valid.
Analysis under Threat Effects. After verifying with CRV
that P7 holds in the benign case, the system designer can
run an adversarial analysis. In this case, CRV will find a
violation of property P7 that involves an attack to the UDD’s
delivery planner. From the blame assignment diagnostics,
we observe that the possible violation may result from an
attack on the DeliveryPlanner component that causes it to
violate its contract. The blame assignment analysis addi-
tionally identifies a minimal set of ports, dest_location and
delivery_cmd, that is enough to compromise to carry out the
attack successfully. One can also examine the counterexample
trace leading to the violation of the property and observe that
it occurs when the vulnerable DeliveryPlanner maliciously
instructs the DeliveryItemMechanism component to initiate
the release of the package while the drone is flying over an
off-limits location.
Analysis after Mitigation. After CRV presents a new attack,
the designer can see how to address its root cause by consider-
ing the vulnerable components and ports relevant to the attack.
Then, they can run another what-if analysis by considering
a situation where additional security measures have been
introduced to make some of the vulnerable components more
cyber-resilient. For example, suppose the designer sees the
DeliveryPlanner component as a candidate for enhanced
cyber-resiliency measures. When the component is labeled as
invulnerable to attack, a new analysis of the system confirms
that this fix is sufficient to rule out any attacks compromising
property P7. Moreover, the merit assignment post-analysis
reassures the user that the change indeed plays a role in the
satisfaction of P7 in an adversarial environment.
Performance. The AADL+AGREE model for the UDD sys-
tem in this case study consists of around 1800 lines of specs,
and includes 7 functional properties as top-level guarantees.
On average, each call to the tool, which triggers the threat
instrumentation, the verification of the properties, and the
merit/blame assignment analysis, takes 30s on a 1.10GHz
Intel(R) Core i7-10710U CPU machine with 16GB of RAM.

D. Details on Case Study Experiments

We used CRV to analyze the cyber-resiliency of the UDD
system with respect to two sets of system-level safety proper-
ties. The first set consists in the following five properties:

guarantee "P1: When the drone is switched on,
the GPS component uses the constellation
received most recently":
isOn =>
most_recent_constellation = probe_constellation;

guarantee "P2: Launch location for IMU is
initialized properly":
isOn =>
most_recent_launch_loc = probe_launch_loc;

guarantee "P3: Delivery location for navigation
is initialized properly":
isOn =>
most_recent_delivery_loc = probe_delivery_loc;

guarantee "P4: A command to release a valuable
package is issued only if drone has received
confirmation from base":
release_cmd and valuable_package =>
target_confirmed;

guarantee "P5: The drone will always request
confirmation from base before starting delivery
of a valuable package":
delivery_started and valuable_package =>
confirmation_requested;

First, we checked the system model satisfies the five proper-
ties without considering the effects of any threat model. CRV
was able to prove that in 9s. Then, we analyzed the cyber-
resiliency of the system against all threats in the CRV library.
As a result, CRV was able to find in less than 5s four network
injection attacks on bus1 leading to the violation of properties
P1, P2, P3, and P4, and one logic bomb attack on the
DeliveryPlanner causing the violation of property P5. Note
this is just one possible blame assignment result, the model
admits other minimal results. After reviewing the results,
we considered a scenario where the four network injection
attacks were not possible because the bus1 connection was a
trusted connection, and the logic bomb attack was not feasible
anymore after the decision to develop the DeliveryPlanner

internally instead of outsourcing it. To reflect the new scenario
we changed the meta-level attribute connectionType of the
bus1 connection from Untrusted to Trusted, and the meta-
level attribute pedigree of the DeliveryPlanner component
instance from Sourced to InternallyDeveloped. After the
change, we could check that no more new attacks were
possible by analyzing again the modified model against all
threats in the CRV library. This time CRV proved all five
properties valid in 20s.

The second set consists in the following two properties:
guarantee "P6: The drone issues a command to
release a package only if the delivery location
is the most recent delivery location provided":
release_cmd =>
probe_delivery_loc = most_recent_delivery_loc;

guarantee "P7: The drone never initiates a package
release to an off-limits location":
delivery_status <> NOT_STARTED =>
not InRestrictedArea(probe_delivery_loc);

In this new scenario, we considered the values of
the meta-level attributes for the bus1 connection and the
DeliveryPlanner component instance to be the original ones.
Again, we started checking that properties P6 and P7 were
satisfied by the system, which CRV confirmed after 8s. Then,
we focused on analyzing the cyber-resiliency of the system
with respect to property P7. Similarly to the first scenario,
CRV was able to detect in 3s a logic bomb attack on
the DeliveryPlanner that leads to the violation of P7. We
chose to neutralize the attack by implementing a runtime
monitor, as explained in Section VI, instead of enforcing
the internal development of the component. After integrating
the behavioral defense in the model, CRV could prove the
satisfaction of property P7 in 3s. The next step was to analyze

217

the cyber-resiliency of the system with respect to property
P6. In 3s, CRV confirmed that a logic bomb attack on the
DeliveryPlanner would still be able to falsify property P6.
In this case, we decided to apply a hybrid solution. First,
we forced the DeliveryPlanner component to be internally
developed to prevent logic bomb attacks. Then, we changed
the model design to incorporate a MAC protection, to make
the system cyber-resilient to network injection attacks on the
bus1 connection. After those changes, CRV could prove the
satisfaction of property P6 and P7 in 168s.

VII. RELATED WORK

There are at least four relevant lines of work that analyze
system designs for security threats. They are based respectively
on: general model checkers, cryptographic protocol verifiers,
fault analysis tools, and specialized analyzers. We highlight
the main differences between CRV and each of these classes
of tools.

A. Model Checkers

Model checkers used for cyber-security generally per-
form analysis at one of two granularities: system-level and
component-level. The former considers only system-level in-
puts to be adversarially-controlled, overlooking cases where
the integrity of individual components is violated. The
latter considers inputs of an individual component to be
adversarially-controlled, letting one mimic the integrity vio-
lation of that component. To lift the analysis from individual
components to the whole system, manual efforts are needed
to recompose component-level guarantees into global/system-
level properties. Correspondingly, component-level counterex-
amples have to be lifted to the system-level in order to
construct a system-wide attack. In contrast, the results obtained
from the analysis of the threat-instrumented model in CRV can
be automatically interpreted at the system level.

Instrumented versions of a system model are used in tra-
ditional fault analysis to study the system’s behavior in the
presence of faults. The Safety Annex for AADL [30] allows
one to specify the behavior of systems and components in the
presence of faults. The tool supports the computation of all
minimal cut sets, but not the direct computation of an individ-
ual solution. Similarly, the xSAP [4] platform offers library-
based specification of faults, automatic model-extension with
fault specifications, and the generation of minimal cut sets.
However, its primary emphasis also lies in fault analysis rather
than security. Finally, all these techniques focus on the globally
optimized setting. To our knowledge, the use of the locally
optimized setting [24] is novel.

B. Cryptographic Protocol Verifiers

Cryptographic protocol verifiers (CPVs) such as Tamarin
[26] and ProVerif [5], [22], [2] can reason about cryptographic
constructs and support confidentiality properties (e.g., obser-
vational equivalence), neither of which are currently supported
by CRV. In contrast, CRV has the following advantages: (i)
it can support rich system descriptions with linear (integer and

real) arithmetic constraints and temporal constraints, which are
not supported by current CPVs; (ii) it can provide diagnostic
information in the form of blame and merit assignment at the
end of the analysis, which is unavailable in CPVs; (iii) it can
analyze rich stateful systems more scalably than current CPVs;
(iv) it supports automated analysis of rich safety properties
beyond what is supported by tools such as ProVerif [5] or their
extensions [22], [2]; (v) thanks to compositional verification,
it can support the analysis of large systems that are not
amenable to analysis by CPVs. In a sense, CRV and CPVs are
complementary. One way to support confidentiality properties
and cryptographic constructs in CRV’s workflow would be by
integrating a CPV in it.

C. Fault analysis tools

Fault analysis tools, especially the ones that consider Byzan-
tine faults, are the closest in spirit to the CRV work. However,
they generally are neither amenable to seamless integration
with CPV (due to the lack of support for replay attackers),
which is needed to analyze rich properties of systems contain-
ing cryptographic constructs, nor do they support meta-level
diagnostic analyses.

D. Specialized analyzers

These analyzers focus on analyzing specific protocols in
a particular domain (e.g., cellular networks [19], [20], [3],
TCP/IP [6], WiFi [33]), a very limited set of security properties
(e.g., non-interference, cache side channel, transient execution
vulnerabilities), or particular systems (e.g., IoT [7]). Among
these efforts, the closest to our approach are LTEInspector [19]
and 5GReasoner [20] where the Dolev-Yao adversary model
is used to perturb the public communication between two
components when model checking the protocol under analysis.
Other tools such as ThreatGet [10] only analyze systems at the
architectural level with a pre-defined set of threats. Besides
the restriction to specific domains, none of the prior work
is capable of statically analyzing reactive system designs with
respect to integrity properties — the focus of CRV’s analysis.

VIII. CONCLUSION

We have presented CRV, a general approach and tool
to statically check the cyber-resiliency of a design against
current and future integrity attacks. A case study with an
unmanned delivery drone system demonstrates that CRV can
analyze effectively the cyber-resiliency of complex designs
with respect different integrity properties.

Possible future directions of research include enhancing
CRV’s capability to support a limited form of availability
properties, which can be formalized as liveness properties,
and confidentiality properties, formalizable as non-interference
properties. This would enable CRV to support the analysis of
functional properties whose violation require a combination of
integrity, availability, and confidentiality attacks. Additionally,
CRV could be extended to integrate a CPV and hence consider
cryptographic constructs.

218

ACKNOWLEDGMENTS

This work was partially supported by DARPA grant
#N66001-18-C-4006 and by the US Air Force Research Lab.

REFERENCES

[1] Parosh Aziz Abdulla, Johann Deneux, Gunnar Stålmarck, Herman
Ågren, and Ove Åkerlund. Designing safe, reliable systems using
scade. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, First International Symposium, ISoLA
2004, Paphos, Cyprus, October 30 - November 2, 2004, Revised Selected
Papers, volume 4313 of Lecture Notes in Computer Science, pages 115–
129. Springer, 2004.

[2] Myrto Arapinis, Joshua Phillips, Eike Ritter, and Mark D. Ryan.
Statverif: Verification of stateful processes. Journal of Computer
Security, 22(5):743–821, July 2014.

[3] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf
Sasse, and Vincent Stettler. A formal analysis of 5g authentication.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, page 1383–1396, New York, NY,
USA, 2018. Association for Computing Machinery.

[4] Benjamin Bittner, Marco Bozzano, Roberto Cavada, Alessandro Cimatti,
Marco Gario, Alberto Griggio, Cristian Mattarei, Andrea Micheli, and
Gianni Zampedri. The xsap safety analysis platform. In Marsha
Chechik and Jean-François Raskin, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 22nd International Conference,
TACAS 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings, volume 9636 of Lecture Notes in Com-
puter Science, pages 533–539. Springer, 2016.

[5] Bruno Blanchet. Modeling and verifying security protocols with the ap-
plied pi calculus and proverif. Found. Trends Priv. Secur., 1(1–2):1–135,
October 2016.

[6] Yue Cao, Zhongjie Wang, Zhiyun Qian, Chengyu Song, Srikanth V.
Krishnamurthy, and Paul Yu. Principled unearthing of tcp side channel
vulnerabilities. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, page 211–224,
New York, NY, USA, 2019. Association for Computing Machinery.

[7] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. Soteria: Automated
iot safety and security analysis. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 147–158, 2018.

[8] Adrien Champion, Arie Gurfinkel, Temesghen Kahsai, and Cesare
Tinelli. CoCoSpec: A mode-aware contract language for reactive
systems. In Rocco De Nicola and Eva Kühn, editors, Proceedings of
the 8th International Conference on Software Engineering and Formal
Methods, Vienna, Austria, volume 9763 of Lecture Notes in Computer
Science, pages 347–366. Springer, 2016.

[9] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare
Tinelli. The Kind 2 model checker. In Swarat Chaudhuri and Azadeh
Farzan, editors, Computer Aided Verification - 28th International Confer-
ence, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part II, volume 9780 of Lecture Notes in Computer Science, pages 510–
517. Springer, 2016.

[10] Sebastian Chlup, Korbinian Christl, Christoph Schmittner, Abdelka-
der Magdy Shaaban, Stefan Schauer, and Martin Latzenhofer. THREAT-
GET: towards automated attack tree analysis for automotive cybersecu-
rity. Inf., 14(1):14, 2023.

[11] Darren Cofer, Andrew Gacek, Steven Miller, Michael W. Whalen, Brian
LaValley, and Lui Sha. Compositional verification of architectural
models. In Alwyn E. Goodloe and Suzette Person, editors, NASA
Formal Methods, pages 126–140, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis
of systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[13] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[14] Michael Durling, Heber Herencia-zapana, John Interrante, Baoluo Meng,
Abha Moitra, Kit Siu, Vidhya Tekken Valapil, Daniel Prince, Ce-
sare Tinelli, Omar Chowdhury, Daniel Larraz, Moosa Yahyazadeh,
and Fareed Arif. DARPA: Cyber Assured Systems Engineering
(CASE) — VERDICT Project, 2020. Available at https://github.com/
ge-high-assurance/VERDICT/wiki.

[15] Mitziu Echeverria, Zeeshan Ahmed, Bincheng Wang, M. Fareed Arif,
Syed Rafiul Hussain, and Omar Chowdhury. PHOENIX: device-centric
cellular network protocol monitoring using runtime verification. In 28th
Annual Network and Distributed System Security Symposium, NDSS
2021, virtually, February 21-25, 2021. The Internet Society, 2021.

[16] P. H. Feiler, B. A. Lewis, and S. Vestal. The sae architecture analysis
design language (aadl) a standard for engineering performance critical
systems. In 2006 IEEE Conference on Computer Aided Control System
Design, 2006 IEEE International Conference on Control Applications,
2006 IEEE International Symposium on Intelligent Control, pages 1206–
1211, Oct 2006.

[17] Elaheh Ghassabani, Andrew Gacek, and Michael W Whalen. Efficient
generation of inductive validity cores for safety properties. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 314–325, 2016.

[18] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud.
The synchronous data flow programming language lustre. Proceedings
of the IEEE, 79(9):1305–1320, 1991.

[19] Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa
Bertino. LTEInspector: A Systematic Approach for Adversarial Testing
of 4G LTE. In Proceedings 2018 Network and Distributed System
Security Symposium, San Diego, CA, 2018. Internet Society. tex.ids:
hussainLTEInspectorSystematicApproach2018a.

[20] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowd-
hury, and Elisa Bertino. 5greasoner: A property-directed security
and privacy analysis framework for 5g cellular network protocol. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, page 669–684, New York, NY,
USA, 2019. Association for Computing Machinery.

[21] Software Engineering Institute. AADL – Architecture Analysis and
Design Language. http://aadl.info. Accessed: May 20, 2023.

[22] Nadim Kobeissi, Georgio Nicolas, and Mukesh Tiwari. Verifpal: Cryp-
tographic Protocol Analysis for the Real World, page 159. Association
for Computing Machinery, New York, NY, USA, 2020.

[23] Daniel Larraz, Mickaël Laurent, and Cesare Tinelli. Merit and blame
assignment with Kind 2. In Alberto Lluch-Lafuente and Anastasia
Mavridou, editors, Formal Methods for Industrial Critical Systems -
26th International Conference, FMICS 2021, Paris, France, August 24-
26, 2021, Proceedings, volume 12863 of Lecture Notes in Computer
Science, pages 212–220. Springer, 2021.

[24] Daniel Larraz and Cesare Tinelli. Finding locally smallest cut sets using
max-smt. ACM SIGAda Ada Letters, 42(2):32–39, Apr 2023.

[25] Daniel Larraz, Arjun Viswanathan, Cesare Tinelli, and Mickaël Laurent.
Beyond model checking of idealized Lustre in Kind 2. ACM SIGAda
Ada Letters, 42(2):40–44, Apr 2023.

[26] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The
tamarin prover for the symbolic analysis of security protocols. In
Natasha Sharygina and Helmut Veith, editors, Computer Aided Ver-
ification, pages 696–701, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[27] Baoluo Meng, Daniel Larraz, Kit Siu, Abha Moitra, John Interrante,
William Smith, Saswata Paul, Daniel Prince, Heber Herencia-Zapana,
M. Fareed Arif, Moosa Yahyazadeh, Vidhya Tekken Valapil, Michael
Durling, Cesare Tinelli, and Omar Chowdhury. VERDICT: A language
and framework for engineering cyber resilient and safe systems. Systems,
9(1), 2021.

[28] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. Zero
trust architecture. Technical report, National Institute of Standards and
Technology, 2020.

[29] SolarWinds. Solarwinds security advisory. Available at https://www.
solarwinds.com/securityadvisory.

[30] Danielle Stewart, Jing Janet Liu, Michael W Whalen, Darren Cofer, and
Michael Peterson. Safety annex for the architecture analysis and design
language. In 10th European Conference Embedded Real Time Systems
ERTS, 2020.

[31] OSATE team. OSATE – Open Source AADL Tool Environment. https:
//osate.org. Accessed: May 20, 2023.

219

https://github.com/ge-high-assurance/VERDICT/wiki
https://github.com/ge-high-assurance/VERDICT/wiki
http://aadl.info
https://www.solarwinds.com/securityadvisory
https://www.solarwinds.com/securityadvisory
https://osate.org
https://osate.org

[32] VERDICT team. VERDICT – Verification Evidence and Resilient
Design in Anticipation of Cybersecurity Threats. https://github.com/
ge-high-assurance/VERDICT. Accessed: May 20, 2023.

[33] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forcing
nonce reuse in WPA2. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS). ACM, 2017.

220

https://github.com/ge-high-assurance/VERDICT
https://github.com/ge-high-assurance/VERDICT

Formal Methods in Computer-Aided Design 2023

Towards a Correct-by-Construction Design of
Integrated Modular Avionics

Baoluo Meng , Joyanta Debnath , Sarat Chandra Varanasi ,
Emmanuel Manoloios, Michael Durling, Saswata Paul

General Electric Research
Niskayuna, NY 12309. USA

Email: {baoluo.meng, joyanta.debnath, saratchandra.varanasi, emmanuel.manolios, durling, saswata.paul}@ge.com

Daniel Prince, Saif Alsabbagh, Richard Haadsma, Craig McMillan
GE Aviation Systems

Grand Rapids, MI 49512, USA
Email: {daniel.prince, saif.alsabbagh, richard.haadsma, craig.mcmillan}@ge.com

Chi Zhang, Tim Oates
University of Maryland, Baltimore County

Baltimore, MD 21250, USA
Email: {chzhang1, oates}@umbc.edu

Abstract—This paper presents a formal language and frame-
work, OYSTER, to develop correct-by-construction design of
Integrated Modular Avionics (IMA). The OYSTER language is
created as an annex to the Architecture Analysis and Design
Language (AADL) for encoding constraints for aspects of IMA.
The OYSTER constraints involve determining the correct loca-
tions of hosted applications within an IMA system, validity of the
port connections involved in the design, and the conformance of
virtual links allocated with bandwidth and jitter requirements.
OYSTER also allows synthesis of communication paths for the
allocated virtual links. The OYSTER prototype tool is developed
as a plugin to the Open Source AADL Tool Environment
(OSATE), and invokes Satisfiability Modulo Theories (SMT)
solvers to synthesize correct-by-construction architecture designs
for IMA. In addition, behaviors of applications running on IMA
components and their safety properties can be modeled in the
Assume Guarantee REasoning Environment (AGREE) annex and
checked by the Kind2 model checker. The verification results
are guaranteed to be correct by the independently verifiable
proof certificates produced by Kind2. Finally, the paper evaluates
OYSTER on a GE Aviation use case – a fuel control system IMA,
and discusses the lessons learned.

I. INTRODUCTION

Integrated Modular Avionics (IMA) [36] are hybrid plat-
forms that provide computing, communication, and I/O ser-
vices for modern military and commercial aircraft. The im-
plemented real-time embedded systems are architected and
overlaid on the partitioned platform resources to form a highly-
integrated system with full isolation and independence of each
individual system. The platform elements are architected to
maintain a high-integrity, fault-tolerant environment necessary
for hosting critical system functionality. IMAs are able to
simultaneously support critical and non-critical applications (at
both high and low integrity levels) due to partitioned boundary
layers between the applications.

Since the failure of IMA systems can have catastrophic
consequences, the development of IMA platforms for modern
commercial and military aircraft involves rigorous processes
and tools along with tedious manual work to ensure that no

errors are introduced. Therefore, IMA solutions are oftentimes
produced by commercially available and/or internally devel-
oped proprietary tools, many of which have been certified
for use by regulatory authorities such as the Federal Aviation
Administration (FAA) and European Aviation Safety Agency
(EASA). However, this makes IMA architecture solutions
expensive to implement and changes to an IMA design (e.g.,
requirements changes) can be labor-intensive.

During a typical IMA development cycle today, a systems
integrator will spend thousands of person-hours collecting,
integrating, and fine-tuning an overall IMA system for qual-
ification and fielding on real aircraft. One of the main con-
tributors to the cost of integration of these network-based
systems is the management of their changes and impacts of
the changes on the rest of the IMA. Doing so requires systems
expertise, knowledge about the implementation details of the
IMA construction, and operational details of the qualified
verification and configuration tools that must be used. The
frequency of changes during IMA development can be very
high and can even get to a point where it may become
impractical/unsustainable for a human integrator to be able to
absorb and understand all of the changes and their potential
impacts. Additionally, the financial and scheduling constraints
usually do not allow for a full “stop work” to assess the
changes every time. Therefore, the access to tools that can aid
in decision-making and can recommend appropriate changes
for converging on a qualifiable and fieldable solution is crucial
when dealing with systems of this scale and complexity.

Formal methods are mathematically-rigorous means for the
specification, development, and verification of software and
hardware systems, that can be harnessed for ensuring error-free
system integration. Techniques such as model checking [17]
and Satisfiability Modulo Theories (SMT) [9] can be used
for automatically detecting if a given architecture violates
a given property and for synthesizing potential changes in
an architecture that might be needed in order to satisfy a
given property. Therefore, such formal methods techniques

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 30 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0002-3284-1969
https://orcid.org/0000-0001-5817-2786
https://orcid.org/0000-0002-4620-4266
https://orcid.org/0000-0002-1792-9858
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_30
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_30
https://creativecommons.org/licenses/by/4.0/

are well-suited for the development of IMA solutions. In
this paper, we introduce the OYSTER framework, which uses
model checking and SMT-based techniques for the synthesis
of correct-by-construction IMA architectures. We have eval-
uated the feasibility of using OYSTER on real-life industrial
applications by applying it on an IMA use case provided by
our industry partners at GE Aviation.

This paper makes the following contributions to aid in the
development of IMA solutions:

• Development of a formal language namely, OYSTER,
to encode IMA architecture constraints and a translation
scheme to SMT.

• An end-to-end tool prototype to synthesize a correct-by-
construction IMA architecture solution using SMT solver
and model checkers.

• A framework prototype for generating independently veri-
fiable solutions for behavior models towards certification.

• Evaluation of the OYSTER framework on a fuel control
system IMA use case provided by GE Aviation to show
its practical feasibility.

The rest of the paper is structured as follows: Section II
provides an overview of the overall architecture of the OYS-
TER framework; Section III details the OYSTER language
for encoding IMA requirements; Section IV describes the
architecture synthesis and proof generation capabilities of
OYSTER; Section V presents an application of OYSTER on
our use case followed by a discussion about lessons learned
during the process; Section VI summarizes related work on
system architectures synthesis; and finally, Section VII con-
cludes the paper with a discussion on possible directions of
future work.

II. OYSTER OVERALL ARCHITECTURE

The OYSTER framework is depicted in Figure 1. The goal
of this framework is to leverage formal methods tools to auto-
synthesize a correct-by-construction IMA platform architec-
ture, and prove formal properties about IMA behaviors using
model checkers. The framework starts with modeling IMA
software and hardware components in Architecture Analysis
and Design Language (AADL) [23] that will be used to
construct an IMA platform (corresponding to 1). The IMA
architectural requirements are collected and encoded in OYS-
TER annex (2). The two pieces of information are translated
to input to Satisfiability Modulo Theories (SMT) solvers for
architecture synthesis (3). A satisfiable solution from the
solver is converted back to an instantiated AADL model
(4) that meets all the constraints specified in OYSTER. In
addition, the model behavior and safety properties (5) can
be manually added to the synthesized model to be further
checked by a model checker – Kind2 [16] (6). In case the
formal properties are proved valid, Kind2 (7) will produce
three kinds of proof certificates in SMT-LIB [8] and Logic
Framework with Side Condition (LFSC) [39] formats (8).
In case the formal properties are disproved, we will leverage
the counter-example and the blame assignment feature [28]
of Kind2 to help system engineers to localize the issues.

The first one certifies the front-end translation faithfulness,
which is in SMT-LIB format. It requires an independently
developed model checker for Lustre, e.g., JKind by Collins
Aerospace [25], to be part of the certificate generation process.
The second one encodes the k-inductive proof steps in SMT-
LIB format for the validity of formal properties and can
be independently verified by third-party SMT solvers, e.g.,
Z3 [33], cvc5 [7], Yices2 [22] etc. Finally, the LFSC proof
certificate is a formal proof that the safety properties are
invariants in the system, and can be independently verified
by LFSC proof checkers (9).

The framework enables a system architect/developer to use
SMT techniques to auto-generate system architecture models
and utilize a back-end model checker (Kind2) to produce proof
certificates from verification of safety properties of system
behavior models.

III. OVERVIEW OF IMA REQUIREMENTS & OYSTER
ANNEX

IMA architectural requirements state several constraints
about the location of components on the IMA cabinets along
with network connectivity and bandwidth constraints between
several several components situated within the cabinets. More-
over, Virtual Link flows specific information flows from vari-
ous sensors to actuators. Initially, all the components present
in the cabinet are stated along with their port connections and
virtual link flows as the OYSTER AADL annex [3].

Essentially, annexes enable descriptions of Domain Specific
Languages extending the basic AADL definitions. In our case,
the OYSTER annex captures the IMA requirements. OYSTER
is a front-end AADL annex language to capture these archi-
tectural constraints. Then the actual synthesis is performed
by translating the OYSTER annex into SMT and invoking
an SMT-solver. The solution returned by the SMT-solver is
translated back to AADL which represents the synthesized
IMA Architecture. If the set of OYSTER annex constraints
are unsatisfiable, we report the UNSAT core from Z3 back
to the user. Although UNSAT cores from SMT solvers are
not necessarily unique or minimal, reporting it back to the
user serves as an initial step towards providing actionable
feedback for the user while specifying IMA requirements. The
synthesized AADL architecture is subject to further behavior
analyses as mentioned in the OYSTER toolchain workflow.

The OYSTER language supports modeling the following
constraints: fixed-location constraints (FLCs), co-location con-
straints (CLCs), resource utilization constraints (UCs), sepa-
ration constraints (SCs), virtual link constraints (VLCs), and
port connection constraints (PCCs). The OYSTER language is
also equipped with syntax highlighting and type checking for
usability. The OYSTER language and its informal semantics
is presented next.
Fixed-location Constraints. FLCs constrain a component X
to map to another component Y within the IMA architecture.
For example, a General Processing Module (GPM) GPM_L1 is
mapped to a Common Computing Resource (CCR) CCR_L1
as:

222

Fig. 1. High-level overview of OYSTER framework

{Fixed-Location-Constraint FLC1: (GPM_L1 -> CCR_L1);

Co-location Constraints. CLCs co-locate components {C1,
..., Ck} within a same target component Cτ . For example, a
GPMApp and ACSApp can be co-located to CCR L1 as:
Co-Location-Constraint CLC1 :
(GPMApp APP_FIDO) and (ACSApp SwitchApp_L1) -> CCR_L1;

Utilization Constraints. UCs state that the resources allocated
to the various hosted applications (CPU, RAM, ROM) should
not exceed the resources available on a computing resource.
For example, in OYSTER, one could state that the sum
of CPU allocated to applications named APP_FIDO and
APP_FILE_SYSTEM should not exceed the CPU provided
for the computing resource CCR_L1, as shown below.
Utilization-Constraint UC1 [CPU]:
(CCR CCR_L1: cpuProvided) > (GPMApp APP_FIDO: cpuUsed) +

(GPMApp APP_FILE_SYSTEM: cpuUsed);↪→

Separation Constraints. Separation constraints specify that a
given set of components shall not be mapped to same compo-
nents. The following separation constraint states that the ap-
plications APP_FUEL_SYSTEM_CONTROL, APP_FIDO and
APP_FILE_SYSTEM should be hosted on different GPM
component.
Separation-Constraint SC1:
(GPMApp APP_FUEL_SYSTEM_CONTROL, APP_FIDO,

APP_FILE_SYSTEM) -> distinct GPM;↪→

Virtual Link Constraints. A virtual link constraint (VLC)
defines both unicast and multicast flows of a virtual link.
All the flows in a virtual link can have only one source
publisher, but may have one or more destination subscribers.
In addition, a VLC constraint allows users to specify a set of
messages for each flow in the virtual link. Each of these sets
are separated by a “#”. A message in a VLC is represented as
MessageSize@RefreshPeriod.
-- Message size unit = byte, Refresh period unit = msec
Virtual-Link-Constraint VL1: (App1 ∼> App2, App3)

{12@1000} # {12@1000, 12@1000};↪→
Virtual-Link-Constraint VL2: (App4 ∼> App5) {20@80};

Port Connection Constraints. PCCs specify physical bidi-
rectional connections between two components.
--- GPM <=> ACS connections bandwidth unit = byte
Port-Connection-Constraint PCC1: (GPM_L1.portA <->

ACS_L1.port1) 1000000000; -- 1 Gigabyte↪→

IV. IMA SYNTHESIS & PROOF CERTIFICATES
GENERATION

The goal of IMA synthesis is to automatically synthesize an
IMA architecture that satisfies all the constraints encoded in
the OYSTER annex. The inputs to the synthesis task comprise
of an AADL model annotated with AADL properties along
with OYSTER constraints. The inputs are then translated to
SMT-LIB for constraint solving. In our case, OYSTER uses
the Z3 SMT solver. A satisfiable solution from Z3 is then au-
tomatically translated to an AADL model containing detailed
AADL implementations respecting component locations, their
port connections, and virtual link flows satisfying required
OYSTER constraints. The OYSTER toolchain provides a
plethora of options and toggles for the user to either check or
uncheck for Virtual Link Synthesis (feasible or optimal solu-
tion), check the Virtual Links’ Network Bandwidth Utilization
and also the capability to schedule GPM Applications hosted
on a designated GPM Processor.

A. From OYSTER Annex to SMT

The components are categorized by their avionics types and
declared as SMT enumerated types. For instance, we declare
enumerate types ACS and GPM in SMT for the Avionics
Cabinet Switch (ACS) and General Processing Module (GPM)
respectively.
Fixed-Location Constraints. FLCs are translated to uninter-
preted functions. For an FLC, GPM_L1 -> CCR_L1, An un-
interpreted function gpm to ccr : GPM → CCR is declared
and an assertion will be declared: gpm to ccr(gpm l1) =
ccr l1.
Co-Location Constraints. For each component, Ck that is
mapped to a target component Cτ , a function f(Ck,Cτ) is
declared and its type is (TypeCk

→ TypeCτ
). The co-

location of two components Ci, Cj itself to Cτ is declared
as a constraint asserting the equality of f(Ci,Cτ) and f(Ci,Cτ).

223

Separation Constraints. Separation Constraint is the dual of
Co-location constraint. For components, Ci, Cj to be separated
with respect to a target component Cτ . The entire process is
the same as that of Co-location constraint, but for the last step
where we state f(Ci,Cτ) ̸= f(Ci,Cτ).

Utilization Constraints. The utilization constraints state that
the computing resources provided to the CCR are sufficient
to the usage needs of hosted applications. We encode an
uninterpreted function of type (TypeC × TypeR → Int) for
each component – resource pair, and assert that the sum of
the resources used meets the resources provided.

Port Connection Constraints. A port connection constraint
c, from portA to portB is represented by declaring a function
of type (Port × Connection) → Port, where the sort
Connection is used to capture the name of the connection
itself, from portA to portB. Then, the definition is instantiated
as an assertion: port connection port(portA) = portB.

Virtual Link Constraints. There is a Virtual Link Constraint
between a source s and a destination t, with a refresh rate of
r and message size m. Then, Virtual Link Constraints induce
multiple sets of SMT constraints, with each set constraining
the desired Virtual Link specification in the IMA System. Each
such criteria and their associated constraints are described:

• Path Constraints. The port connections involved in the
Virtual Link from si and ti need to be synthesized for a
virtual link i. This synthesis can be formulated as a con-
nection selection problem. The set of connections selected
constitute the path between si and ti. Each connection
cxy represents a port connection between component x
and component y. If a connection cxy is selected, then
it should be assigned a weight of 1, otherwise a weight
of 0. Furthermore, the sum of all outgoing connections
csk from the source si to k must be 1, to enforce only
one outgoing flow. The sum of all connections involving
an intermediate component not in s, t must equal 2,
to enforce one incoming flow and one outgoing flow.
Finally, the sum of all incoming connections to ckt must
equal 1, to enforce only one incoming flow. Formally,

outdeg(s)∑
l=1

cisl =

indeg(t)∑
l=1

cilt = 1

indeg(x)∑
l=1

cilx +

outdeg(x)∑
l=1

cixl = 2 for x ̸= s, x ̸= t

The shortest path can be selected by optimizing over the
sum of weights of all connections in a path from si to ti

while satisfying the above constraints. The optimization
is performed using MaxSMT solving capabilities of Z3
[13].

• Bandwidth Constraints. The virtual links specified in
the OYSTER annex must also adhere to the bandwidth
constraints on the Aircraft Data Network. The constraints
and concepts are defined the ARINC 664 specification

[4]. And two important parameters need to be synthe-
sized for each virtual link: Bandwidth Allocation Gap
(BAG), Maximum Transmission Unit (MTU). The BAG
represents the minimum interval between frames on the
virtual link. The MTU represents the largest size of data
packet in a single frame that can be transmitted over
a network connection. They should also satisfy BAG,
MTU, and the jitter constraints. The complete set of
ARINC 664 constraints can be found elsewhere [4]. To
ensure the paper remains self-contained, we incorporate
the summarized formulas from the literature [6]. All the
constraints involved are linear constraints over integers
and can be straightforwardly encoded in SMT-LIB. For
virtual link i, BAGi denotes its BAG, ni represents total
number of messages in i (indexed from 1 to ni), sij the
message size of jth message, pij the refresh period for
the jth message and MTU i its MTU. Let B denote
the bandwidth of the entire network. Then, the following
constraints need to satisfied:

Real-time Constraints on Messages:

ni∑
j=1

⌈sji/MTU i⌉
pij

≤ 1/BAGi

Bandwidth Constraints:

8 ∗
n∑

i=1

(MTU i + 67)

BAGi
∗ 103 ≤ B

Jitter Constraints:

40 + 8 ∗
n∑

i=1

MTU i + 67

B
≤ 500

General BAG and MTU Constraints:

BAGi ∈ {2k|k ∈ N ∧ 1 ≤ k ≤ 7}

MTU i ∈ N ∧ 1 ≤ MTU i ≤ 1471

GPM Applications Scheduling. The OYSTER toolchain can
also generate static schedules for applications hosted on GPM
using SMT solvers. Four important characteristics are as-
sociated with applications: start time, duration, period, and
priority. The start time denotes when to execute an application.
Duration defines the time taken to execute an application.
Period refers to the frequency of execution of the application.
Priority indicates the order to execute an application relative to
the other applications. The input to the scheduling problem is
the priority, duration and period of applications. The output
is the start time for each application so that the priorities
are respected and no duration overlaps. The inputs for GPM
application scheduling are captured in AADL as an OYSTER
property and annotated against GPM applications specified
within the IMA system.

We first define the schedulability condition for a pair
of applications i, j, followed by constraints involved in the

224

scheduling problem, where GCD(x, y) denotes the greatest
common divisor of integers x, y.

sched(i, j) ≜ startj > starti ∧ durationi ≤ startj −
starti ≤ GCD(periodi, periodj)− durationj

- No scheduling conflicts:

∀i, j starti ≥ 0 ∧ startj ≥ 0 =⇒ sched(i, j)

- High priority apps start early:

∀i, j priorityi < priorityj =⇒ starti < startj

- Applications start times are all distinct:

∀i, j i ̸= j =⇒ starti ̸= startj

- Every application must be scheduled: ∀i starti ≥ 0

UNSAT Cores and Feedback When the constraints specified
in the OYSTER annex are unsatisfiable, OYSTER toolchain
computes the UNSAT core using Z3 and reports the unsatis-
fiabile constraints at a high level. If the location constraints
are unsatisfiable, then OYSTER recommends the developer to
check all fixed-location, separation and co-location constraints
that may be inconsistent with each other. UNSAT cores con-
cerning utilization constraints are straightforwardly reported
recommending the developer to check the resources allocated
(CPU, Memory) against the resources being used. UNSAT
cores for virtual links often involving exceeding the maximum
bandwidth allocation. In such a case, OYSTER recommends
to the developer to either increase the maximum allocated
bandwidth or to reduce the number of virtual links allocated.
For GPM Application the conflicts in schedulability between
pairs of GPM apps are reported back to the developer.

B. Proof Certificates Generation by Model Checking

Another feature of OYSTER is to enhance the synthe-
sized architecture with behaviors and safety properties in the
Assume Guarantee REasoning Environment (AGREE) [18]
annex of AADL. It utilizes the Kind2 model checker to prove
whether the model satisfies the safety properties. In case the
properties are proved valid, accompanying proof certificates
will be generated by Kind2 and can be independently verified
by third party tools to ensure the correctness of the results.
Different behavior aspects of IMA such as application exe-
cution schedule and latency analysis can be encoded in this
framework. In this work, we consider the execution schedule
of applications on a GPM. The schedule defines the start
time, priority and duration of each task. It is essential for
ensuring that the system operates efficiently and effectively, as
it helps to resolve conflicts between different applications and
functions, prevent overloading of resources, and optimize the
use of processing power and memory. We have modeled the
application execution schedule as a behavior model in AGREE
annex [2]. The formal properties of interests are that pair-wise
applications shall not have any conflicts. To further increase
the stakeholders’ confidence in the correctness of the IMA
solutions, we introduce additional model checking layer to
ensure the correctness of schedules by the proof certificates
generated by the model checker.

V. EVALUATION

To demonstrate the capabilities of the OYSTER tool1, GE
Aviation developed a smaller-scale (yet fully-defined) IMA
Architecture for a rotorcraft air vehicle. One of the major
avionics systems of this architecture is the Fuel Control
System, which we have chosen as the basis of the OYSTER
use case. More specifically, the focus is on the IMA aspects of
the architecture that host this Fuel Control System ARINC 653
Application and gateway its data throughout the Aircraft Data
Network (ADN). The Fuel Control Application is responsible
for managing various aspects of the Fuel Control System of an
aircraft. These functions include pumping of fuel, delivering
fuel to the engines, monitoring fuel flow, etc. This application
allows the flight crew to control fuel tank selection, shutoff
valve functions, and the main and standby pumps. It also pro-
vides monitoring and reporting of fuel system characteristics
such as fuel quantity, temperature, and pressure. A notional
diagram of the IMA fuel system control application use case
can be found elsewhere [1].

The OYSTER toolchain was developed as a plugin for
the Open Source AADL Tool Environment (OSATE) [15].
The IMA use case involves 43 IMA components that also
involves 5 virtual links, and 6 applications to be scheduled on a
particular GPM (on GPM R2). The total number of OYSTER
constraints are in the order of hundred constraints. Configuring
them manually can be a challenging task. OYSTER makes it
easier to specify these constraints and uses formal methods
tools to synthesize correct-by-construction solutions. The IMA
architecture synthesis takes 7.751s. The schedule synthesized
for our use case was encoded in AGREE annex to simulate the
execution of schedules. We consider 15 formal properties for
6 applications, and the entire process for proving properties
takes 6.441s. However, with proof certificates generation,
the process takes 33.196s, which is expected because proofs
generation is expensive. We have also successfully validated
the correctness of the proof certificates by running Z3, cvc5,
and LFSC checker. The performance evaluation indicates that
OYSTER is usable practically. We leveraged a model checker
to generate proof certificates to ensure formal properties of
the behavior model are indeed valid. For our example use
case (application schedules), the model checking scales well
(proved all properties in under 3 mins) to a typical number of
applications (10 apps) that one would expect in practical IMA
systems. All experiments were conducted by running OYS-
TER on an Intel(R) Core(TM) i7 CPU @ 2.9GHz
Processor with 4 cores and 16 GB RAM running macOS
Ventura (Version 13.1) .

A. Lessons Learned

For any aircraft development program, the airworthiness
of the entire aircraft must be established through a rigorous
certification process. This extends not just to the airframe
itself, but also to the computing systems installed on the
aircraft (i.e. the IMA). One key aspect of an IMA is that a

1OYSTER GitHub: https://github.com/ge-high-assurance/OYSTER

225

https://github.com/ge-high-assurance/OYSTER

majority of system functions (both safety critical and non-
safety critical) are now implemented as software applications
running on the IMA platform. As such, this airborne software
is also required to adhere to the same rigorous certification
process. Guidance for certifying airborne software is provided
in DO-178C. In order to make OYSTER part of the GE
Aviation IMA development pipeline, there are several key
challenges to overcome.

• Since the goal of OYSTER is to automate and replace
some of the steps currently performed by the existing
qualified toolchain, it will have to meet all of the objec-
tives of DO-178C Software Considerations in Airborne
Systems and Equipment Certification or DO-330 tool
qualification standard.

• There are several steps in our process where translation
of data has to occur to go from one tool to the next. Each
of these points will have to have a qualified verifier de-
veloped to prove that nothing was corrupted/changed/lost
during transformation.

• One major concern is the format of the formal proof
certificates and other verification evidence that is being
produced. It is not easily human-readable, and even if
the format was changed to something easier to read, an
FAA certification authority with no knowledge of formal
methods would be unable to understand the proofs. We
cannot assume that aviation/avionics experts will have
this expertise.

• We expect the learning curve for a systems integrator
on a real aircraft development program to be able to use
these tools without help will be steep. Training for system
developers will be needed. We also need to understand
the level of expertise with formal methods tools such as
SMT, Kind2 model checker, and AADL modeling that
they are expected to have.

VI. RELATED WORK

Several works exist in the literature on the generation
of schedules and architectural models. SMT-based system
scheduling synthesis for applications have been proposed
for time-triggered platforms [12], [11], [10] and TTEthernet
networks [19]. SMT-based techniques have also been proposed
for the synthesis [24], [35] and refinement [21], [20], [26] of
system architectures. SAT-solving techniques have been pro-
posed for generating architectural models [31], [37]. Correct-
by-construction techniques for developing architectural models
include approaches that use the “B” method [29], linear
temporal logic [34], [41], mixed integer programming [42],
AADL-based tools and techniques have been developed for
synthesis [27], reconfiguration [43], and verification [32], [38],
[40], integrated design modeling [14], and domain-specific
languages [5]. The CoBaSa framework has been applied to
industrial-scale IMA architecture synthesis problems [31] and
is closely related to our work. The difference lies in the
use of solvers and solver theories. CoBaSa uses Pseudo-
boolean (PBSAT) and Integer Linear Programming (ILP)
solvers to perform IMA architecture synthesis [31], [30],

whereas OYSTER uses modern SMT solvers with combi-
nation of Quantifier-free Equality under Uninterpreted Func-
tions (QF EUF), Quantifier-Free Linear Integer Arithmetic
(QF LIA), Boolean and Algebraic Datatype theories. OYS-
TER encodes IMA constraints in SMT allowing for reporting
of UNSAT cores, which could easily localize issues and
provide useful feedback to journeyman developers about the
constraints being violated; whereas CoBaSa does not.

VII. CONCLUSION AND FUTURE WORK

We have presented a formal language and end-to-end frame-
work called OYSTER to automatically synthesize aspects of
industrial IMA platforms. The language enables users to en-
code IMA architecture constraints. The toolchain takes in the
AADL models annotated with OYSTER constraints as input
and auto-synthesizes a correct-by-construction IMA architec-
ture instantiated with implementation details. The synthesized
architecture can be annotated with behavior models and safety
properties. The safety properties can then be discharged by the
Kind2 model checker, which is guaranteed to be correct by
the formal proofs generated by the model checker. Users may
independently verify the correctness of the proofs by using
third-party SMT solvers and proof checkers. The framework
was applied on a use case provided by GE Aviation, and
the evaluation showed promising results along with lessons
learned. One potential direction of future work would be to
support multi-core scheduling (e.g., schedule GPM applica-
tions in multiple GPM processors) and integrate OYSTER with
GE Aviation’s existing development pipeline. Another research
direction is to extend OYSTER to support more aspects of
IMA and seek certification for OYSTER solutions.

Acknowledgement & Disclaimer: Distribution Statement
“A” (Approved for Public Release, Distribution Unlimited).
This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA). The views,
opinions and/or findings expressed are those of the author
and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S.
Government.

REFERENCES

[1] OYSTER Integrated Modular Avionics Use Case Arthictecture.
https://github.com/ge-high-assurance/OYSTER/blob/main/models/
notional architecture/IMA.PNG (2022), [Online; Accessed 2023-08-14]

[2] OYSTER Integrated Modular Avionics Use Case Behavior Model.
https://github.com/ge-high-assurance/OYSTER/blob/main/models/
FuelControlSystem Behavior/FuelControlSystem Behavior.aadl (2022),
[Online; Accessed 2023-08-14]

[3] OYSTER Language Grammar. https://github.com/ge-high-assurance/
OYSTER/blob/main/tools/plugin/verdict/com.ge.research.osate.oyster.
dsl/src/com/ge/research/osate/oyster/dsl/Oyster.xtext (2022), [Online;
Accessed 2023-08-14]

[4] Airlines Electronic Engineering Committee: Aircraft Data Network Part
7, AFDX NETWORK, ARINC Specification 664 (2002)

[5] Alves, R., Amaral, V., Cintra, J., Tavares, B.: A Family of Domain-
Specific Languages for Integrated Modular Avionics. In: International
Conference on the Quality of Information and Communications Tech-
nology. pp. 239–254. Springer (2019)

[6] An, D., Kim, K.H., Kim, K.I., et al.: Optimal Configuration of Virtual
Links for Avionics Network Systems. International journal of aerospace
engineering 2015 (2015)

226

https://github.com/ge-high-assurance/OYSTER/blob/main/models/notional_architecture/IMA.PNG
https://github.com/ge-high-assurance/OYSTER/blob/main/models/notional_architecture/IMA.PNG
https://github.com/ge-high-assurance/OYSTER/blob/main/models/FuelControlSystem_Behavior/FuelControlSystem_Behavior.aadl
https://github.com/ge-high-assurance/OYSTER/blob/main/models/FuelControlSystem_Behavior/FuelControlSystem_Behavior.aadl
https://github.com/ge-high-assurance/OYSTER/blob/main/tools/plugin/verdict/com.ge.research.osate.oyster.dsl/src/com/ge/research/osate/oyster/dsl/Oyster.xtext
https://github.com/ge-high-assurance/OYSTER/blob/main/tools/plugin/verdict/com.ge.research.osate.oyster.dsl/src/com/ge/research/osate/oyster/dsl/Oyster.xtext
https://github.com/ge-high-assurance/OYSTER/blob/main/tools/plugin/verdict/com.ge.research.osate.oyster.dsl/src/com/ge/research/osate/oyster/dsl/Oyster.xtext

[7] Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann,
M., Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., et al.:
cvc5: A Versatile and Industrial-Strength SMT Solver. In: International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 415–442. Springer (2022)

[8] Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version
2.0. In: Proceedings of the 8th international workshop on satisfiability
modulo theories (Edinburgh, UK). vol. 13, p. 14 (2010)

[9] Barrett, C., Tinelli, C.: Satisfiability Modulo Theories. Springer (2018)
[10] Beji, S., Hamadou, S., Gherbi, A., Mullins, J.: SMT-based cost op-

timization approach for the integration of avionic functions in IMA
and TTEthernet architectures. In: 2014 IEEE/ACM 18th International
Symposium on Distributed Simulation and Real Time Applications. pp.
165–174. IEEE (2014)

[11] Biewer, A., Andres, B., Gladigau, J., Schaub, T., Haubelt, C.: A
symbolic system synthesis approach for hard real-time systems based
on coordinated smt-solving. In: 2015 Design, Automation & Test in
Europe Conference & Exhibition (DATE). pp. 357–362. IEEE (2015)

[12] Biewer, A., Gladigau, J., Haubelt, C.: Towards tight interaction of asp
and SMT solving for system-level decision making. In: ARCS 2014;
2014 Workshop Proceedings on Architecture of Computing Systems.
pp. 1–7. VDE (2014)

[13] Bjørner, N.S., Phan, A.: νZ - Maximal Satisfaction with Z3. In: Kutsia,
T., Voronkov, A. (eds.) 6th International Symposium on Symbolic
Computation in Software Science, SCSS 2014, Gammarth, La Marsa,
Tunisia, December 7-8, 2014. EPiC Series in Computing, vol. 30, pp. 1–
9. EasyChair (2014). https://doi.org/10.29007/jmxj, https://doi.org/10.
29007/jmxj

[14] Bonev, M., Hvam, L., Clarkson, J., Maier, A.: Formal computer-aided
product family architecture design for mass customization. Computers
in industry 74, 58–70 (2015)

[15] Carnegie Mellon University: Open Source AADL Tool Environment
(OSATE). https://osate.org/index.html (2016), [Online; Accessed 2023-
08-14]

[16] Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model
checker. In: International Conference on Computer Aided Verification.
pp. 510–517. Springer (2016)

[17] Clarke, E.M.: Model checking. In: Foundations of Software Technology
and Theoretical Computer Science: 17th Conference Kharagpur, India,
December 18–20, 1997 Proceedings 17. pp. 54–56. Springer (1997)

[18] Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.:
Compositional Verification of Architectural Models. In: NASA Formal
Methods Symposium. pp. 126–140. Springer (2012)

[19] Craciunas, S.S., Oliver, R.S.: SMT-based Task-and Network-Level Static
Schedule Generation for Time-Triggered Networked Systems. In: Pro-
ceedings of the 22nd international conference on real-time networks and
systems. pp. 45–54 (2014)

[20] Delmas, K., Delmas, R., Pagetti, C.: SMT-based Architecture Modelling
for Safety Assessment. In: 2017 12th IEEE International Symposium on
Industrial Embedded Systems (SIES). pp. 1–8. IEEE (2017)

[21] Delmas, K., Delmas, R., Pagetti, C.: SMT-based Synthesis of Fault-
Tolerant Architectures. In: International Conference on Computer Safety,
Reliability, and Security. pp. 287–302. Springer (2017)

[22] Dutertre, B.: Yices 2.2. In: International Conference on Computer Aided
Verification. pp. 737–744. Springer (2014)

[23] Feiler, P.H., Gluch, D.P.: Model-based engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language.
Addison-Wesley (2012)

[24] Finkbeiner, B., Schewe, S.: SMT-based Synthesis of Distributed Sys-
tems. In: Proceedings of the second workshop on Automated formal
methods. pp. 69–76 (2007)

[25] Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The
JKind Model Checker. In: International Conference on Computer Aided
Verification. pp. 20–27. Springer (2018)

[26] Goldman, R.P., Bryce, D., Pelican, M.J., Musliner, D.J., Bae, K.: A
Hybrid Architecture for Correct-by-Construction Hybrid Planning and
Control. In: NASA Formal Methods Symposium. pp. 388–394. Springer
(2016)

[27] Hardin, D.S., Slind, K.L.: Formal Synthesis of Filter Components
for Use in Security-Enhancing Architectural Transformations. In: 2021
IEEE Security and Privacy Workshops (SPW). pp. 111–120. IEEE
(2021)

[28] Larraz, D., Laurent, M., Tinelli, C.: Merit and Blame Assignment
with Kind 2. In: Formal Methods for Industrial Critical Systems: 26th

International Conference, FMICS 2021, Paris, France, August 24–26,
2021, Proceedings 26. pp. 212–220. Springer (2021)

[29] Lecomte, T., Servat, T., Pouzancre, G., et al.: Formal Methods in Safety-
Critical Railway Systems. In: 10th Brasilian symposium on formal
methods. pp. 29–31 (2007)

[30] Manolios, P., Papavasileiou, V.: ILP Modulo Theories. In: Computer
Aided Verification: 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings 25. pp. 662–677.
Springer (2013)

[31] Manolios, P., Vroon, D., Subramanian, G.: Automating Component-
Based System Assembly. In: Proceedings of the 2007 international
symposium on Software testing and analysis. pp. 61–72 (2007)

[32] Meng, B., Larraz, D., Siu, K., Moitra, A., Interrante, J., Smith, W.,
Paul, S., Prince, D., Herencia-Zapana, H., Arif, M.F., et al.: VERDICT:
A Language and Framework for Engineering Cyber Resilient and Safe
System. Systems 9(1), 18 (2021)

[33] Moura, L.d., Bjørner, N.: Z3: An Efficient SMT Solver. In: International
conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 337–340. Springer (2008)

[34] Nilsson, P., Hussien, O., Balkan, A., Chen, Y., Ames, A.D., Grizzle,
J.W., Ozay, N., Peng, H., Tabuada, P.: Correct-by-construction adaptive
cruise control: Two approaches. IEEE Transactions on Control Systems
Technology 24(4), 1294–1307 (2015)

[35] Peter, S., Givargis, T.: Component-based synthesis of embedded sys-
tems using satisfiability modulo theories. ACM Transactions on Design
Automation of Electronic Systems (TODAES) 20(4), 1–27 (2015)

[36] Prisaznuk, P.J.: Integrated Modular Avionics. In: Proceedings of
the IEEE 1992 National Aerospace and Electronics Conference@
m NAECON 1992. pp. 39–45. IEEE (1992)

[37] Reimann, F., Lukasiewycz, M., Glass, M., Haubelt, C., Teich, J.: Sym-
bolic system synthesis in the presence of stringent real-time constraints.
In: Proceedings of the 48th Design Automation Conference. pp. 393–
398 (2011)

[38] Siu, K., Moitra, A., Li, M., Durling, M., Herencia-Zapana, H., Interrante,
J., Meng, B., Tinelli, C., Chowdhury, O., Larraz, D., et al.: Architectural
and Behavioral Analysis for Cyber Security. In: 2019 IEEE/AIAA 38th
Digital Avionics Systems Conference (DASC). pp. 1–10. IEEE (2019)

[39] Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof
checking using a logical framework. Formal Methods in System Design
42(1), 91–118 (2013)

[40] Suo, D., An, J., Zhu, J.: AADL-based modeling and TPN-based Ver-
ification of Reconfiguration in Integrated Modular Avionics. In: 2011
18th Asia-Pacific Software Engineering Conference. pp. 266–273. IEEE
(2011)

[41] Wongpiromsarn, T., Topcu, U., Murray, R.: Formal Synthesis of Em-
bedded Control Software: Application to Vehicle Management Systems.
In: Infotech@Aerospace 2011. p. 1506 (2011)

[42] Xuan, Z., Xiong, H., Feng, H.: Hybrid partition-and network-level
scheduling design for distributed integrated modular avionics systems.
Chinese Journal of Aeronautics 33(1), 308–323 (2020)

[43] Zhang, Q., Wang, S., Liu, B.: Approach for Integrated Modular Avionics
Reconfiguration Modelling and Reliability Analysis based on AADL. Iet
Software 10(1), 18–25 (2016)

227

https://doi.org/10.29007/jmxj
https://doi.org/10.29007/jmxj
https://osate.org/index.html

Formal Methods in Computer-Aided Design 2023

Fortis: A Tool for Analysis and Repair of Robust
Software Systems

Changjian Zhang
Carnegie Mellon University

Pittsburgh, PA USA
changjiz@andrew.cmu.edu

Ian Dardik
Carnegie Mellon University

Pittsburgh, PA USA
idardik@andrew.cmu.edu

Rômulo Meira-Góes
The Pennsylvania State University

State College, PA USA
romulo@psu.edu

David Garlan
Carnegie Mellon University

Pittsburgh, PA USA
dg4d@andrew.cmu.edu

Eunsuk Kang
Carnegie Mellon University

Pittsburgh, PA USA
eunsukk@andrew.cmu.edu

Abstract—This paper presents Fortis, a tool for automated,
formal analysis and repair of robust discrete systems. Given a
system model, an environment model, and a safety property,
the tool can be used to automatically compute robustness as
the amount of deviations in the environment under which the
system can continue to guarantee the property. In addition,
Fortis enables automated repair of a given system to improve
its robustness against a set of intolerable deviations through
a process called robustification. With these techniques, Fortis
enables a new process for developing robust-by-design systems.
The paper presents the overall design of Fortis as well as the
key details behind the robustness analysis and robustification
techniques. The applicability and performance of Fortis are
illustrated through experimental results over a set of case study
systems, including a radiation therapy system, an electronic
voting machine, network protocols, and a transportation fare
system.

I. INTRODUCTION

Typical verification tasks involve the following question:
Given a model of a system (M) and an environment (E), does
the system satisfy a desired property (P) under the environ-
ment (i.e., M∥E |= P)? The model E here captures various
assumptions that the system makes about its environment to
establish P . For example, such assumptions may state that
a human operator in a safety-critical system (e.g., a medical
device) performs a set of actions in an expected order, or that
the underlying network in a distributed system is reliable and
delivers messages correctly from one node to another.

In practice, once the system is deployed, the actual envi-
ronment may deviate from this model, either due to modeling
errors, faults, or natural changes in the environment. For
example, the operator may inadvertently commit errors from
time to time (e.g., omitting or repeating an action); the network
might experience an unexpected disruption and fail to guar-
antee reliable delivery (e.g., losing or duplicating messages).
Ideally, a system that is robust would continue to ensure its
most critical properties even under possible deviations in the
environment.

In this paper, we present Fortis1, a tool for formal analysis
and repair of robust software systems. Our tool is based on a
formal definition of robustness for discrete systems introduced
in our prior work [1]: Given system M , environment E (both
specified as a labeled transition system (LTS)) and safety
property P , the robustness of the system, denoted ∆, is defined
as the set of all possible deviations in E under which M
continues to satisfy P . More specifically, ∆ consists of traces
that do not belong to the trace set of E, capturing additional
environmental behaviors beyond the normative environment.
For example, if M describes the design of a medical system
(e.g., radiation therapy system), E the expected behavior
of the human operator, and P a safety requirement (e.g.,
“Patients should be protected from radiation overdose”), ∆
would represent the set of possible operator errors under
which the system can still ensure safety. Conceptually, ∆
represents the safe operating envelope of the system: As long
as the environmental deviations remain within this envelope,
the system can guarantee P .

Building on this definition, Fortis provides various types of
analysis tasks to support rigorous design and analysis of robust
systems. First, given M , E, and P , Fortis can be used to au-
tomatically compute ∆ as a qualitative measure of the system
robustness. Our tool can also be used to compute deviations
that lie outside of ∆ (which we call intolerable deviations),
showing how P may be violated when the environment moves
outside of the operating envelope. In addition, given a pair of
alternative system designs, M1 and M2, Fortis can also be used
to formally compare the two with respect to their robustness
(i.e., compute a set of deviations that one design can tolerate
but the other cannot).

Once the above analysis reveals that the given system is
not robust against certain deviations, the developer may wish
to modify M to further improve its robustness. To support
this task, Fortis also provides a type of system repair called
robustification [2]: Given M , P , E, and a set of intolerable

1https://github.com/cmu-soda/Fortis

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 31 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://github.com/cmu-soda/Fortis
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_31
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_31
https://creativecommons.org/licenses/by/4.0/

InPlace OutOf
Place

E

X

Editing

Confirm
Xray

Confirm
Ebeam

Fire
Xray

Fire
Ebeam

Beam
Delivered

BB

EnterEnter

EX

UpUp

UpUp

Enter

NotSet

Xray
Mode

Ebeam
Mode

SwitchTo
Ebeam

SwitchTo
Xray

X E

SetSet

(b) Beam Setter (MB)

(a) Treatment Interface (MI) (c) Spreader (MS)

Select
Mode

Confirm
Mode

FireBeam

Task
Complete

X E

Enter

B

(d) Operator Task (E)

XE

X E

X E

Editing

Confirm
Xray

Confirm
Ebeam

Fire
Xray

Fire
Ebeam

Beam
Ready

SetSet

EnterEnter

EX

UpUp

UpUp

B

(e) Redesigned Interface (M'I)

Beam
Delivered

Enter

B B

Fig. 1. Labeled transition systems for a radiation therapy system (M = MI∥MB∥MS).

deviations, δ̄ such that M∥E′ ̸|= P (where E′ = E ⊕ δ̄ is the
deviated environment), the goal is to synthesize a more robust
system, M ′, such that M ′∥E′ |= P .

As far as we are aware, Fortis is the first tool that is
capable of providing the types of robustness analysis and repair
described above. Compared to the prototypes presented in our
prior publications, additional engineering effort has been taken
to integrate them into a uniform framework. Together with
these techniques, we believe Fortis enables a new methodology
for developing robust-by-design systems. Developers can start
with an initial design that guarantees its desired properties
under the normative environment. Then, they can use Fortis
to understand the robustness of the initial design and generate
the deviations that it cannot tolerate. Finally, developers can
decide which of these deviations the system should be able to
tolerate, and use Fortis to automatically generate a more robust
design. Developers may iterate this process for multiple times
until a satisfactory design is met.

To evaluate the tool, it has been applied to a wide range of
case study systems, including a radiation therapy system (sim-
ilar to the well-known Therac-25 system [3]), an electronic
voting system, network protocols, an infusion pump, and a
fare collection protocol used in a public transportation system.
Our experiments show that Fortis can automatically compute
robustness for complex system models under several seconds,
and also synthesize repairs for most of the case studies under
a set timeout.

The rest of the paper is structured as follows. We first
demonstrate use cases of Fortis using an example involving
a radiation therapy system (Section II). We then present an
overview of the tool architecture (Section III) and describe the
key details of the analysis and robustification techniques (Sec-
tion IV). Next, we illustrate the applicability and performance
of Fortis over the case studies (Section V). We conclude with
the related work (Section VI) and a discussion of limitations
and possible extensions (Section VII).

II. MOTIVATING EXAMPLE

Consider a radiation therapy machine similar to the well-
known Therac-25 machine [3]. Figure 1 shows the labeled
transition systems of the main system components, including
(a) Treatment Interface (MI), which allows the operator to
choose the radiation mode and fire the beam, (b) Beam
Setter (MB), which switches between the two radiation modes
(Electron and X-ray), and (c) Spreader (MS), which is inserted
during the X-ray mode to attenuate the effect of the high-
power X-ray beam and limit possible overdose (X-ray delivers
roughly 100 times higher level of current than the Electron
beam). The overall system is the composition of the three
components, i.e., M =MI ||MB ||MS .

An important safety requirement for the system is that the
spreader must be in place when the beam is delivered in the X-
ray mode. This requirement can be formally defined in linear
temporal logic [4] as: G(BeamDelivered ∧ XrayMode ⇒
InP lace). Furthermore, the task to be carried out by the
operator is specified as an environment model (E) in Figure
1(d): In the normal treatment process, the therapist selects the
correct mode for a given patient by pressing either X or E,
confirms the mode by pressing Enter, and finally initiates the
therapy by pressing B.

Applying a verification technique such as model check-
ing [5] would show that the above system satisfies the safety
property under the normative operator behavior, i.e., M ||E |=
P . Beyond this standard verification task, Fortis offers the
following additional tasks:

a) Computing robustness: In addition to stating that M
satisfies P under E, Fortis can be used to generate the
set of all deviations (i.e., environmental traces that do not
belong to the behavior of E) under which the system can
still guarantee P . This set captures the overall robustness of
the system, and can aid the developer in understanding the
system’s ability in handling deviations in the environment. In
the radiation therapy system example, one of the deviations
that Fortis generates is ⟨X,B⟩, which depicts the operator

229

omitting to confirm the radiation mode before firing; the
system guarantees P even under a new environment E′ where
this trace has been added as an additional behavior.

b) Generating intolerable deviations: Complementary to
the previous analysis, Fortis can also be used to generate
deviations for which the system is not able to guarantee
P . In the radiation therapy example, one such deviation is
⟨X,Up,E,Enter, B⟩, depicting a scenario where the operator
accidentally selects the X-ray mode and corrects the mistake
by pressing Up and then E. When the operator presses B to
fire the beam, the beam setter might still be in transition from
X-ray to the Electron mode (in state SwitchToEbeam in MB ,
Figure 1(b)) while the spreader is out of place, causing P to
be violated. The output from this analysis can help identify
parts of the system design that can be made more robust.

c) Comparing designs: Given two different versions of a
system (e.g., Therac-25 and its predecessor, Therac-20, which
was known to be safer thanks to an additional hardware
interlock that was subsequently removed [3]), Fortis can also
be used to formally compare the two with respect to their
robustness. For example, Fortis would show that Therac-20 is
strictly robust than Therac-25 by generating a deviation (e.g.,
⟨X,Up,E,Enter,B⟩) for which the former can guarantee P
while the latter cannot.

d) Robustifying the system: Fortis can be used to au-
tomatically improve an existing design through a process
called robustification: If M is not robust against some given
set of deviations (δ̄), generate a more robust design, M ′,
that can satisfy P under δ̄ (i.e., M ′ is strictly more robust
than M). For example, given deviation ⟨X,Up,E,Enter,B⟩,
Fortis automatically synthesizes M ′ = M ′

I∥MB∥MS ; this
new design, M ′, guarantees the safety property by preventing
the operator from firing the beam until the mode switch has
completed (i.e., state BeamReady), as shown in Figure 1(e).

III. OVERVIEW OF FORTIS

Figure 2 shows the overall architecture of Fortis. Given
LTS-based specifications of machine M , its normative envi-
ronment E, and safety property P as input, and the Model
Parser compiles them into our internal data structure for LTS.
Depending on the type of task that the user wishes to perform,
the input models are then passed onto Robustness Analysis or
Robustification.

a) Robustness Analysis: To compute robustness, we first
generate the weakest assumption of M with respect to environ-
ment E and property P . In assume-guarantee style of reason-
ing [6], the weakest assumption captures the largest possible
environmental behavior under which the machine satisfies a
given property. Then, robustness, denoted ∆, is computed as
the set of traces that are in the weakest assumption but not in
the expected environment E. In general, ∆ may be infinite,
and not in a form that is easily comprehensible by the user.
Thus, we partition ∆ into a finite set of equivalence classes,
each of which contains traces that describe the same type of
deviation (e.g., the type of user error where one omits an
action), and sample representative traces from those classes.

Finally, if a deviation model is provided, we use it to generate
explanations that describe how the environment may deviate
from its expected behavior in a particular way. The final output
is a set of pairs of a representative trace and its corresponding
explanation. Section IV-A describes some of these steps in
more detail.

b) Robustification: To robustify a machine, the user
specifies a set of intolerable deviations (δ̄), which are then used
to transform the normative environment (E) into a deviated
environment (E′). Note that the robustness analysis module
can be used to generate all the intolerable deviations ∆̄,
which can help designers identify the undesirable deviations
of interest. Optionally, the user can also specify the preferred
behaviors (i.e., execution traces) expected to be retained in
the new design and the costs to control and observe events,
to generate repairs that are optimal with respect to these two
metrics.

Internally, Fortis leverages supervisory control theory [7]
to synthesize new designs; in particular, it currently uses the
state-of-the-art controller synthesizer called Supremica [8]. To
find optimal repairs, the Design Optimizer repeatedly invokes
the synthesizer for different combinations of the preferred
behaviors and the event costs, exploring the multi-objective
space to generate Pareto-optimal solutions [9] as the final
output of the tool (more details in Section IV-B).

c) Bridging Robustness and Robustification: In addition
to the implementation of the two techniques proposed in our
prior work, Fortis also provides an integration of them that
bridges the gap to close the loop for robust-by-design de-
velopment process, represented as the dashed line connecting
the two modules in Figure 2. Specifically, it enables the user
to first compute the robust deviations (∆) and intolerable
deviations (∆̄); and after the user has decided on the deviations
that they want the system to be robust against, it can then
generate the corresponding deviated environment model (E′).
Finally, this deviated model can be used as the input to
robustify the system design.

IV. ANALYSIS AND ROBUSTIFICATION METHODS

In this section, we provide key implementation details
behind the robustness analysis, robustification techniques, and
their integration in Fortis.

A. Robustness Analysis

a) Robustness Computation: In our definition [1], the
robustness of machine M with respect to environment E and
property P (denoted ∆(M,E,P)) is defined as the maximal
set of traces that do not cause a property violation and do
not belong to the trace set of the normative environment.
This set is computed by calculating the difference between
(1) the weakest assumption of M w.r.t. E and P , and (2) the
environment E, i.e., ∆(M,E,P) = beh(WM,E,P) \ beh(E),
where beh(·) is the set of all traces of a given LTS and
WM,E,P is the weakest assumption. Specifically, Fortis uses
the approach developed by Giannakopoulou et al. [10] to
compute the weakest assumption as an LTS.

230

Fig. 2. The architecture of Fortis.

b) Robustness Comparison: Similar to robustness com-
putation, given two designs M1 and M2, Fortis leverages their
weakest assumptions to compare their robustness. In particular,
given machine M1, M2, and the same environment E and
property P , the robustness comparison is achieved by:

∆(M1)−∆(M2) = beh(WM1,E,P) \ beh(WM2,E,P)

where WM1,E,P and WM2,E,P are the weakest assumptions
for M1 and M2 with respect to E and P , respectively.

c) Robustness Representation: In general, the set of
traces that represent ∆ may be infinite, and an LTS-based
representation may not be readily comprehensible by the user,
even for relatively simple models like the radiation therapy
machine. To address this, Fortis generates a succinct and finite
representation of ∆. It groups the traces in ∆ into a finite set
of equivalence classes Πs,a, where s is a state that directly
leads to a violation of E by taking the transition a (note that ∆
contain traces that belong to WM,E,P but not in E). Therefore,
Πs,a describes a class of robust traces that share the same
normative behaviors in E that all end in state s and deviate
from E by the same event a.

Finally, from each equivalence class, we sample a single
representative trace that represents this class. In particular,
the representative trace for Πs,a is generated by finding the
shortest trace in WM,E,P from the initial state to state s and
then appending event a to it. For example, in the radiation
therapy machine, ⟨X,B⟩ represents the equivalence class of
behaviors that deviate in action B from state sX , where sX is
the state reached by the normative behavior ⟨X⟩ and B is the
first deviated action leading to a trace not defined in E. The
final output from this step is a finite set of representative traces
that describe different types of environmental deviations.

d) Deviation Explanation: Representative traces describe
how the environment deviates from the expected behavior
as observed by machine M . However, they do not describe

the internal faults within the environment that cause these
deviations in the first place. For example, it is unclear what
kind of faults cause the deviation of ⟨X,B⟩. If a deviation
model that contains these internal events is provided by the
user, Fortis uses it to generate an explanation of how a
particular deviation arises due to an internal behavior of
the environment. In particular, given deviation model D and
representative trace σ, an explanation is generated by finding
trace σexp in D that is equivalent to σ when projected over the
observable events in M but contains additional faulty events.

A deviation model is created by augmenting the normative
environmental model E with additional transitions on faulty
events. For example, a deviation model for the radiation
therapy machine may specify that from state ConfirmMode
in E (Figure 1(d)), the operator might commit a type of
error called omission error [11], i.e., omitting Enter and
pressing B; this would be specified as an additional transition
from ConfirmMode to FireBeam on an internal faulty event
Omission. Then, Fortis would generate an explanation for the
representative trace ⟨X,B⟩ as ⟨X,Omission,B⟩. In [1], it is
further described how a deviation model can be automatically
generated by applying domain-specific patterns of deviations
(e.g., patterns of common human errors [11]) to the normative
environment E.

B. Robustification

Fortis finds not just any solution to the robustification
problem, but optimal repairs of M . In particular, it attempts
to optimize two different quality metrics: (1) the amount of
behaviors retained from M to new design M ′ and (2) the cost
of modifications needed to achieve M ′. Specifically, for (1),
we introduce the notion of preferred behaviors D, which are
specified as traces and represent operational scenarios that the
user wishes the new design to retain. For (2), we introduce
the notion of controllable Ac and observable Ao events that
indicate whether M ′ can control and observe additional events,

231

respectively, for the purpose of robustification. In addition, the
user can optionally assign a cost to these events, to distinguish
events that are more costly to control or observe.

These two metrics lead to conflicting objectives: With
additional controllable and observable events, the new design
can preserve more behaviors but the modification cost also
increases. Thus, finding optimal repairs is a multi-objective
optimization problem, where the goal is to generate a set
of Paret-optimal solutions [9]. Fortis implements a novel
algorithm to generate such solutions, using controller synthesis
as a primitive operation. At high-level, the Design Optimizer
first attempts to synthesize a controller that preserves the
maximum number of preferred behaviors (Dmax ⊆ D) with
all controllable and observable events (Ac and Ao). Then,
the optimizer incrementally removes elements from Dmax to
find solutions with a lower modification cost. In particular,
given a particular subset of preferred behaviors D′ ⊆ Dmax,
it searches for a controller that uses a minimal subset of the
controllable and observable events.

For the radiation therapy system, one possible repair that
Fortis generates results in the machine simply disabling action
Up in state ConfirmXray, to prevent the operator error from
occurring in the first place. While this solution technically
achieves the safety property, it is arguably undesirable, since
it prevents the operator from switching the radiation mode. To
rule out such solutions, the Fortis user may specify preferred
behaviors as traces ⟨X,Up⟩, ⟨E,Up⟩, stipulating that the
operator should be able to select Up after X or E to change
the mode. In addition, the user may assign a cost to event Set
to reflect the cost of making it controllable or observable by
the interface (MI) or the spreader component (MS).

Given the additional inputs on preferred behaviors and costs,
as an alternative solution, Fortis generates a repair like the
one in Figure 1(e); this solution retains the ability for mode
switching, while being more costly since it involves the system
observing an additional event, Set, to synchronize on the
completion of mode switching. The user of Fortis can examine
these alternative solutions and select the final one depending
on the trade-offs between the two metrics that they are willing
to make.

C. Integration

Compared to the prototype implementations in our prior
work, Fortis integrates the two techniques into a uniform
framework, i.e., they accept the same formats of input model
files and can produce results in a uniform manner. Also,
we leverage Automatalib [12], a well-maintained open source
library for transition systems, to provide a common interface
for our internal representations for LTS, which implements
the CompactFSM data structure for efficient model manipula-
tions. Moreover, we replace some algorithm implementations
with more efficient data structures like BitSet (for NFA to
DFA conversion) to further improve the performance of the
computation process.

Fortis also bridges the gap between the robustness compu-
tation and robustification. In particular, after generating the

representative traces for robustness and intolerable deviations,
and their explanations given a deviation model D, the user can
select the deviations δ′ that the new design should be robust
against. For example, ⟨X,Commission, Up,E,Enter,B⟩ is
the explanation of an intolerable deviation for the radiation
therapy machine, which could be included in δ′ as the user
wishes the new design to be robust against it.

To robustify the system against δ′, Fortis can automatically
generate a new deviation model D′ such that it only includes
the deviations in δ′ (as the original D may include more than
one kinds of human errors, e.g., commission error, omission
error, or repetition error). Then, the user can use D′ as
the input to the robustification process to synthesize the new
design M ′.

V. EXPERIMENTS

In this section, we illustrate the applicability and perfor-
mance of Fortis through experiments over a set of case studies.

A. Implementation and Usage

Fortis leverages Automatalib [12] and LTSA [13] for model
specification and manipulation, and Supremica [8] for super-
visory control synthesis. It supports commonly used specifica-
tion languages such as AUT and FSM (through Automatalib)
and FSP (language used by LTSA) to specify and output
system models.

Currently, Fortis implements a command-line interface.
Users provide system and property specifications through
command-line arguments or a JSON configuration file, and the
tool produces computation results into command-line outputs.
For example, Figure 3 shows the input and output for robust-
ness computation and robustification of the radiation therapy
example.

B. Case Studies

a) Voting Machine: We consider a simplified design of
an electronic voting system (called ES&S iVotronic, described
in more detail in [14]) that was used in several state-wide
elections in the US. This system is particularly interesting to
study from the perspective of robustness, as it was susceptible
to an election fraud involving malicious election officials [15].
In this machine, for the last step of a voting process, the
voters were asked to confirm their vote by pressing the confirm
button. However, some voters would inadvertently forget to
do so before exiting the voting booth (committing what is
generally called post-completion error [16]). This would then
allow a malicious official to enter the booth, press back, and
then modify the vote to their liking. In our model, the property
to guarantee is that the machine should record each voter’s
selection exactly as made by that voter, and the intolerable
deviation of interest is voters omitting the confirmation step.
We successfully used Fortis to generate alternative designs that
would prevent malicious officials from modifying the vote
(e.g., keeping track of who enters the booth and disabling
confirm if an official is in the booth).

232

Run robustness computation
java -jar fortis.jar robustness -s sys.lts -e env0.lts -p p.lts -d env.lts
[INFO] BaseCalculator - Generating robust behavior representation traces by equivalence classes...
[INFO] BaseCalculator - Generating the weakest assumption...
[INFO] SubsetConstructionGenerator - Compose System and Property...
[INFO] SubsetConstructionGenerator - System: #states = 22, #transitions: 44
[INFO] SubsetConstructionGenerator - S||P: #states = 20, #transitions: 40
[INFO] SubsetConstructionGenerator - Pruning and determinising the model...
[INFO] Robustness - Total time: 00:00:00:021
[INFO] Robustness - Equivalence class ’EquivClass(s=1, a=up)’:
[INFO] Robustness - RepTrace(word=x,up, deadlock=false) => x,up
[INFO] Robustness - Equivalence class ’EquivClass(s=8, a=up)’:
[INFO] Robustness - RepTrace(word=e,up, deadlock=false) => e,up
...

Run robustification
java -jar fortis.jar robustify config-fast.json
...
[INFO] SolutionIterator - Start iteration 1...
[INFO] SolutionIterator - Try to weaken the preferred behavior by one of the 0 behavior sets:
[INFO] SolutionIterator - This iteration completes, time: 00:00:00:093
[INFO] SolutionIterator - Number of controller synthesis process invoked: 5
[INFO] SolutionIterator - New solution found:
[INFO] SolutionIterator - Size of the controller: 63 states and 130 transitions
[INFO] SolutionIterator - Number of controllable events: 4
[INFO] SolutionIterator - Controllable: [enter, fire_ebeam, fire_xray, setMode]
[INFO] SolutionIterator - Number of observable events: 8
[INFO] SolutionIterator - Observable: [b, e, enter, fire_ebeam, fire_xray, setMode, up, x]
[INFO] SolutionIterator - Number of preferred behavior: 4
[INFO] SolutionIterator - Preferred Behavior:
[INFO] SolutionIterator - x,up,e,enter,b
[INFO] SolutionIterator - e,up,x,enter,b
[INFO] SolutionIterator - x,enter,up,up,e,enter,b
[INFO] SolutionIterator - e,enter,up,up,x,enter,b
[INFO] SolutionIterator - Utility Preferred Behavior: 48
[INFO] SolutionIterator - Utility Cost: -1
...

Fig. 3. Fortis’ input and ouput for robustness computation and robustification of the radiation therapy system. For robustness computation, the log indicates
two of the representative traces found by Fortis, i.e., ⟨x, up⟩ and ⟨e, up⟩. For robustification, the log indicates one redesign found by Fortis where all preferred
behaviors are satisfied under the events given in the solution to be controlled and observed. The concrete redesign model is written to a model specification
file in the AUT format.

b) Network Protocols: Consider the problem of trans-
mitting a sequence of messages between a pair of nodes
(sender and receiver) in a specific order. We consider two
protocols for network communication: (1) A naive protocol
where the sender assumes a perfectly reliable communication
channel, and (2) the Alternate Bit Protocol (ABP) [17], which
is designed to guarantee integrity of messages over unreliable
channels (e.g., message loss or duplication). The normative
environment (E) here is the reliable channel, which relays (1)
a message from the sender to the receiver and (2) then an
acknowledgement from the receiver back to the sender. Our
notion of deviations can be used to capture different ways in
which an unreliable channel might behave, such as reordering
(e.g., from expected trace t = ⟨msg1, msg2⟩ to deviation
t′ = ⟨msg2, msg1⟩), losing (t′ = ⟨msg2⟩), or duplicating
messages (t′ = ⟨msg1, msg1, msg2⟩). In particular, we used
Fortis to formally compare the robustness of the two protocols,
to compute faults in the channel that ABP can handle but the
naive one cannot.

c) Oyster: We consider the Oyster card fare collection
protocol used in public transportation in London, UK (de-
scribed in [18]). In this system, the user taps their card on the
entry gate at the beginning of their journey and on the exit gate
at the end. The protocol also allows the user to pay their fare
through other means such as credit cards and mobile payments.

In the normative case, the user chooses the appropriate method
of payment, and taps in and out with the same method. The
property of interest here is avoiding card collision, where two
different methods of payment are used in the same journey.
For instance, the user may tap the Oyster card at the entry
gate but then (by mistake) use their mobile phone at the exit,
possibly being charged a higher fare than required.

d) Infusion Pump: We model an infusion pump machine
for dispensing medication to patients through tube lines [19].
The machine also includes a built-in battery that activates
when the power cable is unplugged, and an alarm that goes
off when the battery is low. Normally, the operator plugs
in the device, configures the medication dose and starts the
dispensation. Deviations here correspond to operator errors or
power loss. In particular, if the cable is accidentally unplugged
and battery runs out during dispensation continues, this might
cause serious medical accidents, such as overdose. Thus, the
property to be guaranteed here is that if the machine loses
power, it should immediately stop any on-going dispensation.
This case study is the most complex out of the ones that we
have done so far and is intended to demonstrate the scalability
of Fortis.

C. Experimental Results
For each of the above case studies, we used Fortis to

(1) compute the robustness of the system and (2) synthesize

233

TABLE I
EVALUATION RESULTS. ALL PROBLEMS WERE RUN ON A LINUX MACHINE WITH A 3.6GHZ CPU AND 24GB

MEMORY UNDER A 30 MINUTE TIMEOUT.

Robustness Computation∗ Robustification†

Naive With heuristics

|M ||P | Time (s) |D| |A| |M ||E′| #Syn. Time (s) #Syn. Time (s)

Therapy 20 0.025 4 5 21 32 0.812 6 0.469

Naive 41 0.029 2 8 14 1 0.226 1 0.242
ABP‡ 23 0.033 - - - - - - -

Voting-1∗∗ 53 0.033 1 13 12 2,576 24.100 9 0.507
Voting-2 277 0.066 1 23 31 - T/O 16 1.908
Voting-3 821 0.106 1 32 44 - T/O 21 20.172
Voting-4 1,829 0.188 1 41 57 - T/O - T/O

Pump-1 163 0.036 2 12 104 2,304 59.584 13 1.129
Pump-2 1,679 0.149 4 16 760 - T/O 17 10.817
Pump-3 19,435 1.227 6 20 6,248 - T/O 21 457.839

Oyster 1,729 0.280 2 4 900 16 1.799 1 0.686
∗ |M ||P | is the number of states of the composition of machine M and property P , and the worst-case

complexity of the computation is O(2|M||P |).
∗∗ In Voting-n, n represents the number of voters and officials in the system; similarly, n in Pump-n is the

number of the dispensation lines connected to the pump.
† |D| is the number of preferred behaviors, |A| the number of controllable and observable events with cost,
|M ||E′| the number of states of machine M composed with deviated environment E′. The size of the search
space is approximately O(2|D|+|A|+|M||E′|). #Syn. is the number of calls to the controller synthesizer.

‡ Robustification is not applicable to ABP as it already satisfies P under the given deviations.

robustified designs against a given set of intolerable deviations.
Table I summarizes the results from the experiments. For
robustness computation, although the worst-case complexity
is exponential to the size of the machine M and property P .
i.e., O(2|M ||P |), Fortis can efficiently compute robustness even
for a very large model like Pump-3 with 19,435 states in 1.227
seconds.

On the other hand, robustification is a much more complex
problem to solve with a much larger search space, where
the worst case complexity is exponential to the number of
states of machine M and deviated environment E′, plus the
number of preferred behaviors D and controllable/observable
events A, i.e., O(2|D|+|A|+|M ||E′|). For example, the worst-
case complexity for robustifying Pump-2 is about 6x10234.

In addition, we found that controller synthesis is often the
bottleneck. The time to solve one synthesis instance grows
quickly with the increasing size of the system. Moreover,
for the same problem, the synthesis becomes harder to solve
when fewer controllable and observable events are provided
(while minimizing the cost). Compared to naively searching
solutions with brute-force (shown under the Naive columns),
Fortis tackles the performance issue by introducing several
search heuristics for pruning the search space and reducing
the number of synthesis calls, which are described in more
detail in [2]. While we believe that Fortis performs reasonably
well on robustification of complex models, we plan to explore
alternative synthesis techniques (such GR(1) synthesis [20],
[21] or constraint-based methods [22]) to further improve its
performance.

VI. RELATED WORK

Techniques for reasoning about system robustness have been
investigated in prior works [23], [24], [25], [26], [27]. Most
of these works adopt a quantitative notion of robustness (e.g.,
given bounded perturbations in its input, a robust system
should ensure bounded changes in the output), while we use
a definition that is qualitative (i.e., additional behaviors that
a deviating environment may exhibit). We believe that the
two types of definitions are complementary: A quantitative
notion is well-suited for capturing numerical deviations in
physical or hybrid systems (e.g., a sensor noise), while our
approach is suitable for capturing deviations that occur in
discrete systems (e.g., human operator errors). In addition, our
notion of deviations generalizes the one in [28], [29], where
deviations are defined as additional transitions that may be
introduced into the environment.

Evrostos [30] is a tool for model checking systems against
rLTL [31], a variant of LTL that captures robustness. rLTL
enables specifications stipulating that “small” violations in
the environmental assumption should result in proportionally
“small” violations in the system guarantee. In particular, rLTL
leverages a multi-valued semantics to capture different levels
of property violation (e.g., given an expected property of
form Gψ, one possible weaker variant is F(Gψ)). Besides
the difference in the definitions of robustness used, Evrostos
and Fortis differ in their goals: The former is used to specify
and verify robustness as a specification, while Fortis is used
to extract robustness as a property of the system. However,
rLTL could potentially be used to characterize certain types
of environmental deviations that are temporal in nature.

234

Robustification in Fortis also shares similarities with model
repair techniques [32], [33], [34], [35], [14]. Among these,
the closest work to our approach is OASIS [14], which also
leverages controller synthesis to revise a machine to satisfy
a security property in a deviated environment. One major
difference is that Fortis uses semantic-based metrics (i.e.,
preserved behaviors and costs of events) to qualify solutions,
whereas these works do not take into account the cost of
changes (e.g., OASIS), or consider only syntactic changes to
the model (e.g., the number of modified transitions and states).

VII. CONCLUSIONS AND FUTURE EXTENSIONS

We have presented Fortis, an automated tool for formal anal-
ysis and repair of robust discrete systems. The tool supports
a rigorous methodology for designing robust systems, where
the developer starts with an initial design and a normative
environment, and then iteratively improve its robustness by
identifying undesirable environmental deviations and robusti-
fying the system against them. As far as we know, Fortis is
the first tool that provides these types of robustness analyses
and repair by offering a seamless workflow packaged into a
single tool.

There are a number of further tool extensions that we
plan to explore. Currently, Fortis supports safety properties
only. Adding liveness support will involve new theoretical
extensions; in particular, during robustification, new behaviors
may need to be added to the system (instead of restricting its
behavior, as currently done for safety), possibly leading to a
much larger search space. In addition, we also plan to add a
capability for synthesizing a robust system (M) from scratch
instead of modifying an existing one (M to M ′). Finally, as
discussed in Section V, we will explore alternative methods
for controller synthesis to further improve its scalability.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation award CCF-2144860, the NSA under Award
No. H9823018D0008, and the Office of Naval Research
under Award N00014172899. It was also supported by
the CAMELOT project (reference POCI-01-0247-FEDER-
045915) which is co-financed by the European Regional
Development Fund and the Portuguese Foundation for Science
and Technology under CMU Portugal. Any views, opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the organizations.

REFERENCES

[1] C. Zhang, D. Garlan, and E. Kang, “A behavioral notion of robustness
for software systems,” in ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2020, p. 1–12.

[2] C. Zhang, T. Saluja, R. Meira-Góes, M. Bolton, D. Garlan, and E. Kang,
“Robustification of behavioral designs against environmental devia-
tions,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), 2023, to appear.

[3] N. G. Leveson and C. S. Turner, “An investigation of the therac-25
accidents,” Computer, vol. 26, no. 7, pp. 18–41, 1993.

[4] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), 1977, pp. 46–57.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT
Press, 2001.

[6] D. Giannakopoulou, K. S. Namjoshi, and C. S. Păsăreanu, Composi-
tional Reasoning. Springer International Publishing, 2018, pp. 345–
383.

[7] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 3rd ed. Springer, 2021.

[8] R. Malik, K. Åkesson, H. Flordal, and M. Fabian, “Supremica–an effi-
cient tool for large-scale discrete event systems,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 5794–5799, 2017, 20th IFAC World Congress.

[9] Y. Collette and P. Siarry, Multiobjective Optimization: Principles and
Case Studies, ser. Decision Engineering. Springer Berlin Heidelberg,
2013.

[10] D. Giannakopoulou, C. Pasareanu, and H. Barringer, “Assumption
generation for software component verification,” in Proceedings 17th
IEEE International Conference on Automated Software Engineering,,
2002, pp. 3–12.

[11] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Generating phe-
notypical erroneous human behavior to evaluate human–automation
interaction using model checking,” International Journal of Human-
Computer Studies, vol. 70, no. 11, pp. 888–906, 2012.

[12] M. Isberner, F. Howar, and B. Steffen, “The open-source learnlib,” in
Computer Aided Verification, D. Kroening and C. S. Păsăreanu, Eds.
Springer International Publishing, 2015, pp. 487–495.

[13] J. Magee and J. Kramer, Concurrency: State Models and Java Programs,
2nd Edition. London: Wiley, 2006.

[14] T. T. Tun, A. Bennaceur, and B. Nuseibeh, “OASIS: Weakening user
obligations for security-critical systems,” in 2020 IEEE 28th Interna-
tional Requirements Engineering Conference (RE), 2020, pp. 113–124.

[15] U.S. Attorney’s Office Eastern District of Kentucky, “Clay county
officials and residents convicted on racketeering and voter fraud
charges,” Mar 2010. [Online]. Available: https://archives.fbi.gov/
archives/louisville/press-releases/2010/lo032510.htm

[16] J. Reason, Human Error. New York: Cambridge University Press, 1990.
[17] G. Tel, Introduction to Distributed Algorithms, 2nd ed. Cambridge

University Press, 2000.
[18] D. Sempreboni and L. Viganò, “X-men: A mutation-based approach for

the formal analysis of security ceremonies,” in 2020 IEEE European
Symposium on Security and Privacy (EuroS&P), 2020, pp. 87–104.

[19] M. L. Bolton and E. J. Bass, “Evaluating human-automation interaction
using task analytic behavior models, strategic knowledge-based erro-
neous human behavior generation, and model checking,” in 2011 IEEE
International Conference on Systems, Man, and Cybernetics, 2011, pp.
1788–1794.

[20] S. Maoz and J. O. Ringert, “GR(1) synthesis for LTL specification
patterns,” in Proceedings of Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2015, pp. 96–106.

[21] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthe-
sis of reactive(1) designs,” Journal of Computer and System Sciences,
vol. 78, no. 3, pp. 911–938, 2012, in Commemoration of Amir Pnueli.

[22] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in Formal Methods in Computer-Aided De-
sign (FMCAD), 2013, pp. 1–8.

[23] T. A. Henzinger, J. Otop, and R. Samanta, “Lipschitz robustness of finite-
state transducers,” in 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science, FSTTCS 2014,
December 15-17, 2014, New Delhi, India, 2014, pp. 431–443.

[24] R. Bloem, K. Chatterjee, K. Greimel, T. A. Henzinger, and B. Job-
stmann, “Specification-centered robustness,” in Industrial Embedded
Systems (SIES), 2011 6th IEEE International Symposium on, SIES 2011.
Vasteras, Sweden, June 15-17, 2011, 2011, pp. 176–185.

[25] P. Tabuada, A. Balkan, S. Y. Caliskan, Y. Shoukry, and R. Majumdar,
“Input-output robustness for discrete systems,” in International Confer-
ence on Embedded Software (EMSOFT). ACM, 2012, pp. 217–226.

[26] R. Bloem, K. Chatterjee, K. Greimel, T. A. Henzinger, and B. Job-
stmann, “Robustness in the presence of liveness,” in Computer Aided
Verification (CAV), vol. 6174. Springer, 2010, pp. 410–424.

[27] T. Kobayashi, R. Salay, I. Hasuo, K. Czarnecki, F. Ishikawa, and
S. Katsumata, “Robustifying controller specifications of cyber-physical
systems against perceptual uncertainty,” in International Symposium on
NASA Formal Methods (NFM), 2021, pp. 198–213.

235

https://archives.fbi.gov/archives/louisville/press-releases/2010/lo032510.htm
https://archives.fbi.gov/archives/louisville/press-releases/2010/lo032510.htm

[28] U. Topcu, N. Ozay, J. Liu, and R. M. Murray, “On synthesizing robust
discrete controllers under modeling uncertainty,” in Proceedings of the
15th ACM International Conference on Hybrid Systems: Computation
and Control, ser. HSCC ’12. Association for Computing Machinery,
2012, p. 85–94.

[29] R. Meira-Góes, E. Kang, S. Lafortune, and S. Tripakis, “On tol-
erance of discrete systems with respect to transition perturbations,”
arXiv:2110.04200 [eess.SY], 2021.

[30] T. Anevlavis, D. Neider, M. Philippe, and P. Tabuada, “Evrostos:
The RLTL verifier,” in Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, ser. HSCC
’19. Association for Computing Machinery, 2019, p. 218–223.

[31] P. Tabuada and D. Neider, “Robust Linear Temporal Logic,” in 25th
EACSL Annual Conference on Computer Science Logic (CSL), vol. 62,
2016, pp. 10:1–10:21.

[32] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone, “Enhancing model
checking in verification by ai techniques,” Artificial Intelligence, vol.
112, no. 1, pp. 57–104, 1999.

[33] M. V. de Menezes, S. do Lago Pereira, and L. N. de Barros, “System
design modification with actions,” in Advances in Artificial Intelligence
– SBIA 2010, A. C. da Rocha Costa, R. M. Vicari, and F. Tonidandel,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 31–40.

[34] G. Chatzieleftheriou, B. Bonakdarpour, S. A. Smolka, and P. Katsaros,
“Abstract model repair,” in NASA Formal Methods, A. E. Goodloe and
S. Person, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 341–355.

[35] Y. Ding and Y. Zhang, “A logic approach for LTL system modification,”
in Foundations of Intelligent Systems, M.-S. Hacid, N. V. Murray,
Z. W. Raś, and S. Tsumoto, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 435–444.

236

Formal Methods in Computer-Aided Design 2023

A Provably Correct Floating-Point Implementation
of Well Clear Avionics Concepts

Nikson Bernardes Fernandes Ferreira ∗, Mariano M. Moscato †, Laura Titolo †, and Mauricio Ayala-Rincón ∗‡

∗Department of Computer Science
‡Department of Mathematics

University of Brasilia, Brasilia, Brazil
Email: niksonber@gmail.com, ayala@unb.br

†Analytical Mechanics Associates, Hampton, USA
Email: {mariano.moscato,laura.titolo}@ama-inc.com

Abstract—The NASA DAIDALUS library provides formal
definitions for Detect-and-Avoid avionics concepts such as when
an aircraft is well-clear with respect to the surrounding air
traffic, i.e., it does not operate in such proximity to create a
collision hazard. While several properties are proven correct
for DAIDALUS assuming ideal real number arithmetic, an
actual implementation that uses floating-point numbers may
behave unexpectedly because of round-off errors and run-time
exceptions. This paper presents an experience report on the
application of a formal methods toolchain to extract and verify
floating-point C code from a real-valued specification of the well-
clear module of DAIDALUS. This toolchain comprises the PVS
theorem prover, the PRECiSA floating-point analyzer and code
generator, and the Frama-C analysis suite. The generated code
is automatically instrumented to detect when the control flow
of the floating-point program may diverge from the ideal real
number specification, and it is annotated with contracts that
state the maximum accumulated round-off error. The absence
of overflows is also formally verified for the generated code. In
order to apply the toolchain to an industrial case study such
as DAIDALUS, a formally verified pre-processing of the input
specification is performed, which includes a program slicing and
several semantic-preserving simplifications.

Index Terms—Program Verification, Floating-Point, PVS,
Detect-and-Avoid

I. INTRODUCTION

Midair conflicts are one of the most dangerous situations
that may occur in the airspace domain. The USA Federal
Aviation Administration (FAA) reported that over forty midair
collisions occurred from January 2009 through December
2013 [1]. The primary mitigation to such situations is the
longstanding principle of See and Avoid. In short, it states
that a person operating an aircraft has the responsibility to
remain vigilant to see and avoid nearby traffic [2]. The advent
of Unmanned Aerial Systems (UAS) and their incorporation
into the airspace introduced the need to restate this concept in
terms suitable for aircraft with no crew onboard. The Detect
and Avoid (DAA) concept emerged then as an effort to support
the integration of UAVs into civil airspace. A DAA system is
required to provide alerting and guidance to avoid potential
conflicts.

Diverse industrial and governmental actors proposed al-
gorithmic DAA solutions. Among them, NASA developed

the Detect and Avoid Alerting Logic for Unmanned Systems
library (DAIDALUS1) [3]. DAIDALUS provides prototypical
open-source implementations in Java and C++, which were
included as reference implementations of the DAA functional
requirements described in RTCA’s Minimum Operational Per-
formance Standards (MOPS) DO-365 [4]. One distinguishing
characteristic of DAIDALUS is that it also provides formal
specifications of the algorithms along with proofs for cor-
rectness and safety properties on them, mechanically checked
within the Prototype Verification System (PVS) [5]. These
proofs assume ideal real number arithmetic. However, when
implemented using floating-point numbers, the properties may
no longer hold because of round-off errors and runtime excep-
tions. The adherence of the implementations to the behavior
modeled by the formal specifications was checked using a
testing-based approach [6]. While such an approach is usually
enough for non-critical applications, the correctness of DAA
implementations calls for a higher level of assurance. Given
the numerical nature of several functions in DAIDALUS, it is
important to provide formal guarantees on the finite-precision
implementation concerning the expected behavior specified
using real-numbers arithmetic.

In the past, an integrated toolchain has been proposed to
automatically extract and verify floating-point C code from
real-valued specifications [7]. This toolchain consists of the
PVS theorem prover, the PRECiSA floating-point analyzer and
code generator ([8], [9]), and the Frama-C tool suite [10].
In a nutshell, PRECiSA automatically generates a floating-
point C implementation from a PVS real number specification.
The extracted C code contains program contracts that relate
the floating-point computations with their ideal counterpart
by the maximum round-off error that may occur. These
contracts enable the use of the Frama-C analysis suite which
automatically generates a set of verification conditions that
can be proven correct with the help of diverse backends. The
toolchain proposed in [7] included a customization on Frama-
C that allowed it to generate the verification conditions in
the language of PVS and connect them with the NASA PVS

1DAIDALUS is available at https://github.com/nasa/daidalus.

https://doi.org/https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 32 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0003-4249-7599
https://orcid.org/0000-0002-6468-9498
https://orcid.org/0000-0001-7820-7640
https://orcid.org/0000-0003-0089-3905
https://github.com/nasa/daidalus
https://doi.org/https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_32
https://doi.org/https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_32
https://creativecommons.org/licenses/by/4.0/

library (NASALib).
In [7], this technique was applied to one of the core

functions of DAIDALUS. This paper describes the application
and adaptation of this technique to one of the main modules
in DAIDALUS which is devoted to the definition of well-clear
concepts. Two aircraft are considered to be well clear of each
other if appropriate distance and time variables determined by
the relative aircraft states remain outside a set of predefined
threshold values. Remaining outside of these threshold values
guarantees they have adequate separation in relation to the sur-
rounding traffic; therefore, midair collisions are not expected.

The toolchain presented in [7] could not be applied directly
to the DAIDALUS specification because the code generation
capability of PRECiSA, at its current stage, does not support
some of the features of the PVS language used to formally
define Well-Clear, such as abstract data types and higher-order
functions. In addition, the complexity of the target module,
given by the number and nature of the interactions between
the functions composing it and the wide ramification of the
control flow graph of the whole library, impacts the efficiency
of the analysis performed by PRECiSA and the legibility of
the results of this analysis. In order to make the DAIDALUS
specification manageable by the toolchain, this paper proposes
to apply a semantic-preserving program slicing on a simplifica-
tion from higher-order to first-order declarations. This program
rewriting improved the performance of the generation and
verification of the C code significantly. The obtained program
is formally proven equivalent to the original specification
within the PVS theorem prover. In addition, a new PVS
floating-point formalization is used. This formalization extends
the one used in [7] with explicit handling for special values
such as NaNs and infinities. This change positively impacted
the analysis by enabling the verification of the absence of these
values. It also significantly improved the performance of the
type-checking in PVS. However, it resulted in many of the
proof strategies developed in the past being unusable. Part of
the work presented in this paper focuses on fixing and adapting
the proofs generated by PRECiSA to this new formalization.
More information about the PRECiSA project and the files
related to the work presented in this paper can be found at
https://shemesh.larc.nasa.gov/fm/PRECiSA/.

The paper is organized as follows. Section II describes
DAIDALUS and explains the well-clear concept. An overview
of the verification approach is presented in Section III. The
application of the slicing technique to the original specification
is detailed in Section IV. Then, Section V explains the code
extraction and the program instrumentation and verification.
Finally, Section VI provides a brief discussion of the most
relevant outcomes of this work, Section VII discusses the
related work, and Section VIII concludes the paper.

II. THE DAIDALUS LIBRARY

DAIDALUS is a software library developed at NASA that
implements a Detect-and-Avoid alerting logic for unmanned
systems. In DAIDALUS, the condition of Well-Clear is defined
in the context of an encounter between two aircraft, usually

called the ownship and the intruder. These conditions are
stated in an intruder-centric manner, meaning that the informa-
tion describing the encounter is expressed relative to the state
of the intruder. In particular, DAIDALUS includes definitions
determining when the aircraft are in a situation of violation
of well-clear. This violation occurs when (a) the two aircraft
are already close enough, or (b) they will be close enough
if they keep the same orientation and velocity. This notion is
expressed in terms of horizontal (1) and vertical (2) well-clear
violation.

This section presents a high-level description of the well-
clear concepts defined in [11]. For details and further expla-
nation, the reader is referred to that work. In the following,
s and v denote vectors of dimension 3 and the subindices
x, y, and z are used to indicate their first, second, and third
component respectively. Two-dimensional vectors are used to
describe the horizontal position (sh

def
= (sx, sy)) and velocity

(vh
def
= (vx, vy)) of the ownship with respect to the intruder.

Additionally, ∥ ⋅ ∥ denotes the Euclidean norm.

WCVH(sh,vh)
def
= ∥sh∥ ≤ δd ∨ (0 ≤ τmod(sh,vh) ≤ δt∧

dcpa(sh,vh) ≤ δhmd)
(1)

The values δd, δt, and δhmd are parameters of the model,
used as thresholds for distance and time. The function τmod,
defined below, is an approximation for the time of closest point
of approach, i.e., the instant in which both aircraft would be
closer to each other than in any other moment. Below, and in
the rest of this paper, the dot product between two vectors (for
example, a and b) is denoted by their juxtaposition (ab).

τmod(sh,vh)
def
=

⎧⎪⎪
⎨
⎪⎪⎩

δ2d−s
2
h

shvh
if shvh < 0

−1 otherwise
(2)

The function dcpa calculates the projected horizontal distance
between the aircraft at their closest point of approach, assum-
ing the velocity and orientation remain constant. The definition
of dcpa relies on the actual calculation of the time of closest
point of approach (tcpa). Both notions are formally stated
below.

dcpa(sh,vh)
def
= ∥sh + tcpa(sh,vh)vh∥ (3)

tcpa(sh,vh)
def
=

⎧⎪⎪
⎨
⎪⎪⎩

sh⋅vh

v2
h

if ∥vh∥ > 0

0 otherwise
(4)

The violation of vertical well clear is defined analogously
to its horizontal counterpart; using the scalars vertical position
sz and velocity vz , and the time to co-altitude (tcoa) instead
of the time to the closest point of approach.

WCVV(sz, vz)
def
= ∣sz ∣ ≤ δz ∨ 0 ≤ tcoa(sz, vz) ≤ δtcoa (5)

tcoa(sz, vz)
def
=

⎧⎪⎪
⎨
⎪⎪⎩

−sz
vz

if szvz < 0
−1 otherwise

(6)

Given their relative position and velocity, two aircraft are
considered to be in well-clear violation when both horizontal
and vertical violations occur.

WCV(s,v) ⇐⇒ WCVV(sz, vz) ∧ WCVH(sh,vh) (7)

238

https://shemesh.larc.nasa.gov/fm/PRECiSA/

The DAIDALUS library also provides conflict detection
algorithms whose purpose is to check whether the well-clear
condition is predicted to be violated within a given timeframe.
The function WCVintV computes a time interval, included in a
given lookahead interval t = [b, t] ⊂ R, in which vertical well-
clear is violated at every moment. If no such interval exists,
the empty set is returned.

WCVintV(t, sz, vz)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t if vz = 0 ∧ ∣sz ∣ ≤ δz
∅ if vz = 0 ∧ ∣sz ∣ > δz
[max(b, c0),min(t, cF)] if vz ≠ 0 ∧ b ≤ c0, cF ≤ t

∅ otherwise

(8)

where c0
def
=
−sign(vz)max(δz,δtcoa∣vz ∣)−sz

vz
and cF

def
=
−sign(vz)δz−sz

vz
.

Definitions such as c0 and cF , for which no equation numbers
are provided, should be understood as syntactic abbreviations
used to improve the presentation.

Similarly, the function WCVintH returns a time interval
included in [0, t] in which the condition of horizontal well-
clear is violated at every moment, if such interval exists.

WCVintH(t, sh,vh)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, t] if a = 0 ∧ s2h ≤ δ
2
D

[0,min(t,Θ+sh,vh
)] if a ≠ 0 ∧ s2h ≤ δ

2
D

∅ if s2h > δ
2
D ∧ (shvh ≥ 0 ∨∆a,b,c < 0)

[max(0, r−a,b,c),min(t,Θ+sh,vh
)]

if s2h > δ
2
D ∧ shvh < 0 ∧∆a,b,c ≥ 0∧

∆R×R
sh,vh

≥ 0 ∧ r−a,b,c ≤ t

∅ otherwise

(9)

where
● a

def
= v2

h,
● b

def
= 2 shvh + δtv

2
h,

● c
def
= s2h + δtshvh − δ2D,

● ∆a,b,c
def
= b2 − 4ac,

● r−a,b,c
def
= 1

2a
(−b −

√
b2 − 4ac),

● Θ+sh,vh

def
= 1

v2
h

(−shvh +
√
(shvh)

2 − 4v2
h(s

2
h − δ2D)), and

● ∆R×R
sh,vh

def
= δ2Dv2

h − (shvh
�)2.

The two functions defined above can be used to calculate
a time interval of well-clear violation. In the following,
V def
= WCVintV(t, sz, vz), and H def

= WCVintH(tend − tbegin, sh +
lb(V)vh,vh) where [tbegin, tend] = t.

WCVint(t, s,v)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if V = ∅
V if lb(V) = ub(V) ∧ WCVH(sh + lb(V)vh,vh)

∅ if lb(V) = ub(V) ∧ ¬WCVH(sh + lb(V)vh,vh)

∅ if ub(V) − lb(V) > 0 ∧H = ∅
[lb(H) + lb(V), ub(H) + lb(V)] otherwise

(10)

where lb and ub return the lower and upper end-point of a
given non-empty closed interval, respectively.

The predicate WCV? determines if there is a subinterval of
t where a violation of well-clear occurs.

WCV?(t, s,v) ⇐⇒ WCVint(t, s,v) ≠ ∅ (11)

The equations in this Section are a simplified version of the
definitions originally presented in [12] where properties and
additional definitions can be found.

III. VERIFICATION APPROACH

The verification approach used in this paper relies on the
integrated toolchain presented in [7] which is composed of
several formal methods tools:
● PRECiSA [8], [9], a static analyzer for floating-point

programs,2

● the global optimizer Kodiak [13],3

● Frama-C [10], a collaborative tool suite for the analysis
of C code, and

● the Prototype Verification System (PVS) [14], a verifica-
tion environment consisting of a specification language,
a large number of predefined theories, and an interactive
theorem prover.

PRECiSA is a static analyzer for floating-point programs
that computes sound and accurate round-off error estimations
and provides support for a large variety of mathematical
operators and programming language constructs. Given a
floating-point program, PRECiSA generates a symbolic error
expression modeling an over-approximation of the round-off
error that may occur in the program. This error expression is a
function of the input variables of the program and their asso-
ciated rounding error. Given input ranges for these variables,
PRECiSA uses the Kodiak global optimizer to maximize the
round-off error expressions. Additionally, PRECiSA generates
formal certificates ensuring that these bounds are correct with
respect to the IEEE Standard for Floating-Point Arithmetic
(IEEE 754). These certificates are output in the language of
PVS, which can be used to mechanically check their validity.
Even though proofs in PVS are expected to be carried out
following user guidance in general, this process is automatic
thanks to an available collection of proof strategies targeted to
this particular application.

One of the more recent extensions of PRECiSA [7], in-
cludes the addition of a code-extraction capability that auto-
matically generates a floating-point C implementation from
a real-number function expressed in the language of PVS.
The generated C code is instrumented to detect whether the
floating-point computational flow diverges from its ideal real
number counterpart, and it is automatically annotated with
program contracts stating the formal relationship between real
and floating-point computations. These contracts are written
in the ANSI/ISO C Specification Language (ACSL) which
can be processed by Frama-C. Frama-C is a collaborative
modular platform for the analysis of C programs. In this work,
the Frama-C weakest precondition (WP) plug-in is used to

2PRECiSA is available at https://github.com/nasa/PRECiSA.
3Kodiak is available at https://shemesh.larc.nasa.gov/fm/Kodiak/.

239

https://github.com/nasa/PRECiSA
https://shemesh.larc.nasa.gov/fm/Kodiak/

generate verification conditions in the language of PVS and
it is customized to integrate the PVS certificates generated by
PRECiSA into the proof of such verification conditions.

An overview of the verification approach applied to the
well-clear calculations in DAIDALUS is depicted in Fig. 1.
First, the PVS higher-order specification of DAIDALUS is
manually rewritten using only first-order constructs. This is
achieved by replacing each higher-order argument with a
specific function instantiation. For instance, the original defi-
nition for the violation of vertical well-clear is parametric on
the technique used to approximate the time of closest point
of approach. Such parameter was replaced by a particular
concrete calculation of this time, resulting in the definition
shown in (5). While this kind of simplification cannot be
performed in general by preserving the semantics of the
program, the nature of the higher-order parameters used in
DAIDALUS allowed to simplify the definitions even though
this change resulted in a less general specification. The first-
order specification is mechanically proved equivalent to the
higher-order one within PVS. The higher-order specification
is instantiated with the specific functions used in the first-
order one as parameters. This simplification was necessary
since PRECiSA does not yet provide support for the use of
higher-order arguments in the input program.

Then, a program slicing technique is applied to the first-
order specification to obtain a set of simpler descriptions. This
program slicing is proved to be semantically equivalent to the
original specification. The next section provides more details
on the slicing process and the resulting fragmentation of the
specification.

Each specification slice is input to PRECiSA which auto-
matically extracts the corresponding annotated floating-point
C code and generates the corresponding PVS proof certificates
ensuring the correctness of the round-off error estimations
used in the code extraction and instrumentation. Since the
extracted C code implements each of the slices of the original
specification, it is necessary to develop a top-level module in
C providing the same functionality as the involved functions in
DAIDALUS. Basically, this top-level function selects the proper
slice given an unrestricted input and calls the corresponding
C function. The top-level function was manually developed
and annotated with specific program contracts to ensure its
compliance with the original specification. The details about
this function are explained in Sect. V.

Frama-C was used to analyze both the automatically gen-
erated C functions from each slice and the top-level function.
Finally, the verification conditions output by Frama-C were
proved in the PVS theorem prover. While these proofs were
made interactively for this particular application of the tech-
nique, they can be automated since they rely heavily on the
structure of the program. The automation of the proofs is left
as future work.

IV. SPECIFICATION SLICING

Program Slicing [15], [16] is a technique generally applied
on source code to analyze particular behaviors of software.

DAIDALUS
PVS Higher-order
Real Specification

PVS First-order
Real Specification

PVS sliced
Specification

PVS sliced
Specification

PVS sliced
Specification PRECiSA

Kodiak

PVS round-off errors
certificates

PVS

Instrumented
ACSL/C program

Frama-C

Verification
Conditions

Fig. 1. Workflow of the verification approach.

TABLE I
NAME OF THE MAIN PREDICATE ON EACH SLICE.

horizontal vertical decrease maintain increase
separation separation vz < 0 vz = 0 vz > 0

alter vx ≠ 0 ∨ vy ≠ 0 WCV?↔↓ WCV?↔⋅ WCV?↔↑
maintain vx = 0 ∧ vy = 0 WCV?↓

⋅ WCV?⋅
⋅ WCV?↑

⋅

However, in this work, it was applied to the specification of
the definitions presented in Section II as a way to address
scalability issues in the PRECiSA code extraction. The slicing
approach used in this work was first introduced by Canfora et
al. [17] and Ning et al. [18] and it is known as Conditioned
Slicing [19]. Essentially, it proposes the decomposition of a
program into independent simpler parts, called slices, accord-
ing to its control flow graph as defined by the guards in the
branching instructions appearing in the program. Each slice
runs under the assumption of specific restrictions on the inputs,
determining the execution of a particular path in the control
flow graph of the original program.

For this case study, the criterion used to select the restriction
on the inputs producing the slices was focused on the different
cases determined by the possible relative velocities of the
aircraft, as given in the branches of the source code. Three
possible situations regarding relative vertical velocity were
considered: maintaining separation (null relative vertical veloc-
ity), increasing separation (positive relative vertical velocity),
and decreasing separation (negative relative vertical velocity).
In terms of horizontal relative velocity, only the cases altering
separation or maintaining separation were considered. Hence,
a total of six slices were defined by applying this criterion
on the predicate presented in (11) which is the topmost
declaration in the Well-Clear module. Table I shows the name
of the topmost predicate in each slice.

To exemplify how the slices are actually defined, Equa-
tion (12) shows the entry point for the slice describing a situa-
tion of maintaining vertical separation and altering horizontal
separation, given by the conditions vz = 0 and vx ≠ 0∨vy ≠ 0.

WCV?↔⋅(t, s,v) ⇐⇒ (∣sz ∣ ≤ δz ∧

WCVH?↔⋅(tF − t0, sx + t0vx, sy + t0vy,vx,vy)) (12)

where WCVH?↔⋅ is a predicate checking whether the WCVintH

240

function from (9) returns a non-empty interval when the
conditions defining the slice hold.

WCVH?↔⋅(t, sh,vh) ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r+a,2shvh,s2h−δ
2
D
≥ 0 if s2h ≤ δ

2
D

(0 ≤ r−a,b,c ≤ t ∧ r−a,b,c ≤ r
+

a,2shvh,s2h−δ
2
D
)∨

(r−a,b,c < 0 ∧ r+a,2shvh,s2h−δ
2
D
≥ 0)

if s2h > δ
2
D ∧ shvh < 0 ∧∆a,b,c ≥ 0∧

∆R×R
sh,vh

≥ 0 ∧ r−a,b,c ≤ t

false otherwise

(13)

Above, a, b, c, ∆a,b,c, r−a,b,c, and ∆R×R
sh,vh

are as in (9), and

r+a,b,c
def
=
−b+
√

∆a,b,c

2a
. The following theorem validates that

the decomposition proposed by the slicing process correctly
captures the semantics of the original specification.

Theorem 1: [Slicing Correctness] For all time interval
t ⊂ R and all pair of three-dimensional vectors s,v ∈ R3,
WCV?(t, s,v) holds if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WCV?↔↓(t, s,v) when vz < 0 ∧ (vx ≠ 0 ∨ vy ≠ 0)

WCV?↓
⋅
(t, s,v) when vz < 0 ∧ (vx = 0 ∧ vy = 0)

WCV?↔↑(t, s,v) when vz > 0 ∧ (vx ≠ 0 ∨ vy ≠ 0)

WCV?↑
⋅
(t, s,v) when vz > 0 ∧ (vx = 0 ∧ vy = 0)

WCV?↔⋅(t, s,v) when vz = 0 ∧ (vx ≠ 0 ∨ vy ≠ 0)

WCV?⋅
⋅
(t, s,v) when vz = 0 ∧ (vx = 0 ∧ vy = 0)

As one of the contributions of the present work, the def-
inition of the predicates in Table I and the theorem above,
along with all the ad-hoc lemmas needed in its proof, were
mechanically checked using the PVS theorem prover.

V. CODE EXTRACTION AND VERIFICATION

The round-off error occurring in the guards of conditionals
can provoke the floating-point control flow to diverge with
respect to its ideal real-numbers counterpart. The guards in
a program where such a phenomenon can occur are called
unstable conditions. As another of its features, the code
extracted by PRECiSA is instrumented to emit a warning when
such conditions may occur. This instrumentation is based on
the program transformation presented in [20]. In the rest of
this section, the code extraction procedure is outlined. As part
of the verification presented in this paper, this procedure was
applied to each of the slices of the specification described in
the previous section.

A. Processing the slices

Given the specification of a real-valued program, understood
as a collection of functions collaborating to compute a deter-
mined result, and the desired floating-point format (single or
double precision), PRECiSA replaces each real arithmetic op-
erator with its floating-point counterpart. Then, it modifies all
the conditional statements. Each guard is replaced by a more
restrictive one that takes into account the round-off error that
may occur. This round-off error is computed with PRECiSA.

Additionally, a warning is emitted when the original guard may
be evaluated differently in real and floating-point arithmetic.
This warning is denoted by a distinguished value disjoint
from the floating-point domain. Getting such a warning as the
result of a computation implies that, for the inputs provided, it
cannot be guaranteed that the floating-point execution follows
the same control flow as its real-valued counterpart. This
divergence could provoke a much bigger error in the numerical
final result than the accumulated round-off error that occurred
in the evaluation of an arithmetic expression. It is worth
noting that, since the round-off error estimation computed by
PRECiSA is a sound over-approximation of the error that may
occur, false warnings may arise. However, it is guaranteed that
all the instabilities are detected.

For instance, the floating-point function depicted below is
the result of applying this instrumentation on the function
τmod, defined by (2), whose goal is to approximate the time
of closest point of approach of two aircraft. Here and in the
rest of this paper, the tilde over a variable, an operator, or a
function denotes the fact that it belongs to the floating-point
domain.

τ̃ ′mod(s̃x, ṽx, s̃y, ṽy, ϵ) (14)
= if s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy < −ϵ

then (δd ∗̃ δd −̃ s̃x ∗̃ s̃x +̃ s̃y ∗̃ s̃y) /̃ (s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy)

elsif s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy ≥ ϵ̃ then −1

else ω

When the evaluation of s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy lies in the interval
[−ϵ, ϵ) the function above signals a warning by returning the
value ω. The new argument of the function, ϵ, is expected
to be an over-approximation of the round-off error that may
occur when computing s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy .

Listing 1 shows the C code and the ACSL annotations
generated by PRECiSA for the function τmod. The C function
taumod fp mimics the definition of τ̃ ′mod, while the annota-
tions express the contracts enforcing the properties explained
above. The type double′ is the implementation of a union
type consisting of the double datatype and the ω warning
value4. In ACSL, the keywords requires and ensures are used
to describe preconditions and postconditions of a function,
respectively. The main precondition of taumod fp (line 9)
restricts ϵ to be a non-negative representable numeric value,
i.e., it cannot be an infinite or a NaN. The postcondition on
line 10 ensures that when the result is not ω, it is the same
as the one computed by the floating point version of τmod

(before the instrumentation). The following postcondition (line
11) states that, if additionally to the result not being ω, the
argument ϵ is a sound approximation of the round-off error
of the guard, then no unstable conditions occur, meaning that
the guard has the same value under both floating-point and
real-valued arithmetic. This latter condition is expressed by
the predicate stable pathsτm defined on lines 5-7.

4For ease of reading no explicit projection of the values in the union type
are used.

241

1 / *@
2 double taumodfp (double s̃x , ṽx , s̃y , ṽy) = /let g̃ = s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy ;
3 g̃ < 0 ? (δd ∗̃ δd −̃ s̃x ∗̃ s̃x +̃ s̃y ∗̃ s̃y) /̃ g̃ : −1.0 ;
4
5 predicate stable pathsτm (r e a lvx ,vy ,sx ,sy , double ṽx , ṽy , s̃x , s̃y)=
6 /let g̃ = s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy ; /let g = sx ∗ vx + sy ∗ vy ;
7 (g < 0 ∧ g̃ < 0)∨ (g ≥ 0 ∧ g̃ ≥ 0) ;
8
9 requires : /is finite? (ϵ)∧ ϵ ≥ 0 ;

10 ensures : /result ≠ ω⇒ /result = taumodfp(s̃x, ṽx, s̃y, ṽy)
11 ensures : ∀ r e a l vx, vy, sx, sy ;
12 /result ≠ ω ∧ ∣(s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy) − (sx ∗ vx + sy ∗ vy)∣ ≤ ϵ
13 ⇒ stable pathsτm (vx ,vy ,sx ,sy , ṽx , ṽy , s̃x , s̃y) ;
14 * /
15 double′ taumod fp (double s̃x , ṽx , s̃y , ṽy , ϵ̃){
16 i f (s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy < −ϵ̃)
17 re turn (δd ∗̃ δd −̃ s̃x ∗̃ s̃x +̃ s̃y ∗̃ s̃y) /̃ (s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy) ;
18 e l s e i f (s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy ≥ ϵ̃)
19 re turn − 1 . 0 ;
20 e l s e
21 re turn ω ;
22 }

Listing 1. C function and annotations generated by PRECiSA for τmod. Some
syntactic simplifications were applied to the code in this listing for ease of
reading, e.g., the use of the infix version of some operators and avoiding the
repetition of the type of the function parameters, among others.

As already mentioned, PRECiSA is able to compute con-
crete error bounds for the guards when the user provides
specific ranges for the arguments. For instance, let’s assume
that the ranges for the input variables are the following:
sx ∈ [1,185200] meters, sy ∈ [1,15240] meters, vx ∈ [1,720]
meters per second, and vy ∈ [2,720] meters per second. If
double precision floating-point precision is selected, PRECiSA
computes the round-off error bound ϵ = 4.58 × 10−8 for the
expression s̃x ∗̃ṽx +̃s̃y ∗̃ṽy . Notably, PRECiSA also generates a
formal certificate of the validity of this bound, which consists
in a theorem that can be mechanically checked in the PVS
theorem prover. For the τmod example, such a theorem can be
expressed as it is shown below.

Theorem 2 (Error bound for the guard in τmod): For all real
values vx, vy, sx, sy and floating-point numbers ṽx, ṽy, s̃x, s̃y ,
if sx ∈ [1,185200], sy ∈ [1,15240], vx ∈ [1,720], vy ∈
[2,720], and each float is the rounding of the respective real,
then

∣(s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy) − (sx ∗ vx + sy ∗ vy)∣ ≤ 4.58 × 10−8 .

This theorem can be used to prove that one of the hypothe-
ses of the ensures clause in lines 11-13 of Listing 1 holds
when velocities and positions are in the specified ranges and
ϵ is instantiated with the value from the theorem. Then, under
these assumptions, such ensures guarantees that float and real
flows do not diverge. Furthermore, the accumulated round-
off error in the final result of taumod fp is the maximum
between the accumulated round-off errors in the expressions of
each branch of the if-then-else that does not return a warning
(ω). Again, PRECiSA is used to calculate a bound for such
an error for every one of these expressions under the same
assumption on the input values. In the case of τmod, these
bounds are 6.62 × 10−2 for the first branch and 0 for the
second, since −1 is a value that can be exactly representable
in floating points. This kind of deduction can be repeated for

1 / *@
2 r e a l τmod (r e a l sx, vx, sy, vy) = /let g = sx ∗ vx + sy ∗ vy ;
3 g < 0 ? (δd ∗ δd −̃ sx ∗ sx + sy ∗ sy)/g : −1 ;
4
5 ensures : ∀ r e a l vx, vy, sx, sy ;
6 1 ≤ vx ≤ 720 ∧ 2 ≤ vy ≤ 720 ∧ 1 ≤ sx ≤ 185200 ∧ 1 ≤ sy ≤ 15240 ∧

7 ∣ ṽx −vx∣ ≤
ulp(vx)

2 ∧ ∣ ṽy −vy ∣ ≤
ulp(vy)

2 ∧

8 ∣ s̃x −sx∣ ≤
ulp(sx)

2 ∧ ∣ s̃y −sy ∣ ≤
ulp(sy)

2 ∧

9 /result ≠ ω

10 ⇒ ∣/result − τmod(sx, vx, sy, vy)∣ ≤ 6.62 × 10−2 ;
11 * /
12 double′ taumod num (double s̃x , ṽx , s̃y , ṽy){
13 re turn taumod fp (s̃x , ṽx , s̃y , ṽy , 0x1.897f000000001p − 25) ;
14 }

Listing 2. Concrete C function generated by PRECiSA for τmod.

each collection of input ranges provided by the user. PRECiSA
summarizes it in a new annotated C function. This kind of
function is called concrete or numerical in the context of this
work and it only consists of a call to the function in Listing 1
instantiated with the error estimation computed by PRECiSA
(0x1.897f000000001p − 25 is the hexadecimal representation
of the value 4.58×10−8); the latter function, for contraposition,
is called generic.

Listing 2 shows the concrete function and its associated
annotations for τmod under the assumptions on the inputs
described above. The formula on line 6 enforces the restriction
on the inputs. Lines 7-8 states the relation between the real and
the corresponding floating-point values, as in the hypothesis in
Theorem 2. The program contract finishes ensuring that under
the mentioned conditions, the difference between the result of
the C function and its real-valued specification is at most the
estimation computed by PRECiSA.

While Listings 1 and 2 serve as a useful hint to picture
the implementation and contracts of more complex functions
returning numeric values, the application of the code extraction
process to the predicates in the sliced DAIDALUS specification,
e.g., WCV?↔↓, WCV?↓

⋅ , etc., deserves a closer look. For each
predicate in the input specification, PRECiSA generates two
pairs of C functions. Each of these pairs, as in the case of the
functions with numeric return values, consists of a generic
and a concrete C function. One of the pairs describes the
cases in which the original predicate returns an affirmative
answer (true) while the other characterizes the inputs for
which a negative answer (false) is obtained. For instance,
Listing 3 shows a fragment of the program contracts for
the C functions extracted from the predicate WCV?↑

⋅ . Actual
definitions are omitted because of space limitations. The pred-
icate wcv inc mtn (line 2) is the real number counterpart of
WCV?↑

⋅ , while wcv inc mtn fp (line 3) is the ACSL floating-
point version of WCV?↑

⋅ . The predicate WCVint inc mtn plus
is a new predicate such that if it is satisfied then both
wcv inc mtn and wcv inc mtn fp are satisfied. This means
that both real and floating-point evaluations of the predicate
WCV?↑

⋅ are true. Conversely, WCVint inc mtn minus is a new
predicate such that if it is satisfied then neither wcv inc mtn
nor wcv inc mtn fp are satisfied. This means that both real
and floating-point evaluations of the predicate WCV?↑

⋅ are false.

242

1 / *@
2 p r e d i c a t e wcv inc mtn (r e a l b, t, vx, vy, vz, sx, sy, sz) = ⋯ ;
3 p r e d i c a t e wcv inc mtn fp (double b̃, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz) = ⋯ ;
4 ⋯
5 ensures : ∀ r e a l b, t, vx, vy, vz, sx, sy, sz ;
6 /result ≠ ω ∧ /result
7 ⇒ (wcv inc mtn(b, t, vx, vy, vz, sx, sy, sz) ∧

8 wcv inc mtn fp(̃b, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz)) ;
9 * /

10 bool′ WCVint inc mtn plus (double b̃, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz){⋯}
11
12 ensures : ∀ r e a l b, t, vx, vy, vz, sx, sy, sz ;
13 /result ≠ ω ∧ /result
14 ⇒ (!wcv inc mtn(b, t, vx, vy, vz, sx, sy, sz) ∧

15 !wcv inc mtn fp(̃b, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz)) ;
16 * /
17 bool′ WCVint inc mtn minus (double b̃, t̃, s̃x, s̃y, s̃z ,̃ vx, ṽy, ṽz){⋯}

Listing 3. Excerpt from the program contracts in the generic function
generated by PRECiSA for the WCV?↑

⋅ predicate.

The return type of these C functions (bool′) represents the
implementation of the union type between the bool datatype
and the ω value. Hence, in lines 6 and 13, if the result is not a
warning, it means that no instability occurred in the functions
called by the predicate.

Once each slice of the specification was input to PRECiSA
to obtain the corresponding annotated C code, Frama-C was
used to verify that this implementation actually fulfills the con-
tracts stated by the annotations. As explained in the paragraphs
above, the validity of these contracts is mainly supported by
the error-bound certificates generated by PRECiSA, which are
output in PVS language and depend on the definitions and
properties declared in the axiomatic floating-point formaliza-
tion from NASALib. For this reason, a particular customization
was applied to Frama-C in order to generate the verification
conditions in the language of PVS and use the aforementioned
floating-point formalization.

B. The top-level function

The process described above generates code for each slice
of the specification and verifies its compliance to the cor-
responding predicate from Table I. Nevertheless, in order to
generate code with the same applicability as the original target,
i.e., the predicate WCV? from (11), an additional layer of C
code is needed. This layer is responsible for selecting the
slice activated by the inputs and invoking the corresponding
function.

Listing 4 shows an excerpt from the generic top-level
function. The postcondition states that if the computation does
not raise a warning and the ϵ parameters actually denote
bounds for the errors in the conditionals defining the control
flow graph of the whole program, then the result is equivalent
to the original Well-Clear predicate WCV? defined in (11).
The proof of the verification condition generated from this
contract relies on the contracts of the invoked functions,
e.g., WCVint inc mtn plus and WCVint inc mtn minus in
the excerpt, and the Slicing Correctness Theorem 1. As in
the lower layers, accompanying concrete C functions were
defined, where the error-bound parameters ϵ are instantiated

1 / *@
2 p r e d i c a t e wcv in range (r e a l b, t, vx, vy, vz, sx, sy, sz) =
3 // WCV? ((b, t), (vx, vy, vz), (sx, sy, sz)) from Eq. (11)
4 ⋯
5 r e q u i r e s : /is finite(ϵ̃0) ∧ ϵ̃0 ≥ 0 ∧⋯ ∧ /is finite(ϵ̃3) ∧ ϵ̃3 ≥ 0 ;
6 ensures : ∀ r e a l b, t, vx, vy, vz, sx, sy, sz ;
7 ∣(δ̃z −̃ ṽz ∗̃ δ̃tcoa) − (δz − vz ∗ δtcoa)∣ ≤ ϵ̃0 ∧
8 ∣(t̃ −̃ coalt t inc vz fp(s̃z, ṽz)) − (t − coalt t inc vz(sz, vz))∣ ≤ ϵ̃1 ∧

9 ∣(coalt b inc vz fp(s̃z, ṽz) −̃ b̃) − (coalt b inc vz(sz, vz) − b)∣ ≤ ϵ̃2 ∧
10 ⋯

11 /result ≠ ω
12 ⇒ (/result⇔ wcv in range(b, t, vx, vy, vz, sx, sy, sz)) ;
13 * /
14 bool′ WCV interval (double b̃ , t̃ , s̃x , s̃y , s̃z , ṽx , ṽy , ṽz , ϵ̃0 , ϵ̃1 , ϵ̃2 , ϵ̃3 ,⋯){
15 bool′ r e s ;
16 i f (ṽz > 0 . 0) // increasing vertical separation
17 i f (ṽx == 0 . 0 && ṽy == 0 . 0){ // maintaining horizontal separation
18 r e s = WCVint inc mtn plus (b̃ , t̃ , s̃x , s̃y , s̃z , ṽx , ṽy , ṽz , ϵ̃0 , ϵ̃1 , ϵ̃2 , ϵ̃3) ;
19 i f (r e s == ω | | r e s) re turn r e s ;
20 r e s = WCVint inc mtn minus (b̃ , t̃ , s̃x , s̃y , s̃z , ṽx , ṽy , ṽz , ϵ̃0 , ϵ̃1 , ϵ̃2 , ϵ̃3) ;
21 i f (r e s == ω) re turn ω ;
22 i f (r e s) re turn f a l s e ;
23 re turn ω ;
24 } e l s e {
25 ⋯

26 }
27 e l s e {
28 ⋯

29 }
30 }

Listing 4. Excerpt from the generic top-level function.

with concrete values computed by PRECiSA, given user-
provided ranges for the rest of the inputs.

One may wonder if the top-level function implementation
is subject to conditional instability. However, it can be noticed
that the guards used to select the program slice are sign
checks on input values that come from an external sensor or
data. In these cases, the rounding error corresponds to the
representation error on this value which does not affect its
sign.

The top-level functions and the accompanying annotations
were developed by hand for this case study. Nevertheless,
once the criteria to be used to define the slicing is selected,
the development of these functions and their annotations is
almost mechanic, at least for applications like this one, where
quite simple slicing conditions are used. The automation of
this stage of the technique is one of the possible extensions to
this work.

VI. DISCUSSION

The goal of the work presented in this paper is the extraction
and verification of a floating-point C implementation from
a proven correct real-valued specification of an algorithmic
solution for a safety- and mission-critical problem. When
trying to apply the toolchain presented in [7] several practical
issues were addressed and new improvements were proposed.
This section provides a brief summary of the most significant
of them.

The first impediment that prevented the existent toolchain
to be applied as in the past was the presence of higher-order
elements in the input specification. This issue was addressed
by restating several of the declarations into a more concrete
form, avoiding the use of higher-order parameters. The level

243

of effort involved in the application of this simplification
could be seen as non-trivial since there were changes in
many of the lines of the original specification. Nevertheless,
in the majority of the cases, each change was simple and
it could be applied in a mechanical way. For this concrete
case study, the transformation to first order is a process that
could have been performed automatically. In fact, part of the
future lines of research is devoted to the development of an
automatic procedure to simplify higher-order features from a
PVS specification.

After simplifying the original declarations, the resulting
first-order specification was fed to PRECiSA. Nevertheless, the
process had to be aborted after reaching a time-out of three
hours without a response. This impact on the performance
could possibly be explained by the number of different flows
starting at the top-level function WCVint, presented in (10),
which provokes the generation of huge error expressions. The
manipulation of such expressions deemed the code-generation
process to be impractical. The step that allowed pushing
PRECiSA beyond its scalability limit was the application of
a slicing-based simplification on the first-order specification.
The automatic generation of code performed by PRECiSA
took less than 15 minutes to finish for the whole collection
of slices on the same machine. This improvement is related to
the fact that in the DAIDALUS specification some checks on the
velocities and positions are repeated along the same branch in
the control flow tree. In addition, this phenomenon is repeated
in several different branches. The slicing of the specification
lifted to the top-level several of these checks, reducing the
complexity of each individual slice. While the selection of the
slicing criteria would depend on human insight in the general
case, once it is decided, the automation of most of the tasks
related to the process and integration of the slices into the final
analysis is expected to be feasible, at least in examples with
a complexity similar to the one presented in this paper.

Another distinguishing feature of this work is the use of a
new formalization for floating-point numbers5. This formaliza-
tion is different from the one used in previous works in several
aspects. Mainly, it is defined in an axiomatic way, which
has a significant impact on the type-checking time of PVS,
improving it by a factor of six. Since the verification conditions
output by Frama-C are expressed in terms of floating-point
and real-valued operations, the PVS libraries where these
arithmetic domains are defined need to be type checked. The
reduction in the time spent in type-checking improved not
only the flow of the work while the proofs for the verification
conditions were developed, but also decreased the time needed
to rerun such proofs once they were done.

Additionally, this new formalization follows the IEEE-754
standard more closely, including representations for special
values such as Not-a-Numbers (NaN) and infinities. While
the use of a more detailed model usually complicates its
interaction with the rest of the specification, in this work
it was possible to reduce such impact to a minimum. For

5Available at https://github.com/nasa/pvslib/tree/master/float/axm bnd.

instance, the only place where a restriction about finiteness
of the floating-point representations is explicitly used is for
predefined constants and error-bound parameters, as can be
seen in the requires of all the listings above.

On the bright side, the gain of using this more detailed
formalization is at the semantic stance. It is not uncommon to
simplify some aspects of the models when a formalization is
designed. For the case of floating-point numbers, usually, some
aspects of the IEEE-754 standard, such as the special values,
are left aside because they complicate the formalization by
introducing the need to handle a nontrivial number of special
cases. Nevertheless, since the special values are supported by
the C language, working with a conceptual model that does
not support them could introduce space for flaws undetectable
by the analysis.

It is important to note that the almost seamless integration
with this new formalization was possible because the check
for finiteness was encapsulated in the error-bound certificates
generated by PRECiSA. As part of the automatic proof for
certificates as the one expressed by Theorem 2, the numeric
expressions (including subexpressions) appearing in them are
checked to remain in the floating-point representable domain,
therefore no infinite values or overflows occur. This check
is done by using a branch-and-bound optimization algorithm
implemented in the logic of PVS itself [21]. Notably, this
process provides hints on overflow detection since if the solver
cannot decide whether the numeric expressions remain in the
representable range for the inputs provided by the user, the
proof of the certificate cannot be completed. In other words,
if PVS cannot automatically prove the error certificate using
the PRECiSA proof strategies, the user is directed to look for
a possible overflow condition in their program.

VII. RELATED WORK

Different tools have been proposed to reason about the
numerical aspects of C programs. In this work, a combination
of PRECiSA, PVS, and Frama-C [10] is used. Support for
floating-point round-off error analysis in Frama-C is also
provided by the integration with the tool Gappa [22]. However,
the applicability of Gappa is limited to straight-line programs
without conditionals, and it often requires providing additional
ACSL intermediate assertions and hints through annotation
that may be unfeasible to generate automatically. The in-
teractive theorem prover Coq can also be applied to prove
verification conditions on floating-point numbers thanks to the
formalization defined in [23]. Nevertheless, Coq [24] tactics
are not available to automatize the verification process.

Several approaches have been proposed for the verification
of numerical C code by using Frama-C in combination with
Gappa and/or Coq [25]–[30].

In [31], a preliminary version of the technique presented in
this paper is used to verify a specific case study of a point-
in-polygon containment algorithm. In [7], the verification
approach is presented and applied to a small fragment of
DAIDALUS. Note, in both [31] and [7] overflow detection
is not performed.

244

https://github.com/nasa/pvslib/tree/master/float/axm_bnd

Besides Frama-C, other formal methods tools are available
to analyze the numerical properties of C code. Fluctuat [32]
is a static analyzer that, given a C program with annotations
about input bounds and uncertainties on its arguments, pro-
duces an estimation of the round-off error of the program.
Fluctuat detects the presence of possible unstable guards in
the analyzed program, as explained in [33], but does not
instrument the program to emit a warning in these cases. The
static analyzer Astrée [34] detects the presence of run-time
exceptions such as division by zero and under and over-flows
employing sound floating-point abstract domains. In contrast
to the approach presented here, neither Fluctuat nor Astrée
emits proof certificates that an external prover can externally
check.

VIII. CONCLUSION AND FUTURE WORK

In this paper, a formal approach is applied to generate
and verify a floating-point implementation of the DAIDALUS
well-clear specification. This implementation is obtained by
manually simplifying and slicing the original specification and
then utilizing each slice as input to the PRECiSA code genera-
tor. PRECiSA automatically generates a floating-point version
of each slice in C syntax enriched with ACSL contracts stating
the relationship between the ideal real number specification
and the floating-point implementation. In addition, PRECiSA
instruments the code to detect control flow divergences due to
rounding errors.

The generated C implementation of each slice is analyzed
within the Frama-C analyzer. In particular, the WP plugin is
used to compute a set of verification conditions that are proved
within the PVS theorem prover. These verification conditions
ensure that the accumulated rounding error is bounded, all
flow divergences are detected, and no overflow occurs.

The verification of the DAIDALUS well-clear C imple-
mentation relies on three different tools: the PVS interactive
prover, the Frama-C analyzer, and PRECiSA. All of these
tools are based on rigorous mathematical foundations and have
been used in the verification of industrial and safety-critical
systems. The C floating-point transformed program, the PVS
verification conditions, and the round-off error bounds are
automatically generated. However, a certain level of expertise
is needed for proving the PVS verification conditions gen-
erated by Frama-C and for proving the equivalence between
the original DAIDALUS specification and the simplified and
sliced one.

In the future, the authors plan to improve the automation
degree of the slicing and top-layer function generation. Static
analysis techniques may be used since the slices are built
according to the program branches. The authors also plan
to simplify the structure of the ACSL contracts generated
by PRECiSA to facilitate human inspection and to produce
simpler verification conditions. Automatic strategies are al-
ready available in PRECiSA to discharge the PVS certificates
ensuring the correctness of the rounding error bounds and
to prove certain verification conditions generated by the WP
analysis. However, additional work needs to be done to fully

automatize this process because of the new extended floating-
point formalization used in this paper.

Another line of future research is motivated by the eval-
uation of the impact of the process of generation of a safer
program on its final performance with respect to existing im-
plementations. For instance, the reference implementation for
DAIDALUS is expected to outperform the code generated by
PRECiSA since some overhead is introduced by checking the
stability of every guard. Nevertheless, in aerospace software
such as the DAIDALUS library in which no iterative statements
are allowed, this kind of overhead could result to be negligible
or at least acceptable in real-world deployments, weighting
the higher level of safety provided by the code generated by
PRECiSA.

REFERENCES

[1] Advisory Circular, U.S. Dept. of Transportation, Federal Aviation Ad-
ministration, AC 90-48D - Pilots’ Role in Collision Avoidance. U.S.
Government, 2016.

[2] U.S. Government, Aeronautics and Space. 14 CFR § 91.113, 2004.
[3] C. Muñoz, A. Narkawicz, G. Hagen, J. Upchurch, A. Dutle, and

M. Consiglio, “DAIDALUS: Detect and Avoid Alerting Logic for Un-
manned Systems,” in Proceedings of the 34th Digital Avionics Systems
Conference (DASC 2015), Prague, Czech Republic, September 2015.

[4] RTCA DO-365A, Minimum Operational Performance Standards
(MOPS) for Detect and Avoid (DAA) Systems, Appendix H. RTCA,
February 2020.

[5] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A Prototype
Verification System,” in Automated Deduction - CADE-11, 11th
International Conference on Automated Deduction, ser. LNCS, vol.
607. Springer, 1992, pp. 748–752. [Online]. Available: https:
//doi.org/10.1007/3-540-55602-8 217

[6] A. Narkawicz, C. Muñoz, and A. Dutle, “The MINERVA software
development process,” in Automated Formal Methods, ser. Kalpa
Publications in Computing, vol. 5. EasyChair, 2018, pp. 93–108.
[Online]. Available: https://easychair.org/publications/paper/g1Rs

[7] L. Titolo, M. Moscato, M. Feliú, and C. Muñoz, “Automatic generation
of guard-stable floating-point code,” in Proceedings of the 16th Inter-
national Conference on Integrated Formal Methods (IFM 2020), ser.
LNCS, vol. 12546. Springer, 2020, pp. 141–159.

[8] M. Moscato, L. Titolo, A. Dutle, and C. Muñoz, “Automatic estima-
tion of verified floating-point round-off errors via static analysis,” in
Proceedings of the 36th International Conference on Computer Safety,
Reliability, and Security, SAFECOMP 2017. Springer, 2017.

[9] L. Titolo, M. Feliú, M. Moscato, and C. Muñoz, “An abstract inter-
pretation framework for the round-off error analysis of floating-point
programs,” in Proceedings of the 19th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI).
Springer, 2018, pp. 516–537.

[10] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski,
“Frama-C: A software analysis perspective,” Form. Asp. of Comput.,
vol. 27, no. 3, pp. 573–609, 2015.

[11] C. Muñoz and A. Narkawicz, “Formal analysis of extended well-clear
boundaries for unmanned aircraft,” in Proceedings of the 8th NASA FM
Symp. (NFM 2016), ser. LNCS, vol. 9690. Minneapolis, MN: Springer,
June 2016, pp. 221–226.

[12] C. Muñoz, A. Narkawicz, J. Chamberlain, M. Consiglio, and J. Up-
church, “A family of well-clear boundary models for the integration of
UAS in the NAS,” in Proceedings of the 14th AIAA Aviation Technology,
Integration, and Operations (ATIO) Conference, Georgia, Atlanta, USA,
June 2014.

[13] A. P. Smith, C. Muñoz, A. J. Narkawicz, and M. Markevicius, “A
rigorous generic branch and bound solver for nonlinear problems,” in
Proceedings of the 17th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2015, 2015, pp.
71–78.

[14] S. Owre, J. Rushby, and N. Shankar, “PVS: A prototype verification sys-
tem,” in Proceedings of the 11th International Conference on Automated
Deduction (CADE). Springer, 1992, pp. 748–752.

245

https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://easychair.org/publications/paper/g1Rs

[15] M. D. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, San Diego, California, USA,
March 9-12, 1981. IEEE Computer Society, 1981, pp. 439–449.

[16] ——, “Program slicing,” IEEE Trans. Software Eng., vol. 10, no. 4, pp.
352–357, 1984.

[17] G. Canfora, A. Cimitile, A. D. Lucia, and G. A. D. Lucca, “Software
salvaging based on conditions,” in Proceedings of the International Con-
ference on Software Maintenance, ICSM 1994, Victoria, BC, Canada,
September 1994, H. A. Müller and M. Georges, Eds. IEEE Computer
Society, 1994, pp. 424–433.

[18] J. Q. Ning, A. Engberts, and W. Kozaczynski, “Automated support for
legacy code understanding,” Commun. ACM, vol. 37, no. 5, pp. 50–57,
1994.

[19] J. Silva, “A vocabulary of program slicing-based techniques,” ACM
Comput. Surv., vol. 44, no. 3, pp. 12:1–12:41, 2012.

[20] L. Titolo, C. Muñoz, M. Feliú, and M. Moscato, “Eliminating unstable
tests in floating-point programs,” in Proceedings of the 28th Interna-
tional Symposium on Logic-Based Program Synthesis and Transforma-
tion (LOPSTR 2018). Springer, 2018, pp. 169–183.

[21] A. Narkawicz and C. Muñoz, “A formally verified generic branching al-
gorithm for global optimization,” in Proceedings of the 5th International
Conference on Verified Software: Theories, Tools, and Experiments
(VSTTE 2013), ser. Lecture Notes in Computer Science, E. Cohen and
A. Rybalchenko, Eds., vol. 8164. Menlo Park, CA, US: Springer, May
2014, pp. 326–343.

[22] F. de Dinechin, C. Lauter, and G. Melquiond, “Certifying the floating-
point implementation of an elementary function using Gappa,” IEEE
Trans. on Computers, vol. 60, no. 2, pp. 242–253, 2011.

[23] S. Boldo and G. Melquiond, “Flocq: A unified library for proving
floating-point algorithms in Coq,” in 20th IEEE Symposium on Computer
Arithmetic, ARITH 2011. IEEE Computer Society, 2011, pp. 243–252.

[24] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions, ser.
Texts in Theoretical Computer Science. An EATCS Series. Springer,
2004.

[25] S. Boldo and J. C. Filliâtre, “Formal verification of floating-point
programs,” in Proceedings of ARITH18 2007. IEEE Computer Society,
2007, pp. 187–194.

[26] S. Boldo and C. Marché, “Formal verification of numerical programs:
From C annotated programs to mechanical proofs,” Mathematics in
Computer Science, vol. 5, no. 4, pp. 377–393, 2011.

[27] S. Boldo, F. Clément, J. C. Filliâtre, M. Mayero, G. Melquiond,
and P. Weis, “Wave equation numerical resolution: A comprehensive
mechanized proof of a C program,” Journal of Automated Reasoning,
vol. 50, no. 4, pp. 423–456, 2013.

[28] A. Goodloe, C. Muñoz, F. Kirchner, and L. Correnson, “Verification of
numerical programs: From real numbers to floating point numbers,” in
Proceedings of the NASA FM Symp. NFM 2013, ser. LNCS, vol. 7871.
Springer, 2013, pp. 441–446.

[29] C. Marché, “Verification of the functional behavior of a floating-point
program: An industrial case study,” Science of Computer Programming,
vol. 96, pp. 279–296, 2014.

[30] L. Titolo, M. Moscato, C. Muñoz, A. Dutle, and F. Bobot, “A formally
verified floating-point implementation of the compact position reporting
algorithm,” in Proceedings of the 22nd International Symposium on
Formal Methods (FM 2018), ser. LNCS, vol. 10951. Springer, 2018,
pp. 364–381.

[31] M. Moscato, L. Titolo, M. Feliú, and C. Muñoz, “Provably correct
floating-point implementation of a point-in-polygon algorithm,” in Pro-
ceedings of the 23nd International Symposium on Formal Methods (FM
2019), ser. LNCS, vol. 11800. Springer, 2019, pp. 21–37.

[32] E. Goubault and S. Putot, “Static analysis of numerical algorithms,” in
Proceedings of SAS 2006, ser. LNCS, vol. 4134. Springer, 2006, pp.
18–34.

[33] ——, “Robustness analysis of finite precision implementations,” in
Proceedings of APLAS 2013, ser. LNCS, vol. 8301. Springer, 2013,
pp. 50–57.

[34] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and Rival, “The ASTREÉ Analyzer,” in Proceedings of the 14th Euro-
pean Symposium on Programming (ESOP 2005), ser. LNCS, vol. 3444.
Springer, 2005, pp. 21–30.

246

Formal Methods in Computer-Aided Design 2023

Formal Verification of Correctness and Information
Flow Security for an In-Order Pipelined Processor

Ning Dong , Roberto Guanciale , Mads Dam
KTH Royal Institute of Technology, Stockholm, Sweden

{dongn, robertog, mfd}@kth.se

Andreas Lööw
Imperial College London, London, UK

a.loow@imperial.ac.uk

Abstract—We present an in-order pipelined processor and its
verification in the HOL4 interactive theorem prover. The processor
implements the RISC ISA Silver and features a general 5-stage
pipeline. The correctness of the processor is proved by exhibiting
a refinement relation between the traces of the pipelined circuit
and the Silver ISA. The processor is constructed by using a
HOL4 Verilog library for formally verified hardware, and its
correctness is guaranteed down to the Verilog implementation.
Additionally, we analyze the information flow properties of the
processor by utilizing the refinement relation. The notion of
conditional noninterference formulates that a processor should
not leak more information via its timing channel than what is
expected by a leakage model expressed at the ISA level. We
establish the conditional noninterference for our processor and
demonstrate the adaptability of the information flow methodology
to accommodate various processor designs, attacker models, and
environments. Our approach to verify processor implementations
and enable information flow analysis at the circuit level is suitable
for ISAs beyond Silver.

Index Terms—Formal Verification, Information Flow, Pipelined
Processor, Interactive Theorem Prover

I. INTRODUCTION

Almost all modern processors use instruction pipelining to
improve performance. Since processors are the fundamental
hardware component of a computing system, it is important
to formally ensure the correctness and security of pipelined
processors, as testing may miss important corner cases.

Formal analysis of pipelined processors has been studied
for decades [1]–[7]. Of these, early work [1]–[4] used sim-
plified models. Later, more comprehensive verifications were
performed, such as the VAMP processor [6] which lacked
the guarantee to the hardware description language (HDL)
level, and the MIPS pipeline [5] with non-mechanized proof.
Importantly, Kami [7] used intermediate models (e.g. a 3-stage
pipeline) tied with their specific ISA model to verify a 4-stage
pipelined circuit by refinement.

Over the past couple of years, prompted by the emergence
of the Spectre [8] family of vulnerabilities, the modelling and
verification of processor’s information flow at microarchitecture
and hardware levels have received significant attention [9]–[14].
However, these works have not addressed the combination of
information flow security and functional correctness systemati-
cally.

This work has been supported by the TrustFull project funded by the Swedish
Foundation for Strategic Research. Ning Dong is supported by the KTH-CSC
joint scholarship programme for his doctoral studies.

In this paper, we present the formal verification of an in-order
5-stage pipelined processor in the HOL4 theorem prover [15].
In-order pipelines are widely used in applications from IoT to
autonomous systems, and form the basis for more advanced
pipeline designs. We choose the general-purpose RISC ISA
Silver [16] as the target due to its simplicity and generality. The
former facilitates our circuit implementation and verification,
and the latter makes our work more reusable for other ISAs.
The processor is implemented with the help of the hardware
development library introduced by Lööw et al. [16], [17]. The
library is embedded inside HOL4 and targets the Verilog HDL.

In summary, we have the following contributions:
• We verify the correctness of a pipelined processor by

establishing a refinement relation between the traces of
the processor and the Silver ISA. The correctness proof
is mechanized in HOL4 and is guaranteed down to the
Verilog implementation of the processor.

• Notably our verification approach can deal with pipeline
challenges that have been only partially addressed before,
see details in Section III-A.

• We provide non-mechanized analysis of information flows
of the processor via observational models. The analysis
shows the absence of unexpected side channels via a
verification strategy that complements the verification of
functional correctness.

• The processor has been successfully synthesized as a small
computer system (in combination with other components,
e.g., a cache and interrupt handler) for the PYNQ-Z1
FPGA board, by using the Xilinx Vivado toolchain. We
evaluate its performance with several software programs
compiled for the system.

The formalization in HOL4 is about 21,000 lines of code
including circuit definition and correctness proof and took
around 14 person months to develop, which is available at
https://doi.org/10.5281/zenodo.8199575.

II. BACKGROUND

A. Instruction Pipelining

Instruction pipelining divides the processing of instructions
into different stages, e.g., fetch, decode, and execute, and
thus allows the processor to handle multiple instructions
concurrently. Pipelined processors can operate at a higher clock
frequency because of their simpler stage circuits compared

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_33 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0002-0629-4439
https://orcid.org/0000-0002-8069-6495
https://orcid.org/0000-0001-5432-6442
https://orcid.org/0000-0002-9564-4663
https://doi.org/10.5281/zenodo.8199575
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_33
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_33
https://creativecommons.org/licenses/by/4.0/

register file

IF ID EX MEM m2wf2d d2e e2m WB

memory

Fig. 1. Simplified view of a 5-stage pipeline

to sequential processors, which handle one instruction at a
time. Figure 1 presents a typical 5-stage pipeline. An interface
between every two adjacent stages transfers necessary elements
to the next stage as input. Instruction fetch (IF) uses a branch
predictor to produce the program counter (PC) for the next
cycle, which for most RISC processors simply increases the
current PC by 4. Instruction decode (ID) decodes information
from instructions and reads the register file to prepare source
operands data for the next stages. Execution (EX) computes the
results of operations that do not depend on external components
like memory. The results are not directly written to the register
file, which is only updated by the Write back (WB) stage.
Memory (MEM) stage interacts with the external environment,
for instance, implements memory loads and stores. When the
memory results are ready, they are delivered directly to WB
to update the register file.

B. HOL4 Verilog Library

The processor is constructed using the HOL4 Verilog
library [16], [17], which contains a formal semantics for
the HDL Verilog and a proof-producing translator from
(shallowly embedded) HOL functions to (deeply embedded)
Verilog descriptions. The translator allows users to define
circuits as HOL next-state functions and automatically generate
corresponding Verilog descriptions (expressed in the Verilog
semantics of the library), where each translation is guaranteed
to be correct by a HOL proof automatically constructed
during the translation process. Since modeling circuits as HOL
next-state functions describes the cycle-by-cycle behaviour
of circuits, the HOL4 Verilog library ensures that no timing
information is lost or introduced when the circuit models are
exported to Verilog. Initially, the semantics and the translator
were limited to sequential logic, i.e., always_ff blocks
triggered by the positive edge of the circuit’s clock signal.
Later, Lööw [18] extended the semantics and the translator to
support combinational logic, i.e., always_comb blocks.

C. Silver ISA

Generally, the semantics of an ISA is modelled by a
state transition relation: s0 → s1, which represents the atomic
execution of one instruction. Then, the ISA trace σ is produced
by → from the initial state s0, i.e., σ = s0 → s1 → s2 · · · ,
and σ(n) = sn.

The Silver ISA [16] is originally defined in L3 [19] which is
a domain-specific language for ISA specifications and translated
into HOL4 as our circuit specification. The Silver ISA state

is a record, s = (PC ,M ,R,CF ,OF ,DI ,DO ,ME). Here,
PC , M , and R are the program counter, memory, and register
file respectively. Two flags (CF and OF) are used to record
carry and overflow for the ALU (arithmetic logic unit) add and
subtraction computations, DI and DO are two data ports for
I/O operations, and ME is a trace to record memory states.
Silver instructions have fields opc determining the operation
and func determining the functionality for ALU and SHF
operations. The difference in the usage of func is that SHF
only uses the lower 2 bits of func but the ALU uses all 4 bits.
There are three data resource fields (Ra , Rb, and Rw), which
are followed by their corresponding flags (Fa , Fb, and Fw)
to indicate it as a register address (flag is 0) or an immediate
constant (flag is 1). So, Da , Db, and Dw are the data read
from R with their addresses if the flag is 0, otherwise, the
constant. Normally, Da and Db are source data, and Rw is the
destination register to write the result (Fw usually is 0). Some
operations do not write any register, Rw in these instructions
could be a source register or immediate constant. For example,
Rw is an input address for conditional jump CJMP.

The following operations have non-trivial effects on the
pipeline: (1) JMP and CJMP: unconditional and conditional
jumps. The JMP instruction computes the jump target using
ALU with the current PC and Da as input, and stores the value
PC +4 to the register Rw . The CJMP instruction checks if the
ALU functionality as determined by func applied to Da and Db
is 0 or not. The destination is PC+Dw if the condition is true,
otherwise, PC +4. (2) MLD and MSTR: bytewise memory load
and store. The MLD instruction loads a single byte or a word
at the address Da in the memory M to the register Rw . The
MSTR instruction updates M with Db as the address ad and
Da as the value v . (3) INTR: interrupt. The purpose of INTR
is to allow the processor to communicate with the external
environment, and the hardware implementation is expected to
wait for a reply from the environment for INTR. The Silver ISA
does not interact with the environment. The INTR instruction
appends the current memory M to the trace ME , which is
never used by the ISA for any execution. (4) ACC: acceleration.
The ACC instruction computes an addition of the lower and
higher 16 bits of input Da . The purpose of ACC is to support
a separate accelerator in the processor implementation. The
ACC instruction is a placeholder for richer functionalities.
(5) DIN: data input operation. The DIN instruction writes the
data from the DI port to the register Rw . Because the Silver
ISA is defined as a self-contained machine i.e. without any
interaction with the external environment, the value of DI
remains unaffected after initialization.

D. Security Condition

ISAs serve as the main interface between software and
hardware, ensuring the correctness and security of software.
However, ISAs do not capture non-functional aspects of
systems, like the execution time, that can be utilized by an
attacker to infer confidential data. To scope our work, we
consider the attacker as an external agent that can monitor the
timing channel when outputs are produced by our system. For

248

Silver, this corresponds to measuring the clock cycles elapsed
between INTR. It is usually infeasible to verify resilience
against side channels by taking into account both software and
processor design at the same time [9], [10]. In practice, these
analyses are usually done by using observational models, which
extend the ISA with leakage functions that overapproximate
what influences the side channels [12]. These models have
several benefits: (1) they allow for overapproximation of
leakage, permitting scalable verification by using conservative
measures; (2) they provide a common interface that can be used
(with slight variations) to analyze different types of channels or
different hardware designs. The goal is usually to demonstrate
a variety of noninterference [20] (see Section V): the results
of the leakage functions are independent of confidential data.
Recently, variations of noninterference for processor executions
have been proposed [10], [12], [21] to capture the idea of
hardware execution traces being indistinguishable in terms of
side-channel observations (e.g., timing and cache accesses) if
leakages of the corresponding ISA-level traces are identical.

III. PIPELINE IMPLEMENTATION

A. Design

Our pipelined processor, called Silver-Pi, follows the 5-stage
design in Figure 1. The design addresses common pipeline
challenges such as data hazards, and is general enough to
accommodate other RISC ISAs (see Section VI-A).

a) Data hazards: The pipeline may process interde-
pendent instructions, for example, a program of two in-
structions i0: R1 := R0+1; i1: R2 := R1-2;. The
pipeline must prevent i1 from reading a wrong (old) value
for the register R1 in the ID stage, when i0 is still being
processed in the pipeline and its result has not been committed
to the register file. Silver-Pi uses pipeline stalling by checking
whether each register’s address (Ra , Rb, Rw) is affected by
instructions in the EX, MEM, and WB stages. If data hazards
are identified, a control unit stalls the instruction in ID stage
until data hazards are resolved.

b) External Delays: Requests issued by the MEM stage
can take several processor cycles to be answered. Normally
any new request to the same external hardware component will
be ignored during the waiting cycles. For instance, when the
MEM stage issues a MLD request to the memory, the pipeline
is stalled until the memory replies the result of MLD to the
WB stage, which is then committed to the register file R. The
same approach is applied to the other three kinds of Silver
instructions that communicate with external components and
that can take several hardware cycles to be answered: MSTR,
INTR, and ACC.

c) Mispredicted program counters: The pipeline fetches
instructions speculatively for the next cycle until the next PC
is determined. These speculatively fetched instructions can
be wrong when an instruction in the pipeline modifies the
program counter (i.e., JMP and CJMP). Consider the example
in Table I, instructions i0 - i3 are regular operations, and
i4 is a JMP. The instructions i4’ and i4” are stored in the
next two addresses to i4 in the memory, and i5 is stored at

IF ID EX MEM WB
t i4(JMP) i3 i2 i1 i0

t+ 1 i4’ i4(JMP) i3 i2 i1
t+ 2 i4” i4’ i4(JMP) i3 i2
t+ 3 i5 NOP NOP i4(JMP) i3

TABLE I
PROCESSING A JUMP IN THE PIPELINE

the target address of i4. The i4’ and i4” instructions are
speculatively fetched at the cycle t + 1 and t + 2. In Silver
ISA, target addresses of jumps are determined only after the
ALU results are available in the EX stage. In addition, the
PC cannot be affected by external hardware components like
memory. For these reasons, we implement a jump handler in
the EX circuit. For the example in Table I, after the EX circuit
computes the target of i4, the instructions i4’ and i4” are
flushed as NOP (no operation) and the proper next instruction
i5 is fetched at t+ 3. The reason for not handling jumps in
the MEM or WB stage is discussed in Section VI-A.

B. Formal Implementation in HOL4

The circuit state is represented by a record c =
(g , cif , cid , cex , cmem , cwb). The component g contains general
fields like the register file Rg , and output fields for interacting
with the environment, including a program counter PCg , data
address adg , stored data value vg , a command cmdg issuing
fetch/load/store requests to memory, etc. Other components are
the states of their relevant pipeline stage, consisting of fields
operated by the pipeline stage internally. For instance, cid has
the fields opcid , funcid , Rwid , etc. for decoding ISA level opc,
func, Rw , etc.

We formalize an environment state e to describe necessary
external hardware components such as a memory subsystem.
Formally, e = (M ,DI , inst , data, rdy ,mirdy , iack). The
components M and DI are identical to the memory and data
ports of the ISA state. Other items excluding M and DI
are the environment’s outputs to the processor. The signals
inst and data are instruction and data values from memory,
and rdy indicates the memory request is finished and the
memory is able to process the next request. The signal mirdy
indicates that memory initialization is finished, and iack is an
acknowledgement of the interrupt handler to the processor to
inform that the INTR request is finished.

As required by the HOL4 Verilog library, the circuit is
implemented as next-state functions that update the processor’s
state c and communicate with the environment’s state e.
These functions are divided into two lists fl and cl for the
always_ff and always_comb blocks respectively. The
functions in the fl list are mainly to transfer data from
one stage to the next stage as input. Other functions in
the fl list include an accelerator to perform the Silver ISA
ACC operation, updating the program counter PCg to fetch
instructions, writing the register file Rg , and a general function
managing interactions with the environment.

Functions in the cl list are the components of every pipeline
stage’s internal circuit and a control unit function. The major
function in the IF stage is a multiplexer to select the next

249

cycle’s PC (next_PCif), and another function assigns to the
fetched instruction instrif from the memory’s reply. Functions
in the ID stage perform the decoding for the instruction
delivered from the IF stage and check data hazards. The
function checking data hazards does not consider opcid , since
opcid does not affect the correctness of such checks. Two
main functions in the EX stage are responsible for computing
the ALU and SHF operations separately. The jump handler is
defined with the output jmpex based on the ALU result and
opcex , as described in Section III-A. Functions in the MEM
stage identify operations that need to communicate with the
external environment or the accelerator. A multiplexer in the
WB stage determines the result to write the destination register
Rwwb at the next cycle, based on the operation code opcwb .
The control unit in the cl list is defined to maintain the process
between different pipeline stages when pipeline challenges in
Section III-A happen.

Finally, the Silver-Pi circuit is defined as follows: agπ =
mk_module (procs fl) (procs cl) initagπ . The term initagπ
executes once in the initial cycle to set up initial values
for essential items of the circuit state c. For instance, PCg

is assigned to 0. The functions procs and mk_module are
provided by the HOL4 Verilog library to construct the circuit.
The function procs sequentially composes a list of next-
state functions into one next-state function. The function
mk_module constructs a representation of a Verilog module
out of a next-state function for sequential logic and a next-state
function for combinational logic.

The external environment is consistent with the one used by
the non-pipelined Silver circuit [16], see Section IV-A. Given
an environment trace β = e → e′ → e′′ · · · , the circuit agπ
produces the processor’s execution trace α = c → c′ → c′′ · · ·
where α(t) is the processor’s state at the cycle t. In the follow-
ing, we use ϕ to range over circuit execution traces, i.e., traces
such that exist α = agπ β and ϕ(t) = (α(t), β(t)).

IV. CORRECTNESS PROOF

The correctness of the pipelined circuit is established by
exhibiting a trace relation between the circuit and the Silver
ISA. Our proof methodology has its roots in the pipeline proof
for MIPS ISA [5], [22], but significant changes have been
made because the Silver ISA is closer to modern RISC ISAs
than MIPS (see Section VI-A) and we use a more realistic
environment. Based on the translator in the Verilog library,
a Verilog AST is generated for the circuit definition agπ.
The simulation between them is automatically proved by the
translator. Correctness between the ISA and agπ is lifted to
the Verilog AST, as shown in Figure 2.

A. External Environment

The external environment is axiomatized where the envi-
ronment trace β in the circuit trace ϕ satisfies an assump-
tion AX which consists of four parts: (1) mem_env; (2)
mem_start_env; (3) intr_env; (4) di_env.

The first assumption constrains the memory subsystem to
support instantaneous memory accesses, which can reply to

i1 i2 i3 i4 i5 i6ISA

circuit definition

IF: i5

ID: i4

EX: i3

MEM: i2

WB: i1

IF: i6

ID: i5

EX: i4

MEM: i3

WB: i2

t t + 1

... ...

... ...

n n + 1 n + 2 n + 3 n + 4

circuit as Verilog AST

n + 5

c c'

Fig. 2. Correspondence between the ISA and circuits at different levels

memory requests within one cycle. This assumption describes
the reactions of the memory subsystem to four memory
operations that can be requested by the pipeline: (1) do nothing;
(2) fetch an instruction; (3) fetch an instruction and load
data; (4) fetch an instruction and store data. For example,
as Definition 1 shows, if the memory gets a fetch command at
the cycle t and is ready at the previous cycle, then it replies
immediately (m = 0) or after a finite number of cycles with
the right instruction without affecting the memory.

Definition 1.

α(t).cmdg = fetch ∧ β(t− 1).rdy ⇒
∃m.(∀p ≤ m. β(t+ p).M = β(t− 1).M) ∧

(∀p < m. ¬β(t+ p).rdy) ∧ β(t+m).rdy ∧
β(t+m).inst = β(t).M [α(t).PCg]

The second assumption states that the memory initialization
is eventually completed: ∃m. β(m).mirdy.

The third assumption constrains the interrupt handler which
behaves similarly to the memory subsystem. The handler replies
iack to the processor’s interrupt request within a finite number
of clock cycles. As introduced in Section II-C, the Silver ISA
appends the whole memory into ME when INTR happens
but never uses ME . Practical interrupt handlers usually do
not perform a copying-all-memory operation and the memory
states are regulated by mem_env. So, the ME descriptions in
intr_env have been removed.

The last assumption constrains the DI port in the environ-
ment used by the DIN instruction. The DI port is supposed to
be updated by an external controller, rather than the processor
itself in the previous work [16]. Since the value of DI in
the Silver ISA (see Section II-C) remains unchanged during
execution, ∀t. β(t).DI = β(0).DI .

B. Scheduling Function

The pipelined circuit processes instructions concurrently
and takes several hardware cycles to complete an instruction.
To reason about the correctness of pipeline stages, we use a
scheduling function, as inspired by the MIPS work [5], [22].
The scheduling function I maps the processing instruction
in a pipeline stage k at cycle t, n = I(k, t). It is inductively
defined, for example, if the EX stage is enabled for the cycle

250

t via a field enableex , I(EX, t) = I(ID, t − 1), otherwise,
I(EX, t) = I(EX, t− 1).

As mentioned in Section III-A, agπ handles JMP and CJMP
instructions in the EX stage. For the program example in
Table I, the wrongly fetched instructions (i4’ and i4”) do not
appear at the ISA level when JMP happens. These instructions
are later flushed as NOP by the circuit. For this reason, the
scheduling function is partial. When the scheduling function is
undefined (⊥) for the IF or ID stage, the corresponding stage
is processing an instruction to be discarded and we do not
need to argue its correctness. If ⊥ results for the EX, MEM,
and WB stages, the corresponding stage is processing a NOP
instruction that has been inserted by the control unit as a result
of a flush. In this case, we must demonstrate that the discarded
instruction does not induce any operations on other parts of
the circuit. For instance, there is no memory request when ⊥
appears in the MEM stage.

C. Trace relation

In order to demonstrate equivalence between the pipelined
circuit and the ISA, we introduce a trace relation ∼I with the
help of the scheduling function I . Most circuit fields are related
to the ISA level, but a few fields are irrelevant since they are
used by the processor internally to maintain the process, e.g.,
enableex controlling the EX stage. We partition the related
fields of the circuit according to the pipeline stages, and as
either visible or invisible. A visible field V (f) has a direct
counterpart in the ISA state. For example, the carry flag CFex

used by ALU is related to the ISA’s CF and located in the
EX stage. An invisible field cannot be directly observed at
the ISA level, since it is an intermediate signal used by the
ISA to process instructions. For example, opcex has no direct
counterpart in the ISA state and is extracted from the instruction
in memory that is pointed to by the program counter.

Intuitively, if a stage k after t clock cycles, I(k, t) is equal to
n, then its visible fields are associated with the corresponding
final ISA state, and its invisible fields are associated with the
state prior to executing the last instruction. If I(k, t) = ⊥, the
pipeline stage should not have any effect on its visible fields.

Definition 2. ϕ ∼I σ if for every t, k, f ∈ fields(k):

V (f) ⇒ I(k, t) ̸=⊥⇒ ϕ(t).f = πf (σ(I(k, t))) ∧
¬V (f) ⇒ I(k, t) ̸=⊥⇒ ϕ(t).f = πf (σ(I(k, t)− 1)) ∧
V (f) ⇒ I(k, t) =⊥⇒ ϕ(t).f = ϕ(t− 1).f

For visible fields (e.g. CFex in EX), πf returns the corre-
sponding ISA field. For invisible fields (e.g. opcex in EX),
πf extracts the relevant information from the ISA state, for
example, decode_opcisa extracts opc from the ISA memory
pointed to by the ISA program counter.

Finally, we define an initial relation ∼0 which guarantees
that the circuit and ISA start from corresponding initial
states: ϕ(0) ∼0 σ(0). For example, ϕ(0).M = σ(0).M and
ϕ(0).Rg = σ(0).R.

D. Correctness and Proof

To prevent self modifying programs, any software executing
on our pipelined processor must follow the software condition
SC in Definition 3 that no instruction is modified in the memory
by the previous four instructions being processed in the pipeline.

Definition 3.

∀n. is_mem_strisa σ(n) ∧ n < i < n+ 5 ⇒
σ(i).PC ̸= mem_str_addrisa σ(n)

The function is_mem_strisa identifies if the operation is
MSTR for an ISA state and mem_str_addrisa returns the
stored address ad . The circuit behaviour is undefined when
SC is violated.

The correctness theorem of the pipelined circuit is formulated
as follows:

Theorem 1. If the initial circuit and ISA states are consistent
ϕ(0) ∼0 σ(0), the external environment satisfies AX ϕ, and
the program satisfies the software condition SC σ, then the
trace relation is met with a unique scheduling function for ϕ
and σ such that ϕ ∼I σ.

Proof: The theorem is proved by induction on the cycle t.
For the initial cycle, the proof is trivial since the initial relation
∼0 ensures that the circuit states are initialized with the same
value as the ISA for visible fields. Invisible fields are ignored
in the initial cycle since no instruction has been processed by
the pipeline. The following highlights the major difficulties of
every pipeline stage for the induction step from t to t+ 1:
IF: The correctness of the next cycle PC next_PCif is achieved
by the proof of the jump handler in the EX stage. The software
condition SC guarantees that the fetched instruction instrif is
not affected by any instruction in the pipeline.
ID: The data from the register is correct under the condition
that no instruction in the later stages writes to the reading
registers at the current cycle. This condition is satisfied by the
pipelined circuit, because of signals checking data hazards.
EX: Because of correct ALU computations and operation code
opcex in the EX stage, we establish the correctness of the jump
handler. For the two visible flags CFex and OFex recording
the carry and overflow of ALU, they are updated for specific
values of function code, i.e., funcex = 0/1/2. The NOP and
SHF instructions are possible but not allowed to update the
visible flags in the EX stage. To guarantee this, we have proved
that funcex has a certain value (̸= 0/1/2) when the NOP or
SHF instruction is in the EX stage.
MEM and WB: the major proof is to ensure the NOP instruction
does not affect other circuit components, mainly the memory
M in the environment and the register file Rg . This is proved
by showing a specific value of the operation code opcmem and
opcwb .

In the following, we use ≃ to represent that ϕ corresponds
to σ: ϕ ≃I σ ≜ AX ϕ ∧ ϕ ∼0 σ ∧ ϕ ∼I σ.

251

V. INFORMATION FLOW

A. Conditional Noninterference

We devise a verification strategy that complements functional
correctness to show the absence of undesired timing channels.
To characterize the information flows of processors, we extend
the ISA model with a leakage function obs which extracts
the part of the ISA state that can affect the execution time of
a program. For our case, as common observations used for
constant time implementations [12], [23], obsag returns the
program counter PC , the addresses of data memory accesses
ad , and the condition of CJMP.

The leakage function induces the notion of observation
equivalence.

Definition 4. Two ISA states s1 and s2 are observation
equivalent, s1 ≈obs s2, if obs s1 = obs s2.

We extend observation equivalence pointwise to ISA traces
σ1 ≈obs σ2, which results in an equivalence that resembles
synchronous noninterference [20], [24]. Notice that since the
attacker observes the PC , observation equivalent traces have
the same length, as is common for constant time programming.

The strategy is to take the ISA traces as a reference for
permitted information flow, and forbid the attacker from
learning any other secrets via the timing channel. That is,
the circuit is secure if for any pair of ISA-level traces σ1 and
σ2 that are indistinguishable by the attacker (σ1 ≈obs σ2),
their corresponding circuit traces ϕ1 ≃I1 σ1 and ϕ2 ≃I2 σ2

have the same timing behaviour. To guarantee that, we require
I1(k, t) = I2(k, t) for all pipeline stages k at every cycle,
which means that the two circuit traces process the same
instruction at the same stage and therefore have the same timing
observations. A functionally correct processor can violate
this security requirement and leak secrets, we demonstrate
an example later in Section V-B. For our attacker model in
Section II-D, we need to ensure I1(k, t) = I2(k, t) at the cycle
t when INTR happens. To guarantee this, it is necessary to
keep track of instruction processing in the circuit over time.
As discussed in Section VII, this property has been formulated
as a variant of conditional noninterference. Let Σ be the set
of valid ISA traces that processors can implement, conditional
noninterference is defined as follows:

Definition 5. A pipelined circuit is conditional noninterferent
with respect to obs, written CNI(obs), if for any two ISA
traces σ1 and σ2 in Σ such that σ1 ≈obs σ2, for any circuit
trace ϕ1 with a scheduling function I1 satisfying ϕ1 ≃I1 σ1,
there exists a circuit trace ϕ2 and scheduling function I2 such
that ϕ2 ≃I2 σ2, and ∀k t. I1(k, t) = I2(k, t).

The execution time of processors clearly depends on the
behavior of the environment. To reason about the circuit’s
timing channel, we use an environment constraint EC which
requires that two environment traces β1 and β2 respond to
their processor traces α1 and α2 respectively at the same cycle
t if all processor’s requests before t are identical. For example,
after the same sequence of memory operations with the same

addresses, β1 and β2 answer the next memory request in the
same number of clock cycles. This allows some subsets of
addresses to be reliably faster, and also caching-like behaviours
where accessing an address can be faster if that address has been
accessed before. For our environment AX in Section IV-A, we
define ECag for all components except for di_env, because
it does not affect the observation of circuit trace. Definition 6
shows the ECag constraint for mem_env where fields in
α1 and α2 are produced by agπ, and other constraints (for
mem_start_env and intr_env) in ECag are comparable:

Definition 6.

∀t t′. t′ ⩽ t ∧ α1(t
′).cmdg = α2(t

′).cmdg∧
α1(t

′).PCg = α2(t
′).PCg∧

(α1(t
′).cmdg = load/store ⇒

α1(t
′).adg = α2(t

′).adg) ⇒ β1(t).rdy = β2(t).rdy

As mentioned in Section IV-C, the trace relation and
correctness proof do not argue some processor’s internal fields
which are used to maintain the pipeline processing. But such
fields can either directly affect the scheduling results like
enableex or be observed by the environment like cmdg , and
thus impact the execution time of programs. Therefore, we show
the equivalence of these fields between two circuit traces for
every cycle t. Formally, ϕ1 ≈f ϕ2 where f extracts necessary
fields. Intuitively, by combing ≃I and ≈f , Lemma 1 shows that
instructions are processed in the same way by the processor in
the two circuit traces if their ISA traces are indistinguishable.

Lemma 1. For any ϕ1 ≃I1 σ1 and ϕ2 ≃I2 σ2, σ1 ≈obsag

σ2, if the programs in two ISA traces are not self modifying
SC σ1 and SC σ2, and the circuit traces ϕ1 and ϕ2 satisfy
ECag(ϕ1, ϕ2), then ∀k t.I1(k, t) = I2(k, t) and ϕ1 ≈f ϕ2.

Proof: Lemma 1 is proved by induction on the cycle t
with the help of Theorem 1. For the initial cycle, I1(k, 0) =
I2(k, 0) directly, and ϕ1(0) ≈f ϕ2(0) because of ∼0 and
≈obsag . The proof for the induction step is divided into two
parts: I1(k, t+ 1) = I2(k, t+ 1) and ϕ1(t+ 1) ≈f ϕ2(t+ 1).

For the scheduling results, the main work is the equivalence
of fields handling pipeline challenges in Section III-A at the
cycle t, because the current scheduling results depend on the
circuit state at the previous cycle. We comment on the lemma
α1(t).jmpex = α2(t).jmpex and omit other lemmas for data
hazards and environment delays, since they are proved in the
same way. From the assumption I1(EX, t) = I2(EX, t), if the
result is an ISA step m, ϕ1(t) ≃I1 σ1(m) and ϕ2(t) ≃I2 σ2(m)
hold because of Theorem 1. Since σ1 ≈obsag

σ2, σ1(m) ≈obsag

σ2(m). According to obsag , σ1(m) and σ2(m) have the same
opc and condition of CJMP. The two ISA states have the same
observation for JMP and CJMP, and therefore α1(t).jmpex =
α2(t).jmpex. If the scheduling result is ⊥, ¬α1(t).jmpex
and ¬α2(t).jmpex hold as the correctness required. Based
on the lemmas for pipeline challenges and the assumption
ϕ1(t) ≈f ϕ2(t), I1(k, t+ 1) = I2(k, t+ 1).

For ≈f , the major work is similar to above, i.e., lemmas for
pipeline challenges but for the cycle t+1, because the current

252

circuit state determines fields in ≈f . We use the induction
proof in Theorem 1 to prove, for example, α1(t+1).jmpex =
α2(t+ 1).jmpex. Accordingly, ϕ1(t+ 1) ≈f ϕ2(t+ 1).

Lemma 2 shows the existence of ϕ2 and I2 for σ2 when ϕ1

is determined.

Lemma 2. If ϕ1 ≃I1 σ1 and SC σ1, σ1 ≈obsag
σ2 and SC σ2,

then there exists a circuit trace ϕ2 and scheduling function I2
satisfying ϕ2 ≃I2 σ2, and ECag(ϕ1, ϕ2).

Proof: To construct ϕ2, we compose a processor trace α2

produced by agπ with the following β2.

β2(0) = ⟨|M := σ2(0).M ; rdy := β1(0).rdy; · · · |⟩∧
β2(t+ 1) = ⟨|M := let t′ = lvr(β1, t+ 1) in

if α2(t
′).cmdg = store ∧ β1(t+ 1).rdy

then β2(t).M [α2(t
′).adg := α2(t

′).vg]

else β2(t).M ; rdy := β1(t+ 1).rdy; · · · |⟩

The function lvr returns the cycle when the latest valid memory
request happened in β1 before the cycle t+ 1. We omit other
fields in β2 since they are defined similarly as M and rdy .

The proof mainly concerns AX , because ∼0 and ECag are
fulfilled by β2’s definition. Suppose AX ϕ2, the correctness
and existence of I2 is proved by Theorem 1. For AX , the main
work is mem_env as other constraints are trivial or similar
to mem_env. We show the proof for fetch (Definition 1) and
other cases for load and store are proved similarly. By using
induction on t and ≈f from Lemma 1, the two processor traces
issued the last valid fetch request at the same previous cycle
t′. Because of AX ϕ1 and the same rdy signal in β1 and β2,
we apply the response time m in β1 to β2 and then β2 fulfills
the fetch constraint by its definition.

Based on Lemma 1 and 2, the verified Silver-Pi is CNI with
respect to obsag if ISA traces in Σ are valid (i.e. satisfying
the Definition 3 of SC). As Section IV-D mentioned, the
circuit behaviour is undefined when executing self modifying
programs.

Theorem 2. If all ISA traces in Σ satisfy SC i.e. ∀σ.σ ∈ Σ ⇒
SC σ, then the verified Silver-Pi is CNI(obsag).

B. Security Analysis
The verification strategy for conditional noninterference can

be easily applied to different ISAs as long as their correctness
verification has established a scheduling function. Handling
different attacker models requires modifying the definitions of
obs and EC. For example, consider a memory subsystem
whose data accesses take constant time regardless of the
address, then data accesses issued by the processor do not
affect the execution time of programs. This condition is more
restrictive on the timing channel for the environment but
less for the processor. To accommodate this, we redefine
a obs′ag by relaxing obsag to not observe the explicit data
address ad . Correspondingly, EC ′

ag is defined by removing the
following restriction in Definition 6 of ECag: α1(t

′).cmdg =
load/store ⇒ α1(t

′).adg = α2(t
′).adg. Theorem 2 remains

valid with obs′ag and EC ′
ag .

To motivate the information flow analysis, a correct pro-
cessor can still have side channels and violate conditional
noninterference. For example, we developed a modified Silver-
Pi, named Silver-Pi-v2, that only cleans opcid instead of the
entire instruction when flushing the ID stage. The functional
correctness is unaffected since the NOP instruction does not
modify the pipeline irregardless of the operands, but the
CNI does not hold due to data hazards. Consider Table I,
as mentioned in Section III-B, the processor does not consider
opcid when checking data hazards at the cycle t + 3. Other
relevant fields for checking data hazards like Raid and Faid
are extracted from i4”. Because i4” is not a valid ISA-level
instruction, the two circuit traces may fetch different i4” and
have varying data hazard signals, leading to differences in
the execution time of programs. To fix this problem, we can
either modify the Silver-Pi-v2 to not check data hazards when
ID stage is flushed, or refine a obs′′ag that guarantees ISA
states have the same value for i4” after JMP and CJMP. The
observation obs′′ag is true for our hardware setting since the
instruction memory is fixed after initialization. However, obs′′ag
is not valid for all cases. For instance, uncertain data can be
stored after an instruction in the Armv8 architecture. Therefore,
this vulnerability can be exploited as a side channel.

We demonstrate the side channel with the program in Table I:
i3 to i5 are R0:=0; CJMP R1=0? i5; INTR; where
R1 stores a secret flag, and i4” is uncertain data that can be
decoded as e.g., R2:=R0+1 or R2:=0. The Silver-Pi spends
the same time to complete this program despite the value of
i4”, as it is CNI. But the Silver-Pi-v2 takes more time to
execute the program if i4” is R2:=R0+1 than R2:=0 when
the flag in R1 is false. The reason is that R2:=R0+1 has a
data dependency with i3. The attacker takes the execution
time of the program with R2:=0 as a baseline, then observes
and compares whether INTR occurs later or not in the interrupt
handler when i4” is R2:=R0+1, and thus learns R1’s flag.

VI. DISCUSSION AND EVALUATION

A. Discussion

The process of verifying correctness has discovered underly-
ing bugs in our initial pipeline. One of these bugs is exemplified
by a simple program that consists of two instructions: i0:
R1 := SHF R2 R3; i1: R4 := R5+R6;. The buggy
processor decodes funcid for SHF and ALU in the same way,
although the SHF instruction only uses the lower 2 bits of
funcid . The processor computes a wrong result of i1 because
the 4 bits funcid of i0 modifies two visible flags CFex and
OFex of ALU to a distinct value. We fixed this bug by assigning
3 to the higher 2 bits of SHF’s funcid , which prevents SHF to
affect the flags.

A major difference in the pipeline design between Silver-Pi
and similar work for RISC-V and MIPS [5], [7] is the jump
handler. The Silver ISA requires to use the ALU for processing
jump instructions. So, our case does not allow a jump handler
in the ID stage like the MIPS pipeline. Actually, the MIPS
pipeline can determine the next PC in the ID stage because
of the MIPS ISA’s delay slot, which is uncommon for other

253

ISAs such as RISC-V [25], Armv7 [26], and Armv8-A [27].
A verified pipeline in Kami [7] determines the next PC in the
last stage. However, it will waste several hardware cycles to
process wrongly fetched instructions compared to our design.
Since the Kami work targets a subset of RISC-V RV32I ISA,
the pipeline can apply our design and improve its performance.

Our verification approach comprehensively addresses es-
sential issues of pipelined processors: functional correctness
and information flow analysis. Following our correctness
verification, the information flow analysis is straightforward
and flexible for various ISAs (see Section V-B). Our correctness
verification can be applied to other RISC ISAs such as RISC-V
and MIPS. The RISC-V RV32I specification [25] is largely
similar to Silver for supported instructions. As the work
inspired us, Lutsyk et al. [5] presented the correctness proof
of a pipelined MIPS processor using the trace relation and
scheduling function.

On the other hand, it is difficult to directly apply our approach
to verify large-scale processors, e.g., a pipeline with 10 stages.
The major reasons are: (1) all pipeline stages are indispensable
for the scheduling function; (2) the trace relation argues almost
all fields in the circuit. A possible solution is to split the pipeline
verification into stages. For a specific stage, assuming that
necessary inputs from other stages are correct, its functional
correctness is checked against the ISA. Finally, the whole
pipeline’s correctness is guaranteed by proving that internal
assumptions are satisfied by other stages.

B. Evaluation

We have produced a full executable Silver-Pi system for
an FPGA board PYNQ-Z1 by using Xilinx Vivado Design
Suite (version 2020.2). To evaluate our pipeline’s performance,
we have tested the Silver-Pi and the non-pipelined Silver
processor with 4 programs compiled using the verified CakeML
compiler [16]: print Hello World, count/sort words of an input
file in the memory, and a proof-checker for OpenTheory [28],
[29]. The non-pipelined processor performs the fetch and
execution of an instruction in different cycles. Once integrated
with the other (identical) hardware components (e.g., cache
and interrupt handler), the pipelined system can be clocked at
65 MHz and the non-pipelined system at 45 MHz. Table II
shows the benchmark results. Given that the time of executing
instructions by processors significantly exceeds the time used
for handling requests by the environment, the instructions
executed per second (IPS, IPSπ

IPS ≈ t
tπ

) shows that the pipelined
processor is about 25% faster on average than the non-pipelined
one. Our work focuses on verification, the pipelined processor
has limited improvements in performance. According to the
Vivado timing report, the bottleneck in the pipelined system is
the cache that prevents the hardware system from higher clock
frequency, and the non-pipelined system is the processor itself.
Other limitations of the Silver-Pi are the lack of a forwarding
unit and the branch predictor that always predicts PC + 4.

hello(ms) count(ms) sort(ms) checker(min)
non-pipelined 23.17 62.03 78.53 8.98

pipelined 17.94 48.48 67.19 7.28

TABLE II
EXECUTION TIME FOR PROGRAMS ON SILVER PROCESSORS

VII. RELATED WORK

A. Processor Verification

Formal verification of processors has generally focused on
functional correctness with a long history (back to 1970s) by
using various methods, e.g., theorem proving [2], [3], [6],
[7], model checking [1], [4], [30], [31], SAT solver [32],
etc. Most [1]–[4], [30]–[32] only verified simplified and
abstract processor models, and therefore did not guarantee the
correctness of actual processor implementations. For example,
Manolios et al. [32] verified pipelined machines at term
level that abstracts away details of processors’ operations and
instructions like the ALU.

Intuitively, using an interactive theorem prover (ITP) pro-
vides proof with high trustworthiness. For example, the non-
pipelined FM9001 microprocessor [33]–[35] was modeled and
verified in Nqthm theorem prover. However, there are only few
verified pipelined processors at the circuit level with machine-
checked proofs such as [6], [7]. Of these, Beyer et al. [6]
verified a processor VAMP for the DLX ISA using the theorem
proving system PVS initially, then Isabelle/HOL [36]. They
used unverified tools to translate the processor design described
in theorem provers to Verilog code. So, their verification is
not really guaranteed down to the Verilog implementation. The
Kami project [7] developed an in-order pipelined processor.
Similar to our work, they verified the pipelined processor
at the circuit level but targeted a high-level HDL Bluespec
that requires a larger trusted computing base (TCB) than
ours (the Bluespec synthesis tool). Other differences in the
pipeline design are apparent which weaken the performance
of their pipeline: the number of stages (4 vs 5) and jump
handler as discussed in Section VI-A. For verification, their
correctness is proved by refinement via intermediate modules
that are tied to particular ISA and circuits, which makes their
work hard to reuse for other ISAs. Their ISA model uses
immutable instruction memory that remains unaffected by
memory operations, and thus allows the processor to fetch
the old instruction even when dealing with self modifying
programs.

In contrast to these papers [6], [7], we extended the pipeline
verification approach based on a trace relation and scheduling
function [5], [22]. Kovalev et al. [22] implemented and verified
a pipelined processor for the MIPS ISA, and Lutsyk et
al. [5] extended the processor with operating system support.
However, their proofs are not mechanized, while our proof
is machine-checked in HOL4. More importantly, we updated
the proof methodology to address challenges of non-MIPS
ISAs e.g., refining the scheduling function for mispredicted
PC (Section IV-B).

254

B. Low-level Information Flow

Recently, formal approaches [9]–[14] have been proposed
to capture vulnerabilities (e.g., Spectre [8], Meltdown [37] and
Foreshadow [38]) at microarchitecture and hardware levels.
Since these vulnerabilities are mainly caused by advanced
pipeline features like out-of-order (OoO) execution and specu-
lation, most works [10]–[13] focused on the information flow
analysis with respect to these features. However, Fadiheh et
al. [9] presented the Orc attack caused by pipeline stalling in
processors for RAW (read-after-write) hazard in the cache. So,
in-order pipelined processors also require security analysis for
information flows.

For our analysis, we use the same observational model as
many other proposals [9]–[14] that focus on constant time
programming. Some of these works [10], [12], [13] aims to
analyze programs with security conditions that are variants
of (conditional) noninterference on different side channels.
For example, the MIL project [10], [13] can detect programs
leakage via trace-driven cache side channels for OoO execution
and speculation using their specific hardware semantics, but
MIL ignored the timing channel because of no accurate time
information at microarchitecture level.

Conditional noninterference (Definition 5) represents a
variation of other similar noninterference definitions that
have emerged recently to address security concerns in the
post-spectre era [10], [12], [21]. For example, Guanciale et
al. [10] proposed a notion of CNI that captures the new
information leaks that may be introduced by the target model
(for our case the processor circuit) and ignores any leaks
already present in the reference model (for our case the ISA).
Spectector [21] presented the speculative noninterference (SNI)
that compares information flows of the same program under
the speculative and nonspeculative semantics with a policy
specifying the allowed leaks. Cauligi et al. [12] summarized
relative notions of noninterference to detect secret leakage
caused by speculative executions. Since the Silver ISA and our
circuit design are deterministic, Definition 5 is a derivative of
ignorance-preserving refinement (IPR) [39]. The IPR notion
reflects that an observer’s ignorance (an epistemic notion that
captures the inability to distinguish two related traces) must
be preserved under refinement.

To identify vulnerabilities caused by hardware implementa-
tions, Fadiheh et al. [9] proposed a SAT-based model checking
methodology UPEC to detect processors’ vulnerabilities at
the register transfer level, and later extended the UPEC for
checking OoO processors [11]. However, UPEC considers a
fixed security property which makes it hard to adjust different
ISA-level leakage functions. Counterexamples generated by
UPEC are not always caused by hardware design (e.g., because
of unreachable states), while the violations in our CNI proof are
directly related to the circuit implementation. Wang et al. [14]
proposed a verification tool LEAVE for checking processor
implementations against ISA-level leakage contracts via an
SMT solver but only demonstrated LEAVE with simple 2/3
stage RISC-V processors. To simplify the security verification,

LEAVE utilizes a decoupling theorem that separates security
and functional correctness requirements for contract satisfaction
and ignores the functional correctness in their verification. By
contrast, our work addresses both functional correctness and
information flow security for processors, and the functional
correctness proof certainly contributes to security verification.

VIII. CONCLUSION

We have presented a verified in-order pipelined processor
Silver-Pi for the Silver ISA, proved correct down to its
Verilog implementation based on the HOL4 Verilog library. The
information flow properties on the circuit’s timing channel are
analyzed and the conditional noninterference for our processor
is established based on the correctness proof, which shows
executing programs on the processor does not leak more
information than permitted on the ISA level. We have tested
the Silver-Pi on an FPGA board and our benchmark results
show that our pipelined processor executes programs faster
than the previous non-pipelined Silver processor.

Our verification approach systematically handles the correct-
ness and information flow properties of processor implementa-
tions, and is applicable to other ISAs like RISC-V. Therefore,
we believe our work can improve the usability of formal
verification for processor design and implementation to identify
critical correctness and security problems.

REFERENCES

[1] J. R. Burch and D. L. Dill, “Automatic verification of pipelined
microprocessor control,” in International Conference on Computer Aided
Verification. Springer, 1994, pp. 68–80.

[2] J. Sawada and W. A. Hunt, Jr, “Processor verification with precise
exceptions and speculative execution,” in International Conference on
Computer Aided Verification. Springer, 1998, pp. 135–146.

[3] P. Manolios, “Correctness of pipelined machines,” in Formal Methods in
Computer-Aided Design, Third International Conference, FMCAD 2000,
Austin, Texas, USA, November 1-3, 2000, Proceedings, ser. Lecture Notes
in Computer Science, vol. 1954. Springer, 2000, pp. 161–178.

[4] M. N. Velev and R. E. Bryant, “Formal verification of superscale
microprocessors with multicycle functional units, exception, and branch
prediction,” in Proceedings of the 37th Conference on Design Automation,
Los Angeles, CA, USA, June 5-9, 2000. ACM, 2000, pp. 112–117.

[5] P. Lutsyk, J. Oberhauser, and W. J. Paul, Eds., A Pipelined Multi-Core
Machine with Operating System Support, Hardware Implementation and
Correctness Proof, ser. Lecture Notes in Computer Science. Springer,
2020, vol. 9999.

[6] S. Beyer, C. Jacobi, D. Kröning, D. Leinenbach, and W. J. Paul, “Putting
it all together - formal verification of the VAMP,” Int. J. Softw. Tools
Technol. Transf., pp. 411–430, 2006.

[7] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind,
“Kami: a platform for high-level parametric hardware specification and
its modular verification,” Proc. ACM Program. Lang., vol. 1, no. ICFP,
pp. 24:1–24:30, 2017.

[8] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in Symposium on Security and
Privacy, 2019, pp. 1–19.

[9] M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz, “Processor
hardware security vulnerabilities and their detection by unique program
execution checking,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2019, pp. 994–999.

[10] R. Guanciale, M. Balliu, and M. Dam, “Inspectre: Breaking and fixing
microarchitectural vulnerabilities by formal analysis,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1853–1869.

255

[11] M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra, D. Stoffel, and
W. Kunz, “A formal approach for detecting vulnerabilities to transient
execution attacks in out-of-order processors,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[12] S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, and D. Stefan, “SoK:
Practical foundations for software spectre defenses,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 666–680.

[13] K. Palmskog, X. Yao, N. Dong, R. Guanciale, and M. Dam, “Foundations
and tools in hol4 for analysis of microarchitectural out-of-order execution,”
in Formal Methods in Computer-Aided Design (FMCAD), 2022, p. 129.

[14] Z. Wang, G. Mohr, K. von Gleissenthall, J. Reineke, and M. Guarnieri,
“Specification and verification of side-channel security for open-source
processors via leakage contracts,” arXiv preprint arXiv:2305.06979, 2023.

[15] HOL development team, “HOL interactive theorem prover,” 2023.
[Online]. Available: https://hol-theorem-prover.org

[16] A. Lööw, R. Kumar, Y. K. Tan, M. O. Myreen, M. Norrish, O. Abra-
hamsson, and A. C. J. Fox, “Verified compilation on a verified processor,”
in Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA,
June 22-26, 2019. ACM, 2019, pp. 1041–1053.

[17] A. Lööw and M. O. Myreen, “A proof-producing translator for Verilog
development in HOL,” in Proceedings of the 7th International Workshop
on Formal Methods in Software Engineering, FormaliSE@ICSE 2019,
Montreal, QC, Canada, May 27, 2019. IEEE / ACM, 2019, pp. 99–108.

[18] A. Lööw, “Reconciling verified-circuit development and Verilog devel-
opment,” in Conference on Formal Methods in Computer-Aided Design–
FMCAD 2022, 2022, p. 89.

[19] A. C. J. Fox, “Directions in ISA specification,” in Interactive Theorem
Proving - Third International Conference, ITP 2012, Princeton, NJ, USA,
August 13-15, 2012. Proceedings, ser. Lecture Notes in Computer Science,
vol. 7406. Springer, 2012, pp. 338–344.

[20] J. Rushby, Noninterference, transitivity, and channel-control security
policies. SRI International, Computer Science Laboratory Menlo Park,
1992.

[21] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,” in
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp.
1–19.

[22] M. Kovalev, S. M. Müller, and W. J. Paul, A Pipelined Multi-core MIPS
Machine - Hardware Implementation and Correctness Proof, ser. Lecture
Notes in Computer Science. Springer, 2014, vol. 9000.

[23] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Ver-
ifying constant-time implementations.” in USENIX Security Symposium,
vol. 16, 2016, pp. 53–70.

[24] G. Smith and D. Volpano, “Secure information flow in a multi-threaded
imperative language,” in Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 1998, pp. 355–364.

[25] A. Waterman and K. Asanovic, “The RISC-V instruction set manual
volume I: Unprivileged ISA,” Document Version 20191213, 2019.

[26] ARM, “ARM architecture reference manual ARMv7-A and ARMv7-R
edition,” Document Version Issue C.d, 2018.

[27] ——, “Armv8-A instruction set architecture,” Document Version Issue
1.1, 2020.

[28] J. Hurd, “The OpenTheory standard theory library,” in NASA Formal
Methods - Third International Symposium, NFM 2011, Pasadena, CA,
USA, April 18-20, 2011. Proceedings, ser. Lecture Notes in Computer
Science, vol. 6617. Springer, 2011, pp. 177–191.

[29] O. Abrahamsson, “A verified proof checker for higher-order logic,”
Journal of Logical and Algebraic Methods in Programming, 2020.

[30] R. Jhala1 and K. L. McMillan, “Microarchitecture verification by
compositional model checking,” in Computer Aided Verification: 13th
International Conference, CAV 2001 Paris, France, July 18–22, 2001
Proceedings 13. Springer, 2001, pp. 396–410.

[31] A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen, A. Pathi-
rane, O. Shepherd, P. Vrabel, and A. Zaidi, “End-to-end verification
of processors with ISA-Formal,” in Computer Aided Verification: 28th
International Conference, CAV 2016, Toronto, ON, Canada, July 17-23,
2016, Proceedings, Part II 28. Springer, 2016, pp. 42–58.

[32] P. Manolios and S. K. Srinivasan, “Automatic verification of safety and
liveness for pipelined machines using web refinement,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 13, no. 3,
pp. 1–19, 2008.

[33] W. A. Hunt, Jr., “Microprocessor design verification,” J. Autom. Reason.,
vol. 5, no. 4, pp. 429–460, 1989.

[34] W. A. Hunt, Jr. and B. C. Brock, “A formal HDL and its use in the
FM9001 verification,” Philosophical Transactions of the Royal Society of
London. Series A: Physical and Engineering Sciences, pp. 35–47, 1992.

[35] B. C. Brock and W. A. Hunt, Jr., “The DUAL-EVAL hardware description
language and its use in the formal specification and verification of the
FM9001 microprocessor,” Formal Methods in System Design, pp. 71–104,
1997.

[36] M. A. Hillebrand and S. Tverdyshev, “Formal verification of gate-level
computer systems,” in Computer Science - Theory and Applications,
Fourth International Computer Science Symposium in Russia, CSR 2009,
Novosibirsk, Russia, August 18-23, 2009. Proceedings, ser. Lecture Notes
in Computer Science, vol. 5675. Springer, 2009, pp. 322–333.

[37] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX Security
Symposium, 2018, pp. 973–990.

[38] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,” in USENIX Security Symposium, 2018, pp. 991–1008.

[39] C. Baumann, M. Dam, R. Guanciale, and H. Nemati, “On compositional
information flow aware refinement,” in 2021 IEEE 34th Computer
Security Foundations Symposium (CSF). IEEE, 2021, pp. 1–16.

256

https://hol-theorem-prover.org

Formal Methods in Computer-Aided Design 2023

Modular System Synthesis
Kanghee Park Keith J.C. Johnson Loris D’Antoni Thomas Reps

University of Wisconsin–Madison
Madison, USA

{khpark, keithj, loris, reps}@cs.wisc.edu

Abstract—This paper describes a way to improve the scalability
of program synthesis by exploiting modularity: larger programs
are synthesized from smaller programs. The key issue is to
make each “larger-created-from-smaller” synthesis sub-problem
be of a similar nature, so that the kind of synthesis sub-
problem that needs to be solved—and the size of each search
space—has roughly the same character at each level. This work
holds promise for creating program-synthesis tools that have
far greater capabilities than currently available tools, and opens
new avenues for synthesis research: how synthesis tools should
support modular system design, and how synthesis applications
can best exploit such capabilities.

I. INTRODUCTION

In program synthesis, the goal is to automatically (or semi-
automatically) create programs that match high-level intents
provided by a user—e.g., logical specifications or input-output
examples. To date, however, synthesis tools cannot contend
with large programs because they require synthesizing (or at
least reasoning about) a program in its entirety.

The obvious direction is to try to exploit compositionality
and synthesize larger programs by having them invoke other
(already synthesized) programs. Consider for example the
problem of writing a program for a ticket-vendor applica-
tion that can, among other things, issue and reserve tickets.
Building such a system requires creating modules for various
data structures—perhaps a stack and queue—and using these
modules in a top-level module that processes ticket requests.
It is natural to ask whether such modules can be synthesized
separately—i.e., in a compositional fashion.

The fundamental question is

Can one address the scalability problem of program synthe-
sis by exploiting compositionality, so that (i) larger programs
are synthesized from smaller programs, and (ii) each “larger-
created-from-smaller” synthesis sub-problem is of a similar
nature, so that the essence of each sub-problem (and the size
of each search space) has roughly the same character?

A solution to this question is surprisingly tricky to envisage.
Most existing synthesis approaches require having a concrete
semantics or implementation in hand when reasoning about
modules, components, APIs, etc. [5], [18], [20], and such
synthesis tools end up reasoning about the entire program
all the way down to its lowest-level components. Not only
is this approach in fundamental opposition to the “similar-
nature/similar-size” principle articulated above, it makes syn-
thesis increasingly hard as more modules are considered.

Instead, when code is synthesized for some module M ,
all reasoning about lower-level modules {Mi} on which M
directly depends should be carried out in a way that is agnostic
about the implementations of {Mi}. This observation leads us
to pose two related challenges: (i) How can one carry out
program synthesis without having in hand details about the
implementations of lower-level modules? (ii) How can one
ensure that each synthesis problem results in code that is
independent of the implementations of lower-level modules?

In this paper, we present the case for the following thesis:

Program synthesis can scale using modular system design.

Modular system design is one of the most important concepts
in designing software. A system should be organized in a
layered fashion, where information hiding is used to hide
implementation choices [16]. The information-hiding principle
intuitively states that each module exports an interface that
does not reveal specific implementation choices used inside
the module, and changing the module’s implementation should
not force any changes to be made to other modules.

Programmers practice modular system design, or at least
aspire to it. In essence, our goal is to provide a level of
automation for what good programmers do manually. Of
course, we are not trying to automate everything. What is left
in the hands of the programmer are architectural decisions and
specifications of the intended behavior of individual modules.
The programmer is responsible for the overall organization of
the system’s design, and must decide such issues as: What are
the layers in the system? What are the implementation choices
in a given layer (such as choices about data structures and data
representations)? What operations are exposed in each layer,
and what is the intended behavior of each operation?

We identify two opportunities for providing automation for
each module and, as a key contribution of this paper, we
formally define these synthesis problems.
Module-Implementation Synthesis. Synthesis can be helpful
in creating the implementations of the various functions in
each module from some specifications. The key difference
from traditional synthesis problems is that implementation
details of “lower” modules are not available. Instead, one only
has access to implementation-agnostic specifications of the
semantics of such modules.
Module-Specification Synthesis. Because modules can only
expose their semantics to other modules in a way that does
not reveal their implementation details, it can be challenging

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 34 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0009-0005-7983-233X
https://orcid.org/0000-0002-3766-5204
https://orcid.org/0000-0001-9625-4037
https://orcid.org/0000-0002-5676-9949
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_34
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_34
https://creativecommons.org/licenses/by/4.0/

to come up with such semantic definitions. We propose to au-
tomate the creation of such implementation-agnostic semantic
definitions using synthesis, namely, synthesis of formulas.

Note the role of the second kind of synthesis problem: its
results provide part of the specification when one moves on
to the task of synthesizing the implementation of functions
in the next module. By analogy with the Paul Simon lyric
“one man’s ceiling is another man’s floor” [19], we have “one
module’s semantics is another module’s primitives.”

We call this approach modular system synthesis (MOSS).
The visibility restrictions of information hiding provide the
key for MOSS to achieve the objective of making synthesis
scalable via “similar-nature/similar-size” sub-problems: both
of our synthesis problems concern a single module of the
system, and a single module’s implementation only. By con-
cealing the implementation of lower-level modules, MOSS
ensures that the formula representing the semantics of these
layers remains independent of the size of the “accumulated”
system as we move to higher-level layers. Moreover, MOSS
retains the usual benefit of modular system design, namely, it
results in software that (usually) can be readily adapted—in
this context, re-synthesized—as requirements change.

This paper contributes both a framework and solidifying the
concept of contract-based design in the context of program
synthesis, which abstracts components or sub-systems based
on their interfaces. Notably, the study of interface compatibil-
ity and composition has not been extensively explored in the
context of program synthesis, opening up many opportunities
for future developments. Specifically, using the aforemen-
tioned ticket-vending application as an example (§II), it (i)
defines modular system synthesis (§III); (ii) defines the two
kinds of synthesis problems that arise in MOSS (§IV); and
(iii) describes a proof-of-concept system, called MOSSKIT,
that achieves these goals (§V).

MOSSKIT is based on two existing program-synthesis
techniques: JLIBSKETCH [14] a program-sketching tool that
supports algebraic specifications, and SPYRO [15] a tool for
synthesizing precise specifications from a given codebase. We
used MOSSKIT to carry out case studies based on two-layer
modular synthesis problems from Mariano et al. [14], which
demonstrated that concealing lower-level components can be
advantageous in reducing the complexity of the synthesis
problem. Expanding upon their work, our case study in §V-B
further explored scenarios involving multiple layers. MOSS
exhibits even better scalability compared to scenarios where
executable semantics for all lower layers are exposed. A
further case study based on Mariano et al. in §V-D also
highlights the challenges of writing correct specifications. Our
framework and the act of performing synthesis for both the
implementations and specifications of the modules unveiled
bugs in the modules synthesized by Mariano et al. and in the
module’s specifications, which they manually wrote.

§VI discusses related work. §VII concludes.

II. ILLUSTRATIVE EXAMPLE

We present an experiment that illustrates the various aspects
of MOSS. The problem to be solved is as follows: Syn-
thesize a simple ticket-vendor application that supports the
operations prepSales, resTicket, issueTicket, soldOut,
numTicketsRem, and numWaiting. (To simplify matters, we
assume it is not necessary to cancel a reservation.)

A. A Modular TicketVendor Implementation

We decompose the system into three modules (Fig. 1):
Module 3: The TicketVendor module uses a Queue of
reservations to implement the aforementioned operations.
Module 2: The Queue module implements the operations
emptyQ, enq, front, deq, sizeQ, and isEmptyQ. In our
setting, a Queue is implemented using two stacks [12].1

Module 1: The Stack module implements the operations
emptyS, push, top, pop, sizeS, and isEmptyS. In our
setting, a Stack is implemented using linked-list primitives
of the programming language.

Moreover, the implementation of each module is to abide by
the principle of information hiding: (i) The TicketVendor
module can use operations exposed by Queue, but their actual
implementations are hidden in Module 2. (ii) The Queue
module can use operations exposed by Stack, but their actual
implementations are hidden in Module 1.

B. The Input of Modular TicketVendor Synthesis

A MOSSKIT user supplies the following information:
Architectural-design choices:
• The decomposition of the problem into TicketVendor,
Queue, and Stack modules (gray boxes in Fig. 1).

• Which operations are to be exposed by each module,
denoted by P[module]—e.g., in Fig. 1, the Queue module
exposes P[Queue], which contains enq and deq operations,
but not push and pop operations on the underlying stacks.

Data-structure/data-representation choices:
Module 3: TicketVendor uses a Queue.
Module 2: A Queue is implemented using two Stacks.
Module 1: A Stack is implemented using a linked list.
These choices are shown by the green boxes underneath each
module in Fig. 1. For example, the Queue module is built
on top of the Stack module. However, only the Stack
interface—i.e., the function symbols in P[Stack] and its
(potentially synthesized) implementation-agnostic specifica-
tion φStack

sem —is accessible by the Queue module.
Specifications of the module-specific synthesis problems:
Module 3: Specifications of the behaviors of prepSales,
resTicket, issueTicket, soldOut, numTicketsRem, and
numWaiting in terms of the exposed Queue operations
(and possibly other TicketVendor operations). For ex-
ample, the implementation-specific specifications for the

1The invariant is that the second Stack holds a prefix of the Queue’s front
elements, with the top element of the second Stack being the Queue’s front-
most element. The first Stack holds the Queue’s back elements—with the
top element of the first Stack being the Queue’s back-most element.

258

TicketVendor

φTicketVendor
imp

TicketVendor Implementation

Implementation Synthesis

Queue

P[Queue] φQueue
sem

φQueue
imp

Queue Implementation

Implementation Synthesis

Specification Synthesis

φQueue
imp

Queue Implementation

Stack

P[Stack] φStack
sem

φStack
imp

Stack Implementation

Implementation Synthesis

Specification Synthesis

φStack
imp

Stack Implementation

φList
semP[List]

Functions exposed in P[Queue]:
emptyQ, enq, deq, front, isEmptyQ,
sizeQ

Implementation-agnostic spec φQueue
sem :

front(enq(q, x)) =
ite(isEmptyQ(q), x, front(q))
deq(enq(q, x)) = 4

ite(isEmptyQ(q), emptyQ,
enq(deq(q), x))

sizeQ(enq(q, x)) = sizeQ(q) + 1
. . .

Queue Implementation:
Queue = (stin: Stack, stout: Stack)
enq(q : Queue, i : int) : Queue =

if isEmptyS(q.stout) 3

then (q.stin, push(q.stout, i))
else (push(q.stin, i), q.stout)

. . .

Implementation-specific spec. φQueue
imp :

isEmptyS(stout) → isEmptyS(stin)
front(enq(emptyQ, 1)) = 1
isEmptyQ(enq(emptyQ, 3)) = ⊥ 2

sizeQ(enq(emptyQ, x)) = 1
. . .

Functions exposed in P[Stack]:
emptyS, push, pop, top, sizeS,
isEmptyS

Implementation-agnostic spec φStack
sem :

isEmptyS(emptyS) = ⊤
isEmptyS(push(st, x)) = ⊥
top(push(st, x)) = x 1

pop(push(st, x)) = x
sizeS(emptyS) = 0
sizeS(push(st, x)) = sizeS(st) + 1

Fig. 1. Organization of the modular TicketVendor synthesis problem:
user-supplied inputs are shown in solid boxes; synthesized outputs are shown
in dashed boxes. On the right, the Queue module’s specifications and
implementation are expanded; the other modules would have similar details.

TicketVendor module, denoted by the yellow box labeled
φTicketVendor

imp in Fig. 1, might constrain issueTicket to
dequeue a buyer from the underlying Queue module, but only
if soldOut (a TicketVendor operation) is false.
Module 2: Specifications of the behaviors of the Queue oper-
ations in terms of the exposed Stack operations (and possibly
other Queue operations). For example, the implementation-
specific specification for the Queue module (φQueue

imp), shown
in Fig. 1, contains, among others, constraints that state that (i)
if the first stack stin is empty, so is the second stack stout,
(ii) enqueuing 1 on an empty queue and then retrieving the
front of the queue yields 1.
Module 1: Specifications of the behaviors of the Stack
operations in terms of the programming language’s linked-list
operations (and possibly other Stack operations). For exam-
ple, the implementation-specific specification of the Stack
module (φStack

imp) might specify that push adds an element on
the front of the stack’s underlying linked list.

A user must also specify a search space of possible imple-
mentations. In MOSSKIT, this is done using a SKETCH file.

C. The Output of Modular TicketVendor Synthesis

Using the MOSS framework, we synthesize three mod-
ule implementations: the TicketVendor module imple-
mentation, which satisfies φTicketVendor

imp (and uses Queue);

the Queue module implementation, which satisfies φQueue
imp

(and uses Stack); and the Stack module implementation,
which satisfies φStack

imp (and uses lists). However, to synthesize
the TicketVendor module implementation, we need an
implementation-agnostic specification of Queue, denoted by
φQueue

sem . The same can be said for the Queue module im-
plementation, for which we need an implementation-agnostic
specification of Stack, denoted by φStack

sem .2

The user could write φQueue
sem and φStack

sem manually, but it
is more convenient to synthesize these specifications from
the Queue and Stack module implementations, respectively.
The MOSS methodology is to start with the bottom-most
module and work upward, alternately applying two synthesis
procedures: first synthesizing the implementation of a module
M and then synthesizing M ’s implementation-agnostic spec-
ification φM

sem, which gets exposed to the next higher module.
For the modular TicketVendor-synthesis problem, we

start with Stack, the bottommost module, and synthe-
size a Stack module implementation—a set of P[List]
programs—that satisfies the implementation-specific speci-
fication φStack

imp . (In MOSSKIT, this step is done using
program sketching and the tool JLIBSKETCH [14].) This
step is depicted in Fig. 1 as the Implementation Synthe-
sis problem in the Stack module. We then switch to the
Specification Synthesis problem for Stack, and synthesize
φStack

sem , an implementation-agnostic specification of Stack.
(In MOSSKIT, this step is done by providing a grammar of
possible properties and by using the tool SPYRO [15].) For the
Stack module, the resultant φStack

sem is the conjunction of the
equalities shown at 1 in Fig. 1.

Using φStack
sem (1), together with the implementation-

specific specification φQueue
imp (2), we now synthesize the

Queue module implementation (3)—a set of P[Stack]
programs—and the implementation-agnostic specification
φQueue

sem (4) via the same two-step process.
Finally, using φQueue

sem and the implementation-specific spec-
ification φTicketVendor

imp , we synthesize the TicketVendor
module implementation. (If needed by a further client, we
would then synthesize the implementation-agnostic specifi-
cation φTicketVendor

sem .) Thus, the last output of the syn-
thesis procedure, shown in Fig. 1, consists of implemen-
tations of Stack, Queue, and TicketVendor, and the
implementation-agnostic specifications φStack

sem and φQueue
sem .

D. Benefits of Modular System Synthesis

At some point, we might want to decide to modify the im-
plementation of the Queue module to use directly the linked-
list primitives provided by the language (shown in Fig. 2).
Information hiding allows us to do so in a compartmentalized
way—i.e., by only changing the specific Queue module.
Importantly, the module’s interface, composed of the function

2Technically, List is part of the programming language; however, so that
all sub-problems have the same form, we assume—as shown in Fig. 1—that
we also have available an implementation-agnostic specification of List,
denoted by φList

sem . In our evaluation, we synthesize φList
sem automatically.

259

Queue

P[Queue] φQueue
sem

φQueue
imp

Queue Implementation

Implementation Synthesis

Specification Synthesis

φ
Queue(as List)
imp

Queue (as List) Implementation

φList
semP[List]

Queue (as List) Implementation:
Queue = (l: List)

enq(q : Queue, i : int) : Queue =
(snoc(q.l, i))

. . .

Implem.-specific spec. φQueue(as List)
imp :

isEmptyL(emptyQ.l)
front(q) = head(q.l)
front(enq(emptyQ, 1)) = 1 5

isEmptyQ(enq(emptyQ, 3)) = ⊥
sizeQ(enq(emptyQ, x)) = 1
. . .

Fig. 2. Alternative implementation of the Queue module using list primitives
instead of two stacks. P[Queue] and φQueue

sem are the same as in Fig. 1.

symbols in P[Queue] and its implementation-agnostic speci-
fication φQueue

sem , does not change when the implementation of
the Queue module changes. Because this interface is what
the TicketVendor module was synthesized with respect
to, changes to the Queue implementation are not visible to
TicketVendor.

III. MODULAR SYSTEM DESIGN

In this section, we formally define modular system design
and the corresponding specification mechanisms. A system is
organized in modules, and each module exports a module
interface MI and a specification φMI

sem of the semantics of
the module interface. Both MI and φMI

sem hide the module’s
implementation. A module’s implementation can also have a
set of private functions PF, which can only be used within
the module. A program is constructed by stacking layers of
such modules.3 For instance, the example in Fig. 1 has three
modules: Stack, Queue, and TicketVendor. (None of
those modules have private functions.)

In the following, we assume a programming language P
(e.g., C with its core libraries), and use P[MI] to denote P
extended with the functions exposed by module MI.

Definition 1 (Modular System Design): A system is imple-
mented modularly if it is partitioned into disjoint sets of func-
tions PF1,MI1,PF2,MI2, . . . ,PFn,MIn, such that for each
f ∈ PFi∪MIi, f is implemented using P[MIi−1∪PFi∪MIi]—
i.e., f only uses operations in P , and calls to functions in the
interface exported from layer i–1, to private functions of layer
i, and to functions in the interface exported from layer i.

To reduce notational clutter, we will ignore private func-
tions, and only discuss the functions in module interfaces.

As we saw in §II, we need to abide by the principle of
information hiding—i.e., changing the implementations of any
function in MIi−1 should not require changing the implemen-
tations of functions in MIi. With this principle in mind, we
now describe the different natures of the specification for the
module implementation at a given layer i (§III-A) and the
specification exposed to layer i+ 1 (§III-B).

3In general, the structure of the dependencies among layers can form a
directed acyclic graph. However, to reduce notational clutter, throughout the
paper we assume that the layers have a strict linear order.

A. Implementation-specific Specifications

When synthesizing specific implementations of the func-
tions MIi at layer i, the specifications are allowed to use
symbols in P[MIi−1∪MIi]—i.e., the specification can refer to
the functions we are specifying and to the ones in the interface
exported from the previous layer—as well as implementation-
specific details from layer i (e.g., data-structure declarations).

Definition 2: An implementation-specific specification for
a set of functions MIi at layer i is a predicate φMIi

imp that only
uses symbols in P[MIi−1 ∪ MIi].

Example 1: In the implementation-specific specification of
Queue from Fig. 1, where Queue is implemented using two
Stacks, one of the properties is as follows:

isEmptyQ(q) ⇐⇒ isEmptyS(q.stin) ∧ isEmptyS(q.stout).

For the version from Fig. 2, where Queue is implemented
using a List, the analogous property is

isEmptyQ(q) ⇐⇒ isEmptyL(q.l).

A specification might also contain a set of
examples, e.g., front(enq(emptyQ, 1)) = 1 and
front(enq(enq(emptyQ, 1), 2)) = 1.

B. Implementation-agnostic Specifications

While implementation-specific details are needed to con-
verge on an implementation with which the programmer
is happy, when exposing the specification of MIi at layer
i + 1, to abide to the principle of information hiding, one
cannot provide specifications that involve function symbols in
P[MIi−1 ∪ MIi], but only those in P[MIi].

Definition 3: An implementation-agnostic specification
for a set of functions MIi at layer i is a predicate φMIi

sem that
only uses symbols in P[MIi].

Example 2: Because of the vocabulary restrictions imposed
by Def. 3, it is natural for implementation-agnostic specifi-
cations to take the form of algebraic specifications [7], [9],
[10], [13], [23]. For instance, for the Queue module, the
conjunction of the following equalities is an implementation-
agnostic specification φQueue

sem for Queue:

isEmptyQ(emptyQ) = ⊤ isEmptyQ(enq(q, x)) = ⊥
sizeQ(emptyQ) = 0 sizeQ(enq(q, x)) = sizeQ(q) + 1
front(enq(q, x)) = ite(isEmptyQ(q), x, front(q))
deq(enq(q, x)) = ite(isEmptyQ(q), q, deq(enq(q), x))

(1)

Note that Eq. (1) serves as φQueue
sem both for the version of

Queue from Fig. 1, where Queue is implemented using two
Stacks, and for the version of Queue from Fig. 2, where
Queue is implemented using a List.

IV. SYNTHESIS IN MODULAR SYSTEM SYNTHESIS

In this section, we define the implementation-synthesis
(§IV-A) and specification-synthesis (§IV-B) problems that en-
able our scheme for modular system synthesis.

260

A. Synthesis of Implementations

The obvious place in which synthesis can be helpful is in
synthesizing the implementations of the various functions at
each layer from their implementation-specific specifications.
For example, in Fig. 1, an implementation of Queue (the
function enq is shown in the second box on the right) is
synthesized from the implementation-agnostic specification
φStack

sem of Stack, and an implementation-specific specifi-
cation φQueue

imp that is allowed to talk about how the two
Stacks used to implement a Queue are manipulated (e.g.,
isEmptyS(stout) → isEmptyS(stin)).

Definition 4 (Implementation synthesis): For module inter-
face MIi, the implementation-synthesis problem is a triple
(Si, φ

MIi−1
sem , φMIi

imp), where

• Si is the set of possible implementations we can use for MIi
(every program in Si uses only symbols in P[MIi−1∪MIi]).

• φ
MIi−1
sem is an implementation-agnostic specification of the

module-interface functions in MIi−1.
• φMIi

imp is an implementation-specific specification that uses
only symbols in P[MIi−1 ∪ MIi].

A solution to the implementation-synthesis problem is an
implementation of MIi in Si that satisfies φMIi

imp .
This particular form of synthesis where one draws a pro-

gram from a search space to match a specification is fairly
standard in the literature. However, we observe that a partic-
ular aspect of modular system design makes most synthesis
approaches inadequate—i.e., the specification φ

MIi−1
sem can talk

about functions in MIi−1 only in an implementation-agnostic
way. For example, when synthesizing functions in Queue, we
do not have direct access to a stack implementation—i.e., we
cannot actually execute the implementation. Instead, we have
access to the semantics of Stack through implementation-
agnostic properties such as isEmptyS(push(st, x)) = ⊥.

We are aware of only one tool, JLIBSKETCH, that can
perform synthesis with algebraic specifications [14], and we
use it in our evaluation. In JLIBSKETCH, one provides Si as
a program sketch (i.e., a program with integer holes that need
to be synthesized), φMIi−1

sem as a set of rewrite rules over the
functions in MIi−1, and φMIi

imp as a set of assertions.

B. Synthesis of Implementation-agnostic Specifications

Because the implementation of layer i-1 is hidden when
performing synthesis at layer i, the user has to somehow
come up with implementation-agnostic specifications like the
ones shown in Fig. 1. Our next observation is that such
specifications can also be synthesized! With this observation,
modular system design becomes a fairly automatic business
where the programmer mostly has to decide how to structure
modules and provide implementation-specific specifications
and search spaces (typically as regular-tree grammars [3]).

In Fig. 1, the implementation-agnostic specification φQueue
sem

of Queue is synthesized from the Queue implementation.
(The same φQueue

sem , or one equivalent to it, is synthesized from
the alternative Queue implementation of Fig. 2.)

Definition 5 (Specification synthesis): For module interface
MIi, a specification-synthesis problem is a pair (Fi,Φi)
where
• Fi is a set of programs, written in P[MIi−1 ∪ MIi], that is

a concrete implementation of MIi.
• Φi is the set of possible properties we can use for φMIi

sem
(every property in Φi uses only symbols in P[MIi]). (Typi-
cally, Φi is given as a regular-tree grammar for a fragment
of logic in which terms can only use symbols in P[MIi].)

A solution to the specification-synthesis problem is a set of
properties φMIi

sem ⊆ Φi such that for every α ∈ φMIi
sem :

Soundness: The implementation Fi satisfies α.
Precision: There is no property α′ ∈ Φi that implies α and

such that the implementation Fi satisfies α′.
In general, there might not be just one answer to this

synthesis problem because there could be multiple ways to
build the set of properties φMIi

sem . Furthermore, it can be the
case that there are infinitely many properties in Φi that are
sound, precise, and mutually incomparable. While in this paper
we do not worry about these details, the tool we use in our
evaluation SPYRO is always guaranteed to find a maximal set
of properties in Φi whenever such a set is finite (SPYRO uses a
regular-tree grammar to describe the set of possible properties
Φi, but requires such a set to be finite.) In practice, even when
the set is infinite, one can build tools that find a “good” set of
properties and stop without trying to find an exhaustive set.

Discussion. When the goal is to build a system structured in
a modular fashion, modular system synthesis enables defining
“small” synthesis problems of similar nature that concern only
a single module’s implementation.

While implementation-agnostic specifications can be syn-
thesized via the synthesis problem defined in Def. 5, one
should be aware that there is additional flexibility to be gained
if one is willing to write implementation-agnostic specifica-
tions manually. In particular, if all of the implementation-
agnostic specifications are synthesized, then it is necessary
to create the system bottom-up, synthesizing the module
implementations in the order MI1, MI2, . . ., MIn (interleaved
with the synthesis of φMI1

sem , φMI2
sem , . . ., φMIn

sem). In contrast, when
the user is willing to write the implementation-agnostic speci-
fications manually (in addition to the implementation-specific
specifications {φMIi

imp}), then the module implementations for
MI1, MI2, . . ., MIn can be synthesized in any order.

V. IMPLEMENTATION AND CASE-STUDY EVALUATION

We carried out case studies of MOSS for the simple three-
layer system that has been used as a running example and
for some of the modular-synthesis problems presented in the
paper that introduced JLIBSKETCH [14].

A. Implementation

Our implementation, called MOSSKIT, uses JLIBSKETCH
[14] to synthesize the implementation code for each layer k
(from the implementation-specific specification for layer k)

261

1 void snoc(list l, int val, ref list ret_list) {
2 boolean is_empty_ret;
3

4 ret_list = new list();
5 is_empty(l, is_empty_ret);
6 if (is_empty_ret) {
7 ret_list.hd = val;
8 nil(ret.tl);
9 } else {

10 ret_list.hd = l.hd;
11 snoc(l.tl, val, ret.tl);
12 }
13 }

Fig. 3. Implementation of snoc supplied to SPYRO. Returning a value from
a function is done by storing the value into a reference parameter of the
function.

and SPYRO [15] to synthesize the implementation-agnostic
specification for use at layer k + 1.

JLIBSKETCH is a program-synthesis tool for Java that
allows libraries to be described with collections of alge-
braic specifications. Similar to its popular C counterpart
SKETCH [22], JLIBSKETCH allows one to write programs with
holes and assertions, and then tries to find integer values for
the holes that cause all assertions to hold. Each specification
is a rewrite rule of the form pattern ⇒ result. For instance,
one of the rewrite rules in the specification of a stack could
be pop(push(st, k)) ⇒ st. To prevent infinite rewrite loops,
a set of rewrite rules provided to JLIBSKETCH must not form
a cycle. For instance, the rule a + b ⇒ b + a is not allowed.
The synthesis problem that JLIBSKETCH addresses is to find
a program that is correct for any program input, for any library
implementation that satisfies the algebraic specifications.

SPYRO addresses the problem of synthesizing specifications
automatically, given an implementation. SPYRO takes as in-
put (i) a set of function definitions Σ, and (ii) a domain-
specific language L—in the form of a grammar—in which
the extracted properties are to be expressed. Properties that
are expressible in L are called L-properties. SPYRO outputs
a set of L-properties {φi} that describe the behavior of Σ.
Moreover, each of the φi is a best L-property for Σ: there is
no other L-property for Σ that is strictly more precise than φi.
Furthermore, the set {φi} is exhaustive: no more L-properties
can be added to it to make the conjunction

⋀︁
i φi more precise.

SPYRO uses SKETCH as the underlying program synthesizer—
i.e., it generates a number of synthesis problems in the form
of SKETCH files and uses SKETCH to solve such problems.

Although SPYRO is built on top of SKETCH (instead
of JLIBSKETCH), in our case study we manually imple-
mented the term-rewriting approach used by the JLIBSKETCH
solver in the SKETCH files used by SPYRO to synthesize
implementation-agnostic specifications that only depend on
algebraic specifications of lower layers. That is, we replace
every function call f appearing in a SKETCH file with a
function normalize(f), where normalize is a procedure that
applies the rewrite rules from the algebraic specification.

MOSSKIT inherits the limitations of JLIBSKETCH and

1 var {
2 int v1;
3 int v2;
4 list l;
5 list cons_out;
6 list snoc_out;
7 }
8 relation {
9 cons(v1, l, cons_out);

10 snoc(cons_out, v2, snoc_out);
11 }
12 generator {
13 boolean AP -> !GUARD || RHS;
14 boolean GUARD -> true
15 | is_empty(l) | !is_empty(l);
16 boolean RHS -> equal_list(snoc_out, L);
17 int I -> v1 | v2;
18 list L -> l | nil()
19 | snoc(l, I) | cons(I, L);
20 }

Fig. 4. Grammar for the domain-specific language in which SPYRO is
to express an extracted List property. The relation definition in lines
8-11 specifies that the variables snoc_out l, v1 and v2 are related by
snoc_out = snoc(cons(l,v1),v2). From the grammar (“generator”)
in lines 12-20, SPYRO synthesizes best implementation-agnostic proper-
ties of form GUARD → snoc_out = L (implicitly conjoined with
snoc_out = snoc(cons(v1,l),v2)). In this case, the only expression
for GUARD that succeeds is ⊤, and the property synthesized is snoc_out =
cons(v1, snoc(l,v2)) (with the additional implicit conjunct snoc_out =
snoc(cons(v1,l),v2)).

SPYRO—i.e., the synthesized implementations and specifica-
tions are sound up to a bound. Despite this limitation, the
authors of JLIBSKETCH and SPYRO have shown that these
tools typically do not return unsound results in practice. §V-E
provides a detailed discussion of the limitations of MOSS and
MOSSKIT.

B. Ticket-vendor Case Study

Our first benchmark is the ticket-vending application de-
scribed throughout the paper. Our goal is to synthesize the
four module implementations in Fig. 1 (except the bottom
one), as well as the specification of each module that needs
to be exposed to a higher-level module.

When synthesizing specifications, due to the scalability
limitations of SPYRO, we called SPYRO multiple times with
different smaller grammars instead of providing one big gram-
mar of all possible properties of each module. In each call to
SPYRO, we provided a grammar in which we fixed a left-hand-
side expression of an equality predicate, and asked SPYRO to
search for a right-hand-side expression for the equality. We
allowed the right-hand-side expression to contain a conditional
where the guard can be selected from the outputs of Boolean
operators in the module, their negation, or constants. For
instance, Figures 3 and 4 illustrate two inputs provided to
SPYRO to solve the specification-synthesis problem for List:
(i) a program describing the implementation of List (Fig. 3),
and (ii) a grammar describing the set of possible properties
(Fig. 4).

Because we wanted to use the synthesized equalities as
input to JLIBSKETCH when synthesizing the implementation

262

1 public void enq(int x) {
2 Stack st_in = this.st_in;
3 Stack st_out = this.st_out;
4

5 assume !st_out.isEmpty() || st_in.isEmpty();
6

7 if (genGuard(st_in, st_out)) {
8 st_in = genStack2(st_in, st_out, x);
9 st_out = genStack2(st_in, st_out, x);

10 } else {
11 st_in = genStack2(st_in, st_out, x);
12 st_out = genStack2(st_in, st_out, x);
13 }
14

15 assert !st_out.isEmpty() || st_in.isEmpty();
16

17 this.st_in = st_in;
18 this.st_out = st_out;
19 }

Fig. 5. JLIBSKETCH sketch of enq. Lines 5 and 15 assert the implementation-
specific property isEmptyS(stout) → isEmptyS(stin). JLIBSKETCH gen-
erates an expression to fill in each occurrence of the generators, genStack2
and genGuard—the reader can think of each of these generators as being
grammars from which JLIBSKETCH can pick an expression. For these
generators, expressions can be variables or single function calls to functions
of the appropriate type—e.g., genStack2 can generate expressions such as
st_in, st_out, st_in.pop(), st_out.pop(), etc.

of the next higher-level module, we provided grammars of
equalities that avoided generating cyclic rewrite rules. We
addressed this issue by limiting the search space for the right-
hand-side expression. The function symbols permitted in the
right-hand-side expression are one of the functions in the left-
hand-side expression, functions used in the implementation of
a function in the left-hand-side expression, or constants. Also,
the outermost function symbol of the left-hand side can only
be applied to a strictly smaller term.

To illustrate some of the properties synthesized by
MOSSKIT (that are not shown in Fig. 1) the complete set of
equalities in the implementation-agnostic specification φList

sem
synthesized by SPYRO is the following:

head(cons(hd, tl)) = tl isEmptyL(nil) = ⊤
tail(cons(hd, tl)) = hd isEmptyL(cons(hd, tl)) = ⊥
sizeL(nil) = 0 snoc(nil, x) = cons(x, nil)
sizeL(cons(hd, tl)) = sizeL(tl) + 1
snoc(cons(hd, tl), x) = cons(hd, snoc(tl, x))

When considering the cumulative time taken to synthesize
the algebraic specification of each module, SPYRO took 41
seconds for φList

sem (longest-taking property 7 seconds), 34
seconds for φStack

sem (longest-taking property 7 seconds), and
44 seconds for φQueue

sem (longest-taking property 13 seconds).
We used JLIBSKETCH to synthesize implementations of the

modules. In addition to the implementation-agnostic specifi-
cation of the module below the one we were trying to syn-
thesize, we provided an implementation-specific specification
of the module to be synthesized. For example, the φStack

imp
specification involved JLIBSKETCH code with 17 assertions,
and the following examples are an excerpt from the φStack

imp
specification (x, y, and z are universally quantified integers

that are allowed to be in the range 0 to 10):

top(push(emptyS, x)) = x top(push(push(emptyS, x), y)) = y
sizeS(emptyS) = 0 sizeS(push(emptyS, x)) = 1

Besides the assertions, we provided JLIBSKETCH with a
fairly complete sketch of the structure of the implementation:
we provided loops and branching structures, and only asked
JLIBSKETCH to synthesize basic statements and expressions.
For example, the sketch provided for the operation enq of
module Queue = (stin : Stack, stout : Stack) is shown
in Fig. 5. This sketch of enq of module Queue uses two
Stacks: stin, which stores elements in the rear part of the
queue, and stout, which stores elements in the front part of
the queue. Stack stin holds the rearmost element on top, and
Stack stout stores the frontmost element on top. To make
the front operation more efficient, we decided to make sure
that the frontmost element is always at the top of stout. This
implementation decision is expressed as assertions in lines 5
and 15, constituting an implementation-specific specification
φQueue

imp , shown as 2 in Fig. 1.
Afterward, based on the implementation synthesized by

JLIBSKETCH, SPYRO was able to solve each Queue
specification-synthesis problem within 40 seconds, yielding
the following implementation-agnostic specification φQueue

sem :

isEmptyS(emptyQ) = ⊤ isEmptyQ(enq(q, i)) = ⊥
sizeQ(emptyQ) = 0
sizeQ(enq(q, i)) = sizeQ(q) + 1
isEmptyQ(q) → front(enq(q, i)) = i
¬isEmptyQ(q) → front(enq(q, i)) = front(q)
isEmptyQ(q) → deq(enq(q, i)) = q
¬isEmptyQ(q) → deq(enq(q, i)) = enq(deq(q), i)

A TicketVendor is implemented using a Queue, which
stores the id numbers of clients who have reserved tick-
ets. Each issued ticket contains the id of the buyer. The
implementation-specific specification φTicketVendor

imp consisted
of JLIBSKETCH code with 24 assertions, and contains multiple
examples, such as the following (again, x and y are universally
quantified integers that are allowed to be in the range 0 to 10):

numTicketsRem(prepSales(2)) = 2
numWaiting(prepSales(2)) = 0
numWaiting(resTicket(prepSales(2), x)) = 1
issueTicket(resTicket(prepSales(2), x)).owner = x

Again, we provided JLIBSKETCH with a fairly com-
plete sketch of the program structure, and JLIBSKETCH
was able to synthesize the implementations of all the
TicketVendor functions within 10 seconds. For example,
the function prepSales for TicketVendor = (numticket :
int, qwaiting : Queue) was synthesized as prepSales(n :
int) := (n, emptyQ).

We compared the time needed to synthesize each module
from the algebraic specification of the previous module to
the time needed to synthesize using the implementation of
all previous modules. Synthesizing Stack from the spec-
ification φList

sem took 3 seconds instead of the 2 seconds
needed when the implementation of List was provided.
Synthesizing Queue from the specification φStack

sem took 188

263

seconds instead of the 799 seconds needed when the con-
crete implementations of Stack and List were provided.
Synthesizing TicketVendor from the specification φQueue

sem
took 7 seconds, but JLIBSKETCH crashed when the concrete
implementations of Queue, Stack and List were provided.

Key finding: This experiment shows that modular synthesis
takes 1-5 minutes per module, whereas the time taken to
synthesize a module from the underlying module implementa-
tions grows with the number of modules—to the point where
synthesis is unsuccessful with existing tools.

As discussed in §II-D, we also synthesized an implementa-
tion of Queue that uses List instead of two Stacks. The
List holds the oldest element of the Queue at its head. The
implementation-specific specification φ

Queue (as List)
imp con-

sisted of JLIBSKETCH code with 19 assertions, including
examples similar to those shown at 5 in Fig. 2. We used
JLIBSKETCH to verify whether the specification φQueue

sem still
held true for the new implementation. Because it did (confir-
mation took <1 second), TicketVendor does not need to
be changed to use the Queue (as List) implementation.

C. Case Studies from Mariano et al. [14]

Our second set of benchmarks is collected from the pa-
per that introduced synthesis from algebraic specifications
via JLIBSKETCH [14]. In that work, Mariano et al. used a
number of benchmarks that involve two modules—e.g., syn-
thesizing a backend cryptographic component for a tool that
brings NuCypher to Apache Kafka, using ArrayList and
HashMap as underlying modules. The goal of their paper was
to show that in JLIBSKETCH it was easier/faster to synthesize
the module at layer 1 when the module of layer 0 was exposed
through an algebraic specification (rather than a concrete
implementation). The current implementation of MOSSKIT
does not support strings, so we used only the benchmarks for
which the algebraic specifications for the layer-0 module (i)
did not use string operations, and (ii) did not use auxiliary
functions that were not in the signature of the module. In total,
we considered four layer-0 modules: ArrayList, TreeSet,
HashSet, and HashMap. Each JLIBSKETCH benchmark
consisted of (i) an algebraic specification of the layer-0 module
(written by hand), (ii) a SKETCH-like specification of the
layer-1 module, and (iii) a mock implementation of the layer-
0 module—i.e., a simplified implementation that mimics the
module’s intended behavior (e.g., HashSet is implemented
using an array). The mock is not needed by JLIBSKETCH, but
allowed Mariano et al. to compare synthesis-from-algebraic-
specifications against synthesis-from-mocks [14, §5].

We used these items in a different manner from the JLIBS-
KETCH experiments. From just the mock implementation of
layer 0, we asked MOSSKIT to synthesize a most-precise
algebraic specification, which we compared with the algebraic
specification manually written by Mariano et al. From that
algebraic specification and the SKETCH-like specification of
the layer-1 module, we asked MOSSKIT to synthesize the im-
plementation of layer 1. (The second step essentially replicated
the algebraic-synthesis part of the JLIBSKETCH experiments.)

For the layer-0 synthesis step of each benchmark, we
synthesized algebraic specifications using grammars similar
to the ones used in §V-B.

When considering the time taken to synthesize the entire al-
gebraic specification of each module, SPYRO took 626 seconds
for φArrayList

sem , 54 seconds for φHashSet
sem , and 1,732 seconds

for φHashMap
sem . Because mock implementations are simplified

versions of actual implementations, the mock implementa-
tion of TreeSet is identical to the mock implementation
of HashSet—i.e., they both represent sets as arrays. Fur-
thermore, the two implementations have the same algebraic
specifications—i.e., φHashSet

sem = φTreeSet
sem —which can thus be

synthesized in the same amount of time.
Key finding: For all but two benchmarks, the L-

conjunctions synthesized by MOSSKIT were equivalent to
the algebraic properties manually written by Mariano et al.
For the mock implementation of HashMap and ArrayList
provided in JLIBSKETCH, for specific grammars, MOSSKIT
synthesized empty L-conjunctions (i.e., the predicate true)
instead of the algebraic specifications provided by Mariano et
al.—i.e., k1 = k2 ⇒ get(put(m, k1, v), k2) = v and i = j ⇒
get(set(l, i, v), j) = v, for HashMap and ArrayList, re-
spectively. Upon further inspection, we discovered that JLIB-
SKETCH’s mock implementation of HashMap was incorrect,
and did not satisfy the specification that Mariano et al. gave,
due to an incorrect handling of hash collision! After fixing
the bug in the mock implementation of HashMap, we were
able to synthesize the expected algebraic specification. How-
ever, when inspecting the implementation of ArrayList,
we found that for this benchmark the implementation was
correct but the algebraic specification provided by Mariano
et al. was incorrect! After modifying the grammar, we could
synthesize the correct algebraic specification (i = j) ∧ (0 ≤
i)∧ (i ≤ sizeL(l)) ⇒ get(set(l, i, v), j) = v. However, this
modification revealed a bug in one of the implementations of
HashMap that Mariano et al. had synthesized from the earlier
erroneous specification! We discuss this finding further in the
next section.

This finding illustrates how modular system synthesis can
help to identify and avoid bugs in module implementations.

D. Additional Case Studies Based on Mariano et al. [14]

We noticed that the JLIBSKETCH benchmarks provided
an opportunity to build a more complicated benchmark that
involved 3 modules (instead of 2). In particular, two of the
benchmarks involved synthesizing the implementation of a
(layer-1) HashMap module from a (layer-0) algebraic spec-
ification of ArrayList. (The two benchmarks synthesized
different implementations that handled collisions differently
and we refer to the corresponding modules as HashMap1
and HashMap2.) The third benchmark involved synthesizing
the implementation of a (layer-2) Kafka from a (layer-1) al-
gebraic specification of HashMap. Thus, we built two 3-layer
benchmarks in which the goal was to synthesize Kafka using
an implementation of HashMap that used an implementation
of ArrayList. For us, each 3-layer benchmark involved four

264

synthesis problems: (1) the algebraic specification φArrayList
sem

of ArrayList (from the mock); (2) the implementation of
either HashMap1 or HashMap2; (3) the algebraic specifica-
tion of HashMap; and (4) the implementation of Kafka (this
part was already synthesized in [14]).

As discussed in the previous section, we identified a bug in
the specification φArrayList

sem manually provided by Mariano et
al., and were able to use to MOSSKIT to synthesize a correct
algebraic specification—i.e., step (1). For step (2), the imple-
mentation synthesized by Mariano et al. for HashMap2 was
still correct, and we could also use MOSSKIT to synthesize
it from the corrected specification φArrayList

sem . However, the
implementation of HashMap1 synthesized by JLIBSKETCH
was incorrect because it depended on the original, erroneous
specification φArrayList

sem for ArrayList—(1) put could
store values to negative indices; and (2) get could search key
from incorrect index after rehashing. We manually changed
the implementation of the rehashing function in the sketch of
HashMap1 to fix the bug, but the change was large enough
that we did not attempt to rewrite the program sketch needed
to synthesize this specification (i.e., we manually wrote the
implementation of HashMap1 instead of synthesizing it).
Synthesis problem (3) is at the heart of handling a multi-
module system in a modular fashion: we used MOSSKIT
to synthesize algebraic specifications of HashMap1 and
HashMap2—in each case, giving MOSSKIT access to the
(correct) implementations of HashMap1 and HashMap2 and
the (correct) algebraic specification of ArrayList (but not
an implementation of ArrayList).

Key finding: MOSSKIT failed to synthesize the same
algebraic specification we had obtained for HashMap in §V-C
when attempting to synthesize a specification for HashMap1
and HashMap2. When inspecting the synthesized properties,
we realized that the algebraic specification φArrayList

sem exposed
by ArrayList still had a problem! In particular, φArrayList

sem
was too weak to prove the algebraic specifications needed
by HashMap1 and HashMap2—i.e., φArrayList

sem did not
characterize properties that were needed by HashMap1 and
HashMap2 to satisfy the algebraic specification φHashMap

sem . We
used Sketch itself to produce a violation of the algebraic speci-
fication φHashMap

sem for HashMap1 under the weaker assumption
that ArrayList only satisfied the specification φArrayList

sem ,
and used the violations generated by SKETCH to identify what
properties we needed to add to strengthen φArrayList

sem . In
particular, sizeL(ensureCapacity(l, n)) = sizeL(l) and
get(ensureCapacity(l, n), i) = get(l, i) were added to
describe the behavior of ensureCapacity. We were then able
to modify the grammar used to synthesize algebraic specifi-
cations for φArrayList

sem and synthesize the missing property.
After obtaining φArrayList

sem , we successfully synthesized the
full algebraic specification for HashMap2 (i.e., φHashMap

sem) and
most of the algebraic specification for HashMap1. Because
the corrected implementation of HashMap1 was particularly
complicated—e.g., each call to put requires rehashing when
the load factor is greater than a predefined value—MOSSKIT
timed out while synthesizing every property, with the excep-

tion of the property get(emptyMap, k) = err.
This finding illustrates how modular system synthesis can

help identify when module specifications are not strong
enough to characterize the behavior of other modules.

E. Limitations of MOSSKIT

JLIBSKETCH and SPYRO represent the algebraic specifi-
cations of modules as rewrite rules for algebraic datatypes
(ADTs). Reasoning about ADTs is a challenging problem,
and to the best of our knowledge, SKETCH and JLIBSKETCH
are only frameworks capable of handling problems involving
ADTs effectively. Therefore, MOSSKIT uses them as the
underlying solver and inherits limitations of SKETCH.

The primary limitation of MOSSKIT is its bounded sound-
ness guarantee. SKETCH ensures soundness only for a bounded
number of loop/recursion unrollings, and bounded input sizes.
Verifying the unbounded correctness of the synthesized pro-
grams poses a significant challenge, as semantics of lower-
level modules are represented as rewrite rules on ADTs. As a
future direction, we plan to integrate MOSSKIT with verifiers
such as Dafny to perform full verification, as was done in [15]
for the properties synthesized by SPYRO. However, it is worth
noting that MOSSKIT has already been useful in finding bugs
in existing implementations: specification synthesis has helped
find implementation errors in the case studies of Mariano et
al. [14], as demonstrated in §V-C and §V-D.

Although the case studies in §V-B and reference [14]
show satisfactory performance of SKETCH for most problems,
scalability issues persist. In particular, unrolling nested loops
significantly increases the number of holes of the SKETCH
problem, which increases the problem’s difficulty.

Besides the limitations inherited from SKETCH, MOSS has
a specific requirement for the system’s modular structure,
which should be a directed acyclic graph (DAG)—i.e., the
implementation-agnostic specifications of all dependent mod-
ules must be provided to synthesize a particular module.
MOSS addresses the challenges in writing accurate specifica-
tions by using the synthesis of implementation-agnostic spec-
ifications. However, in this approach one needs to synthesize
all dependent modules and their specifications before attempt-
ing to synthesize a new module. Alternatively, to synthesize
higher-level modules without the lower-level implementations,
the user can manually supply the implementation-agnostic
specifications of the lower-level modules.

VI. RELATED WORK

A problem related to ours is that of component-based
synthesis (CBS), where the goal is assembling pre-existing
components/APIs to generate more complex programs. Many
existing approaches for solving CBS problems scale reason-
ably well [5], [18], [20], but require the individual components
to be executable. In our setting, this approach is not possible
because the details of lower-level components (e.g., how a
Stack is implemented) need not be observable.

A few tools have abstracted components and modules using
specifications. JLIBSKETCH [14] uses algebraic properties to

265

represent the semantics of modules and is a key component
of our implementation. (CL)S [2] and APIphany [8] use types
to represent the behavior of components and can be used
in tandem with specialized type-directed synthesizers. The
key differences between our work and these tools is that
MOSS provides two well-defined synthesis primitives that
support composing multiple modules, rather than synthesizing
just one implementation for one module. Furthermore, the
aforementioned types are limited in how they can represent
relations between multiple components in an implementation-
agnostic way, thus making us opt for algebraic specifications.

Many synthesis tools perform some kind of “composi-
tional” synthesis by breaking an input specification into sub-
specifications that are used to separately synthesize sub-
components of a target program [1], [17]. This notion of
“compositionality” is orthogonal to ours, and is more of a
divide-and-conquer approach to solving individual synthesis
problems. MOSS can make use of such a divide-and-conquer
approach when synthesizing a module’s implementation.

For the task of synthesizing an algebraic specification,
MOSSKIT uses SPYRO. Besides SPYRO, there are a number
of works about discovering specifications from code, based on
both static techniques [6], [21] and dynamic techniques [4],
[11]. The static approaches mostly target predicates involving
individual functions (instead of algebraic properties and equal-
ities involving multiple functions). The dynamic techniques
are flexible and can identify algebraic specifications (e.g., for
Java container classes [11]), but require some “bootstrapping”
inputs, and only guarantee soundness with respect to behaviors
that are covered by the tests that the inputs exercise.

VII. CONCLUSION

Conceptual contributions. At the conceptual level, this pa-
per contributes both a framework and a new way to think
about program synthesis that opens many research directions.
Specifically, the paper introduces MOSS, a framework for
using synthesis to perform modular system synthesis. The
main contribution of this paper is not an immediate solution
to the modular-synthesis problem, but rather the identification
of two key synthesis primitives that are required to realize
MOSS in practice: 1) synthesis from an implementation-
agnostic specification, and 2) synthesis of an implementation-
agnostic specification. While our tool implements both of
these primitives using tools based on SKETCH (thus inheriting
its limitations), an interesting research directions is whether
other synthesis approaches (enumeration, CEGIS, etc.) can
be extended to handle our synthesis problems, perhaps by
leveraging the popular egg framework [24] which allows one
to reason about equivalence of terms with respect to a term-
rewriting system—i.e., our algebraic specifications.

Experimental Contributions. We created MOSSKIT, a proof-
of-concept implementation of MOSS based on two exist-
ing program-synthesis tools: JLIBSKETCH [14], a program-
sketching tool that supports algebraic specifications, and
SPYRO [15], a tool for synthesizing precise specifications

from code. The case studies carried out with MOSSKIT show
that (i) modular synthesis is faster than monolithic synthesis,
and (ii) performing synthesis for both implementations and
specifications of the modules can prevent subtle bugs.

ACKNOWLEDGEMENT

Supported, in part, by a Microsoft Faculty Fellowship,
a gift from Rajiv and Ritu Batra; by ONR under grant
N00014-17-1-2889; and by NSF under grants CCF-
{1750965,1763871,1918211,2023222,2211968,2212558}.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors, and do
not necessarily reflect the views of the sponsoring entities.

REFERENCES

[1] R. Alur, P. Cerný, and A. Radhakrishna. Synthesis through unification. In
D. Kroening and C. S. Pasareanu, editors, Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA,
July 18-24, 2015, Proceedings, Part II, volume 9207 of Lecture Notes
in Computer Science, pages 163–179. Springer, 2015.

[2] J. Bessai, A. Dudenhefner, B. Düdder, M. Martens, and J. Rehof.
Combinatory logic synthesizer. In T. Margaria and B. Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change - 6th International Symposium,
ISoLA 2014, Imperial, Corfu, Greece, October 8-11, 2014, Proceedings,
Part I, volume 8802 of Lecture Notes in Computer Science, pages 26–40.
Springer, 2014.

[3] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez,
C. Löding, S. Tison, and M. Tommasi. Tree Automata Techniques and
Applications. 2008.

[4] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of
likely invariants. Sci. Comput. Program., 69(1-3):35–45, 2007.

[5] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps. Component-
based synthesis for complex APIs. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 599–612, 2017.

[6] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for
ESC/Java. In J. N. Oliveira and P. Zave, editors, FME 2001: Formal
Methods for Increasing Software Productivity, International Symposium
of Formal Methods Europe, Berlin, Germany, March 12-16, 2001,
Proceedings, volume 2021 of Lecture Notes in Computer Science, pages
500–517. Springer, 2001.

[7] J. Goguen, J. Thatcher, E. Wagner, and J. Wright. Abstract data-
types as initial algebras and correctness of data representations. In
Proceedings Conference on Computer Graphics, Pattern Recognition
and Data Structure, May 1975.

[8] Z. Guo, D. Cao, D. Tjong, J. Yang, C. Schlesinger, and N. Polikarpova.
Type-directed program synthesis for restful apis. In R. Jhala and I. Dillig,
editors, PLDI ’22: 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, San Diego, CA,
USA, June 13 - 17, 2022, pages 122–136. ACM, 2022.

[9] J. V. Guttag. The Specification and Application to Programming of
Abstract Data Types. PhD thesis, Computer Systems Research Group,
Univ. of Toronto, Toronto, Canada, Sept. 1975.

[10] J. V. Guttag and J. J. Horning. The algebraic specification of abstract
data types. Acta Informatica, 10:27–52, 1978.

[11] J. Henkel, C. Reichenbach, and A. Diwan. Discovering documentation
for Java container classes. IEEE Trans. Software Eng., 33(8):526–543,
2007.

[12] R. Hood and R. Melville. Real-time queue operation in pure LISP. Inf.
Process. Lett., 13(2):50–54, 1981.

[13] B. H. Liskov and S. N. Zilles. Specification techniques for data
abstractions. IEEE Trans. Software Eng., 1(1):7–19, 1975.

[14] B. Mariano, J. Reese, S. Xu, T. Nguyen, X. Qiu, J. S. Foster, and
A. Solar-Lezama. Program synthesis with algebraic library specifica-
tions. Proc. ACM Program. Lang., 3(OOPSLA):132:1–132:25, 2019.

[15] K. Park, L. D’Antoni, and T. Reps. Synthesizing specifications. CoRR,
abs/2301.11117, 2023.

266

[16] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Comm. ACM, 15(12):1053–1058, 1972.

[17] M. Raza, S. Gulwani, and N. Milic-Frayling. Compositional program
synthesis from natural language and examples. In Proceedings of the
24th International Conference on Artificial Intelligence, IJCAI’15, page
792–800. AAAI Press, 2015.

[18] K. Shi, J. Steinhardt, and P. Liang. FrAngel: Component-based synthesis
with control structures. Proc. ACM Program. Lang., 3(POPL):73:1–
73:29, 2019.

[19] P. Simon. One man’s ceiling is another man’s floor, May 1973. T-
700.050.850-1 BMI, ISWC, JASRAC.

[20] R. Singh, R. Singh, Z. Xu, R. Krosnick, and A. Solar-Lezama. Modular
synthesis of sketches using models. In K. L. McMillan and X. Rival,
editors, Verification, Model Checking, and Abstract Interpretation - 15th
International Conference, VMCAI 2014, San Diego, CA, USA, January
19-21, 2014, Proceedings, volume 8318 of Lecture Notes in Computer
Science, pages 395–414. Springer, 2014.

[21] J. L. Singleton, G. T. Leavens, H. Rajan, and D. R. Cok. Inferring
concise specifications of APIs. CoRR, abs/1905.06847, 2019.

[22] A. Solar-Lezama. Program sketching. Int. J. Softw. Tools Technol.
Transf., 15(5-6):475–495, 2013.

[23] J. M. Spitzen and B. Wegbreit. The verification and synthesis of data
structures. Acta Informatica, 4:127–144, 1974.

[24] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha.
egg: Fast and extensible equality saturation. Proc. ACM Program. Lang.,
5(POPL):1–29, 2021.

267

Formal Methods in Computer-Aided Design 2023

Modelling and Verification of Security-Oriented
Resource Partitioning Schemes

Adwait Godbole∗ , Leiqi Ye† , Yatin A. Manerkar† , Sanjit A. Seshia∗
∗University of California Berkeley, Berkeley, USA

{adwait, sseshia}@berkeley.edu
†University of Michigan, Ann Arbor, USA

{yeleiqi, manerkar}@umich.edu

Abstract—Side channel attacks such as Spectre and Meltdown
exploit on-chip resources such as caches and buffers shared
between the victim and the attacker in order to leak secret
information from the victim. Previous works aim to mitigate
these attacks by partitioning these vulnerable resources and
allocating disjoint partitions to mutually untrusting process
domains. While disjoint allocation prevents the attacker from
gaining direct visibility of victim’s partitions, secret information
can also be leaked through the book-keeping state implementing
the replacement/allocation policy. Proofs of security must reason
about the partitions as well as the policy.

In this work, we develop an abstract formal model for a generic
security-oriented resource partitioning scheme, and formulate
a corresponding attacker model. We then develop conditional
equality-based relational invariants that enable unbounded proofs
of security of the partitioning scheme with respect to the attacker
model. These invariants allow us to reason about the state of
the partitioning policy, which, as we discuss, can be more chal-
lenging than reasoning about the partitions themselves. We use
our framework to model two resource partitioning approaches:
DAWG and COLORIS. We demonstrate that using our invariants
leads to verification performance improvements over other, more
automated, model-checking approaches such as BMC and PDR.

I. INTRODUCTION AND EXAMPLE

Transient execution attacks such as Spectre [1], Meltdown
[2], and the more recent MDS attacks [3], [4], [5], [6]
exploit microarchitectural features such as caches, buffers, and
functional units in order to leak secret data (e.g. cryptographic
private keys). These features form side channels that allow the
attacker to observe execution artefacts such as cache accesses,
execution time and power consumption. The attacker can infer
the secret data based on these observations. For instance,
cache-based side channels [7], are based on the fact that
victim’s accesses to specific cache lines are observable to the
attacker through a timing-based side channel [8]. Timing mea-
surements can then be used to reconstruct accessed memory
addresses, and consequentially, leak data that these addresses
depend on.

While the microarchitectural features exploited by these
attacks vary (e.g. caches [1], [2], [9], TLB [10], load, store
and line-fill buffers [3], [4], [5], [6]), the central theme is
exploiting a cache-like resource which is shared between the
attacker and victim. In order to mitigate these attacks, there
are approaches (e.g. [11], [12], [13], [14]) that partition these
shared resources, and enforce allocation of disjoint partitions

Fig. 1. Example illustrating a Prime+Probe style attack. The grey cloud
represents the policy state and rectangles represent the resource partitions
(cache lines). (A, B) indicate behaviours permitted by a partitioning scheme
which has allocated lines l0, l1 to the victim and line l2 to the attacker. (C,
textured) indicates a behaviour which is possible on a non-partitioned cache,
but is not possible on a partitioned cache with the above allocation.

to mutually distrusting processes. Disjoint partitions disallow
an attacker from affecting (modifying/observing) the victim’s
partitions, thus eliminating side channels formed by resource
entries (e.g. cache lines). However, data leakage may still be
possible through the state that implements the replacemen-
t/partitioning policy (e.g. [15] demonstrates an attack which
leaks data through the Least-Recently-Used replacement pol-
icy state). Hence, proofs of security for designs implementing
resource partitioning must reason over the partitioning policy
in addition to the partition contents themselves.

In this work, we develop an abstract formal model for
resource partitioning schemes, and a corresponding attacker
model, capturing cache-based timing side channels. With
the goal of proving the security of resource-partitioning ap-
proaches, we formulate conditional-equality invariants, which
are a form of relational invariants [16]. These invariants enable
unbounded proofs of the system against a non-interference-
based formulation of the attacker model.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 35 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0001-7704-304X
https://orcid.org/0009-0006-6026-4632
https://orcid.org/0000-0002-6954-2292
https://orcid.org/0000-0001-6190-8707
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_35
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_35
https://creativecommons.org/licenses/by/4.0/

Previous works (e.g. [17], [18]) use pure equality-based re-
lational invariants. While pure equality-based invariants suffice
for reasoning over partition contents, the policy state requires
more nuanced reasoning which is enabled by conditional
equality invariants. We now illustrate this in the context of
a Prime+Probe [8] attack (ref. Fig. 1).

Prime+Probe on a Resource Partitioned Cache:
As a warm-up, we begin by discussing how a Prime+Probe
attack operates on an unpartitioned cache. For simplicity,
consider a segment of the cache consisting of four cache lines:
{l0, · · · , l3}. These are illustrated at the top of Fig. 1. Initially
the attacker primes the cache by loading a value into a specific
line, say l2 (highlighted in orange in Fig. 1).

Following this, the victim performs a memory operation
leading to a cache access (victim tab in Fig. 1). We consider
three scenarios where the victim accesses either l0, l1 or l2
(denoted A, B, and C respectively). In cases (A, B) the victim
access (highlighted in green) does not evict the attacker primed
line l2 while in case (C) it does (highlighted in red).

Now, if the attacker accesses (probes) the cache on line
l2, there are two possible outcomes: in case (C) the access
results in a cache miss (since the victim evicted the attacker’s
primed data), while cases (A, B) result in a cache hit (since the
attacker’s data was untouched). This difference manifests in
the execution time of the attacker’s probing access and allows
the attacker to deduce the cache line accessed by the victim
earlier. Since the cache line is indexed by the memory address,
the attacker can infer this address, and as a consequence, any
potentially secret data that the address depend on.

Cache partitioning schemes avoid this by allocating disjoint
partitions to untrusting processes. In our example, a partition-
ing scheme can allocate l0, l1 to the victim process and l2 to
the attacker process. Since the victim is not allocated l2, (C)
is not a valid execution for the partitioned cache. Since both
remaining executions (A, B) have the same (hit) result on the
attacker’s probing access, it cannot distinguish between these,
and consequently, cannot infer the victim’s loaded address.

Leakage through the policy state: While disjointness
of victim and attacker partitions prevents a hit/miss timing
side-channel leakage for the first probing access, leakage may
still be possible through the replacement/allocation policy state
(cloud in Fig. 1). The possible victim accesses, (A, B), may
still lead to differing policy states (state0) and (state1). While
this difference is not visible on the first probing access, it could
potentially manifest after some number of attacker accesses.

Policy states need not be equal: In order to prove that
an arbitrary number of attacker accesses lead to the same
(hit/miss) outcome, relational model-checking [19], [16] based
approaches (e.g. [18], [17], [20]) develop invariants relating
possible resource states (A, B in Fig. 1). While the contents
of the attacker-observable partition (l2) itself must be equal,
(else the attacker observes different outcomes), for the policy
state, enforcing exact equality may be too strong. Policy states
which are not fully equivalent, but still related in some way
may be sufficient to ensure identical attacker access outcomes.
Our model allows us to formulate conditional equality-based

invariants, that are more nuanced than exact equality, and
hence support inductive proofs of non-interference.

Related work: We formulate the security of partitioning
schemes as a non-interference-based [21] hyperproperty [22].
Our verification approach is based on the well-known trans-
lation of non-interference to 2-safety [23], [24]. We verify
the resulting 2-safety property with symbolic model checking
[25], [26] (e.g. BMC, k-Induction [27], [28], PDR [29]).

There are several approaches that perform verification of
non-interference-based properties, both on RTL (e.g. [30],
[31]) and on abstract models (e.g. [32], [33], [34]). These
approaches focus on proving programs secure against specific
vulnerabilities by using techniques such as bounded model
checking (e.g. [32]) and fuzzing (e.g. [31]). Our focus, on the
other hand, is developing an abstract model specialized for re-
source partitioning schemes (implemented in either SW/HW)
and proving unbounded security through invariants.

Our work is closest to the approaches performing relational
symbolic execution/model checking (e.g. [18], [19], [17]).
These too verify security-based hyperproperties on the self-
composition of the model, by identifying relational invariants.
These works consider different models than ours (e.g. [18]
uses a simple programming language) or make use of different
(often simpler) relational invariants (e.g. [17] considers pure
equality-based invariants). Our focus is identifying specialized
invariants in the context of resource partitioning-based models
(for which pure equality-based invariants are inadequate).

Our contributions are as follows: (1) Formal model for
security-oriented resource partitioning: We develop a formal
model for security-oriented resource partitioning schemes with
a corresponding attacker model that captures cache-based
timing side channels. (2) Conditional equality invariants: We
formulate relational invariants that are customized to this
model and which enable us to reason about the partitions
as well as the policy states. (3) Evaluation: We use our
approach to model two partitioning schemes, DAWG [11] and
COLORIS [13], and demonstrate that inductive proofs using
our invariants can have much better performance as compared
to bounded (BMC) and unbounded (PDR) techniques.

Outline: In §II we formulate the resource partitioning
model and the corresponding threat model. In §III we de-
velop our conditional-equality invariants that support inductive
proofs of security. In §IV we discuss our case studies and
experimental results, and §V concludes.

II. MODELLING RESOURCE PARTITIONING SCHEMES

A. Resource model

Our model captures an abstract shared resource (e.g. cache
lines, cache-ways, memory pages) that is being partitioned.
For simplicity, we assume that there is only a single resource,
but, this can easily be extended to multiple resources.

1) Resource: A resource is a collection of cells, each cell
representing one unit of the resource. In Fig. 1, each line (li)
is a cell. We assume that cells are indexed by an index set I,
and hold a value from the set V. The value ⊥ ∈ V represents

269

1 if (∃i. r(i) = α ∧ d = a(i)) {
2 // Is a hit, let i be the hit

index
3 p← fupdH(a, p, d, i)
4 } else {
5 // Not a hit
6 i← fevict(a, p, d)
7 r(i)← α
8 p← fupdM(a, p, d, i)
9 }

Fig. 2. Semantics of an access d : α, from configuration c = ⟨a, r, p⟩.

the NULL value. The map r defines the mapping from cell
indices to values that they contain, r : I→ V.

2) Domains: A set of protection domains, denoted by D,
share the resource. In Fig. 1, the victim and attacker processes
are domains. Each cell in the resource is allocated to a domain.
This allocation is specified by an allocation map, identifying
the domain that has access to a cell, a : I→ D. We denote the
set of possible allocations as A = I→ D. For allocation a, we
denote the set of all cell indices allocated to d by a↓d⊆ I.

3) Policies: We consider an abstract policy with states P.
Each policy state p ∈ P is an assignment to policy elements,
p : E→ Vp. In the Prime+Probe example of Fig. 1, the policy
elements E are the bits in the replacement/allocation state (e.g.
PLRU tree bits for a Tree-PLRU policy [35]).

Modelling the state as a collection of elements, E, as
opposed to monolithically, allows us to develop conditional
equality invariants in §III.

We identify three functions defining the policy behaviour:

fevict : A× P× D→ I
fupdM : A× P× D× I→ P

fupdH : A× P× D× I→ P

The function fevict, given the current allocation, policy state,
and the domain performing the access identifies the cell index
that is chosen for replacement by the policy. The function fupdM

identifies the new policy state that results when an access (by
a given domain) is a miss, while fupdH identifies the state when
the access is a hit (the hitting index is a function input).

4) Overall configuration: The overall configuration is a
tuple c = ⟨a, r, p⟩ of these components. We denote the set
of configurations as C. Initial configurations are of the form
⟨a, rinit, pinit⟩, where a is arbitrary, the resource is empty,
rinit = λi.⊥, and pinit ∈ P is the initial partitioning state.

5) Resource access semantics: At each step, a domain d ∈
D performs an access operation with argument α ∈ V, denoted
as d : α (e.g. in a cache resource, the address is the argument).
Fig. 2 provides the semantics of an operation d : α, which are
determined by the functions fevict, fupdM, fupdH.

In case of a hit (i.e some allocated cell contains the accessed
argument), the replacement state is updated according to fupdH

(line 3). On a miss, the replaced index i is determined (line
6), following which the cell at i, and the replacement state is
updated (lines 7, 8). We denote the transition relation (defined
in Fig. 2) as δacc : C×{d : α | d ∈ D, α ∈ V} → C, which for
a previous state and operation d : α, gives the resultant state.

6) Executions: A trace of the model is a sequence of con-
figurations, π = c0 · c1 · · · where c0 is an initial configuration
(§II-A4), and at each step j, some access operation (dj : αj) is
performed: δacc(cj , dj : αj) = cj+1. For a trace π, we denote
opπ[j] as the operation performed at step j. We denote the set
of executions of the model as Π.

B. Attacker Model and Security Property
We consider a timing-based attacker that can observe differ-

ences between the hit/miss outcomes of its accesses. Hence the
hit/miss outcomes should not depend on the arguments (αs) of
accesses by other domains. Otherwise, the attacker could infer
these arguments, constituting an information leak. Operation
(d : α) results in a hit if isHit(c, d : α) = ∃i. r(i) = α∧a(i) =
d. Configurations c1, c2 are (single-access) indistinguishable to
the attacker (with domain d#) if the following holds:

ϕindist(c1, c2) ≡ ∀α. isHit(c1, d# : α) ⇐⇒ isHit(c2, d
: α)

We formulate security as a non-interference property, where
the attacker allocations and accesses are public inputs and
the attacker hit/miss outcome is the public output. Non-
interference requires that for any two traces, if the public
inputs are equal, then so must be the public output. In our
setting, two traces π1, π2 have the same public inputs (denoted
π1 =L π2) if the attacker allocation is identical (a(π1[0])↓d#=
a(π2[0])↓d#) and attacker accesses are identical:

∀j. ∀α. opπ1
[j] = (d# : α) ⇐⇒ opπ2

[j] = (d# : α)

Finally, identical public outputs (hit/miss outcomes) are
captured by ϕindist. Hence, the overall non-interference-based
hyperproperty is formulated as:

Φsec ≡ ∀π1, π2 ∈ Π. π1 =L π2 =⇒ ∀j. ϕindist(π1[j], π2[j])

III. INVARIANTS FOR RESOURCE PARTITIONING SCHEMES

We aim to prove the hyperproperty Φsec using relational
model checking [16] by developing a relational invariant
ϕinv(c1, c2) (that relates states from the two traces π1, π2).

A. Conditions on ϕinv

We begin by listing conditions on ϕinv. As the base case,
we get (by π1 =L π2):

a1 ↓d#= a2 ↓d# =⇒ ϕinv(⟨a1, rinit, pinit⟩, ⟨a2, rinit, pinit⟩)
(base)

Next, we want ϕinv to be inductive, both w.r.t. attacker (Eq.
ind-d#) and non-attacker (Eq. ind-non-d#) accesses. For the
attacker accesses, the access argument should be identical.

∀α. ϕinv(c1, c2) =⇒
ϕinv(δacc(c1, d

: α), δacc(c2, d
: α)) (ind-d#)

∀d1, d2 ̸= d#. ∀α1, α2. ϕinv(c1, c2) =⇒
ϕinv(δacc(c1, d1 : α1), δacc(c2, d2 : α2)) (ind-non-d#)

270

Finally, we want the invariant to imply indistinguishability
for an attacker access (ϕindist):

∀c1, c2. ϕinv(c1, c2) =⇒ ϕindist(c1, c2) (indist)

It is straightforward to see that if some ϕinv satisfies Eqns.
base, ind-d#, ind-non-d#, indist, we get a proof of Φsec.

B. Shape of ϕinv invariants

In this section, we specialize the form of the invariant ϕinv

considered. We require that ϕinv enforce (a) that cells allocated
to d# are identical, and (b) that contents of the d#-allocated
cells are equal. Formally, we require ϕinv ⊇ ϕ1, where,

ϕ1 ≡ (a1 ↓d#= a2 ↓d#) ∧ (∀i. i ∈ a1 ↓d# =⇒ r1(i) = r2(i))

Note that ϕ1 =⇒ ϕindist. While ϕ1 constrains allocations
and their contents such that single-step indistinguishability is
guaranteed, different policy states (p1, p2) may lead to ϕ1 not
being inductive. Hence ϕinv additionally needs to relate the
policy states from the two traces. However, unlike the resource
contents (r1, r2), the policy states may not be fully equivalent,
and yet the scheme may be secure. Hence the invariant ϕinv

must be more nuanced when relating c1 with c2.
In order to develop more nuanced invariants we make use of

the fact that the policy state is composed of elements (§II-A3).
We constrain that p1, p2 must only agree on some elements
from E. The choice of these elements depends on the attacker-
allocated indices (a↓d#) and is identified by a filtering function
filter : 2I ↦→ 2E. The equality of p1, p2 is conditioned to only
the elements in filter(a↓d#). The invariant ϕinv is defined as:

ϕinv ≡ ϕ1 ∧ ∀e ∈ filter(a↓d#). p1(e) = p2(e)

The first term (ϕ1) enforces equivalence of the d#-allocated
cells and their contents while the second enforces equality of
the filter-identified elements of the policy state.

Importantly, the set of elements in filter(a↓d#) is not known
statically since a ↓d# can be arbitrary (we want to verify
security for arbitrary allocations). Hence conditional equality-
based invariants cannot be subsumed by pure equality based
relational invariants.

IV. EXPERIMENTAL EVALUATION

We evaluate our modelling and verification approach on
two case studies based on previously proposed partition-
ing schemes: (1) DAWG [11] and (2) COLORIS [13]. We
cast both of these into our formal model (§II-A). We then
formulate conditional equality-invariants by manually iden-
tifying the filter function (§III-B) and then perform ver-
ification w.r.t. the property Φsec (§II-B). We discuss de-
tails of modelling and verification in §IV-A and §IV-B re-
spectively. Our experimentation is performed on a server
machine running on an Intel i7-13700k processor at 5.2
GHz with 20GB of RAM. Our case study examples includ-
ing models, invariants, and proof scripts can be found at
https://github.com/lichye/sec_resource_pa
rtitioning.

TABLE I
DAWG VERIFICATION RUN TIMES

Policy Verification approach Runtime

PLRU

k-Ind (k = 10) 2.789s
BMC (d = 12) 42.6s
BMC (d = 20) 145m43s

PDR 24m10s

NRU

k-Ind (k = 10) 2.674s
BMC (d = 12) 1m12s
BMC (d = 20) 179m16s

PDR Timeout

A. Dynamically Allocated Way Guard (DAWG)

DAWG [11] proposes a technique for secure way partition-
ing of set associative structures, and develops an implementa-
tion of a way-partitioned cache. It allows privileged software to
allocate cache-ways to processes based on resource utilization,
and aims to provide isolation between cache-ways allocated to
mutually untrusting processes.

1) Eviction Policy: We implement both Pseudo-Least Re-
cently Used (PLRU) and Not Recently Used (NRU) eviction
policies in DAWG. Similar to standard PLRU or NRU policies,
DAWG’s PLRU and NRU policies include metadata that is
used to determine the victim way and to record the order in
which addresses are accessed. PLRU employs a pointer to a
metadata tree, while NRU uses access bits. The metadata tree
and access bits form the policy elements (E) in our model in
the case of PLRU and NRU respectively. In order to ensure
isolation, DAWG constrains updates to the metadata and the
identification of victim ways to the allocated partitions. Cor-
respondingly, the hardware implementation must ensure that
accesses performed by one domain do not modify metadata
visible to another domain, as this could alter the hit/miss
outcomes in other domains, potentially leading to timing-based
information leakage.

2) Formal Modelling and Verification: We consider an 8-
way DAWG cache design and implement Verilog modules
for PLRU and NRU policies. Since DAWG performs way-
partitioning, each way is a cell in our model, and hence, |I| = 8
for both cases. For the PLRU policy, the policy elements
contain the PLRU-tree bits, |EPLRU| = 7 and for NRU they
are the access bits |ENRU| = 8. We perform a self-composition
of this module and formulate Φsec as a safety property over
this self-composition. For this, we use the standard encoding
of 2-safety as a safety property [23]. We use the Yosys [36]
based SymbiYosys (SBY) [37] model checker with Boolector
[38] and ABC [29] as backend solvers to verify this property.

3) Result and Analysis: We apply three approaches: k-
induction and BMC (using SMTBMC), and PDR (using
ABC). For k-induction, we formulate invariants as discussed
in §III-B. In Table I, we present the proof runtimes observed
for the PLRU and the NRU policies. We observe that both
PDR proof runtimes and BMC runtimes (for larger depths)
are significantly higher than a k-inductive proof with our
invariants. Our approach shows a significant speedup of 15.2x
to 4022x in the runtime.

271

https://github.com/lichye/sec_resource_partitioning
https://github.com/lichye/sec_resource_partitioning

B. COLORIS

COLORIS [13] performs cache partitioning based on page
colouring. In COLORIS, the OS kernel assigns colours to each
memory page based on its address bits. Consequently, memory
pages with different colours map to different cache sets in
a physically indexed cache. By allocating different colours
to each process COLORIS aims to improve performance in
scenarios where cache contention occurs.

1) Formal Modelling and Verification: While COLORIS
performs colour-based partitioning, it does allow colours to be
shared between processes under certain scenarios. Hence, in
full generality, it may allocate non-disjoint partitions to mutu-
ally untrusting processes, which puts it at risk of security leaks.
However, in our experiments, we assume that the allocated
colours are in fact disjoint, making the scheme secure.

We develop a model for a 4-way associative cache with
a page allocation scheme, implemented in UCLID5 [39].
UCLID5 allows us to develop a model that partially abstracts
the replacement policy by using uninterpreted functions to
model policy functions (§II-A3), while constraining the policy
to enforce disjointness of allocations. This abstraction allows
us to verify an arbitrary policy that enforces disjointness.

2) Result and Analysis: We use both BMC and induction-
based approaches to verify the model in UCLID5. For the
proof by induction, we formulate Eqns. base, ind-d#, ind-
non-d#, and indist as separate proofs using UCLID5. The
cumulative runtime of the inductive proof (summing individual
proof runtimes) is 16m33s. On the other hand, a BMC proof
of security does not terminate even for a depth of three.

V. CONCLUSION

In this work, we develop a formal model for resource parti-
tioning schemes and a corresponding attacker model that cap-
tures information leakage through timing-based side-channel
attacks. We develop conditional equality-based relational in-
variants that enforce equality of state elements conditioned on
some dynamic preconditions, and are more expressive than
pure equality-based invariants. These invariants can support
inductive proofs of security for resource partitioning schemes
against a non-interference-based characterization of the at-
tacker model. We model two partitioning schemes using our
approach and demonstrate that conditional equality invariant-
based proofs, while requiring manual specification of the
invariants, can be much faster than other model-checking
approaches. For future work, it would be interesting to develop
an algorithm for automated synthesis of these invariants by
utilizing their structure. Abstract models and invariants, such
as the one we propose, that are specialized to design features,
can provide scalable and trustworthy security guarantees.

ACKNOWLEDGEMENTS

This work was supported in part by Intel under the Scalable
Assurance program, DARPA contract FA8750-20-C0156 and
NSF grant 1837132.

REFERENCES

[1] Paul C. Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Michael
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. 2019 IEEE Symposium on Security and Privacy (SP), pages
1–19, 2019.

[2] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul C. Kocher, Daniel
Genkin, Yuval Yarom, and Michael Hamburg. Meltdown: Reading kernel
memory from user space. In USENIX Security Symposium, 2018.

[3] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue In-Flight Data Load. 2019 IEEE Symposium on Security
and Privacy (SP), pages 88–105, 2019.

[4] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. CacheOut: Leaking Data on Intel CPUs via Cache
Evictions. 2021 IEEE Symposium on Security and Privacy (SP), pages
339–354, 2021.

[5] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019.

[6] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
Data on Meltdown-resistant CPUs. Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019.

[7] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contemporary
hardware. Journal of Cryptographic Engineering, 8:1–27, 2016.

[8] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. 2015 IEEE
Symposium on Security and Privacy, pages 605–622, 2015.

[9] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. Net-
Spectre: Read Arbitrary Memory over Network. ArXiv, abs/1807.10535,
2019.

[10] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Transla-
tion Leak-aside Buffer: Defeating Cache Side-channel Protections with
TLB Attacks. In USENIX Security Symposium, 2018.

[11] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe, Srinivas
Devadas, and Joel S. Emer. DAWG: A Defense Against Cache
Timing Attacks in Speculative Execution Processors. 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 974–987, 2018.

[12] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. Chunked-Cache: On-Demand and Scal-
able Cache Isolation for Security Architectures. ArXiv, abs/2110.08139,
2021.

[13] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. COLORIS: A
dynamic cache partitioning system using page coloring. 2014 23rd
International Conference on Parallel Architecture and Compilation
(PACT), pages 381–392, 2014.

[14] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers,
and G. Edward Suh. SecDCP: Secure dynamic cache partitioning for
efficient timing channel protection. 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1–6, 2016.

[15] Wenjie Xiong and Jakub Szefer. Leaking Information Through Cache
LRU States. 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 139–152, 2020.

[16] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational
Verification Using Product Programs. In World Congress on Formal
Methods, 2011.

[17] Weikun Yang, Yakir Vizel, Pramod Subramanyan, Aarti Gupta, and
Sharad Malik. Lazy Self-composition for Security Verification. In
International Conference on Computer Aided Verification, 2018.

[18] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Binsec/Rel:
Efficient Relational Symbolic Execution for Constant-Time at Binary-
Level. 2020 IEEE Symposium on Security and Privacy (SP), pages
1021–1038, 2019.

[19] Gian Pietro Farina, Stephen Chong, and Marco Gaboardi. Relational
Symbolic Execution. Proceedings of the 21st International Symposium
on Principles and Practice of Declarative Programming, 2017.

272

[20] Hristina Palikareva, Tomasz Kuchta, and Cristian Cadar. Shadow of
a Doubt: Testing for Divergences between Software Versions. 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pages 1181–1192, 2016.

[21] Joseph A. Goguen and José Meseguer. Unwinding and Inference
Control. 1984 IEEE Symposium on Security and Privacy, pages 75–
75, 1984.

[22] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. 2008 21st
IEEE Computer Security Foundations Symposium, pages 51–65, 2008.

[23] Tachio Terauchi and Alexander Aiken. Secure Information Flow as a
Safety Problem. In Sensors Applications Symposium, 2005.

[24] Gilles Barthe, P. D’Argenio, and Tamara Rezk. Secure information
flow by self-composition. Proceedings. 17th IEEE Computer Security
Foundations Workshop, 2004., pages 100–114, 2004.

[25] Kenneth L. McMillan. Symbolic model checking. In International
Conference on Computer Aided Verification, 1993.

[26] Edmund M. Clarke and David E. Long. Model checking, abstraction,
and compositional verification. 1993.

[27] Per Bjesse and Koen Claessen. SAT-Based Verification without State
Space Traversal. In Formal Methods in Computer-Aided Design, 2000.

[28] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking Safety
Properties Using Induction and a SAT-Solver. In Formal Methods in
Computer-Aided Design, 2000.

[29] Alan Mischenko et al. Berkeley ABC tool. https://github.com/
berkeley-abc/abc, 2022.

[30] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark W. Barrett,
Subhasish Mitra, and Wolfgang Kunz. Processor Hardware Security Vul-
nerabilities and their Detection by Unique Program Execution Checking.
2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 994–999, 2018.

[31] Jaewon Hur, Suhwan Song, Dongup Kwon, Eun-Tae Baek, Jangwoo
Kim, and Byoungyoung Lee. DifuzzRTL: Differential Fuzz Testing to
Find CPU Bugs. 2021 IEEE Symposium on Security and Privacy (SP),
pages 1286–1303, 2021.

[32] Kevin Cheang, Cameron Rasmussen, Sanjit A. Seshia, and Pramod
Subramanyan. A Formal Approach to Secure Speculation. 2019 IEEE
32nd Computer Security Foundations Symposium (CSF), pages 288–
28815, 2019.

[33] Marco Guarnieri, Boris Köpf, José Francisco Morales, Jan Reineke,
and Andrés Sánchez. Spectector: Principled Detection of Speculative
Information Flows. 2020 IEEE Symposium on Security and Privacy
(SP), pages 1–19, 2020.

[34] Musard Balliu, Mads Dam, and Roberto Guanciale. InSpectre: Break-
ing and Fixing Microarchitectural Vulnerabilities by Formal Analysis.
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020.

[35] David A. Patterson and John L. Hennessy. Computer Organization and
Design, Fifth Edition: The Hardware/Software Interface. 2013.

[36] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-A Free
Verilog Synthesis Suite. https://github.com/YosysHQ/yosys, 2013.

[37] Claire Wolf, et. al. Symbiyosys. https://github.com/YosysHQ/sby, 2022.
[38] Robert Brummayer and Armin Biere. Boolector: An Efficient SMT

Solver for Bit-Vectors and Arrays. In International Conference on Tools
and Algorithms for Construction and Analysis of Systems, 2009.

[39] Elizabeth Polgreen, Kevin Cheang, Pranav Gaddamadugu, Adwait God-
bole, Kevin Laeufer, Shaokai Lin, Yatin A. Manerkar, Federico Mora,
and Sanjit A. Seshia. UCLID5: Multi-modal Formal Modeling, Verifi-
cation, and Synthesis. In 34th International Conference on Computer
Aided Verification (CAV), volume 13371 of Lecture Notes in Computer
Science, pages 538–551. Springer, 2022.

273

https://github.com/berkeley-abc/abc
https://github.com/berkeley-abc/abc
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/sby

Formal Methods in Computer-Aided Design 2023

Lift-off: Trustworthy ARMv8 semantics from
formal specifications

Kait Lam and Nicholas Coughlin
Defence Science and Technology Group, Australia

School of EECS, University of Queensland, Brisbane, Australia
{kait.lam, n.coughlin}@uq.edu.au

Abstract—Disassembly and lifting tools are essential in the ver-
ification of software binaries. However, existing tools are difficult
to validate and hence not suitable when high levels of assurance
are needed. We address this by deriving a trustworthy lifter for
ARMv8, named ASLp, based on ARM’s official machine-readable
architecture files. ASLp is capable of extracting usable semantics
for a large subset of ARMv8, covering almost all integer, control
flow, memory and vector instructions.

We demonstrate the utility of ASLp by integrating it with the
CMU Binary Analysis Platform. Furthermore, we translate the
lifter’s output into LLVM IR and compare the resulting semantics
with those from existing lifters Remill and RetDec, leveraging the
trustworthiness afforded by our lifter to find a number of major
and minor bugs in their outputs.

I. INTRODUCTION

Binary analysis techniques enable program verification over
executable machine code, in contrast to reasoning over the ab-
stract programming languages from which it may be derived.
These techniques are essential in high assurance domains
where software development toolchains represent a liability [1]
and may obfuscate hardware behaviours of critical concern [2],
[3], [4]. Due to the complexity of binary executables, multiple
tools have been developed to provide a foundation for further
analysis [5], [6], [7]. These tools disassemble binaries, identi-
fying contents such as its machine instructions and static data,
and then decompile them, lifting the behaviours of machine
instructions into machine-generic imperative code. This is
advantageous as domain-specific analyses can then be applied
to this generic, simplified representation.

To soundly perform this transformation, these foundational
tools require trustworthy semantic models of each architecture
they aim to support. For disassembly, the architecture’s instruc-
tion encoding logic [8] is required to identify instructions,
along with some limited understanding of the control flow
implications of instructions [7]. To then decompile them,
detailed knowledge of the architecture’s state and the effects
of instructions on this state is essential [9].

While the information required for disassembly is widely
available in the form of reusable decoding libraries [7], the task
of specifying detailed instruction semantics for decompilation
presents considerable difficulty. Modern architectures support
thousands of instructions, with frequent additions to address
performance and security issues [10], [11], [12]. Manually
encoding each instruction’s behaviour is a time consuming
and error-prone task [13]. There are limited alternatives to a

manual approach however, as instruction semantics are gener-
ally only specified as informal prose in large instructions set
architecture (ISA) manuals [14], [15]. Correctly interpreting
all behaviours described in these documents is a difficult
task [16], with some projects deferring to incomplete hardware
testing to derive semantics instead [17].

An additional concern is the fidelity of these semantic
models. Encodings are generally simplified and optimised for
a particular application given assumptions over the architec-
ture behaviour, such as ignoring privileged execution modes.
While this may benefit the implementation, it limits model
reuse between tools due to over-specialisation to an intended
purpose [18]. Furthermore, these implicit assumptions may not
be clearly documented, potentially invalidating the soundness
of any subsequent analysis. Evidently, these issues may negate
the high assurance benefits that motivate binary analysis.

Trustworthy architecture models are required in a variety
of other domains, such as compiler verification [19], [20],
hardware verification [21], [22], and emulation [23]. Given
this common motivation, multiple efforts have been made to
develop formal architecture models for use across verification
projects [24], [25], [18], [26]. While these models have seen
use in certain binary analysis applications [27], [28], they
have not been broadly used as a semantic underpinning for
decompilation tools. This can be attributed to the significant
semantic gap between these formal architecture models and the
semantic encodings expected by these tools. For instance, for-
mal models may exploit language features such as dependent
types, recursive functions and exceptions. Such specification
styles are not supported by decompilation tools, which instead
encode semantics in simple imperative languages [29], [30].

In this paper, we propose the application of partial evalu-
ation to bridge this semantic gap, specialising and translating
the formal architecture semantics for each instruction to an
encoding suitable for decompilation tools. In Section II, we
detail an implementation of partial evaluation for a formal
semantics of ARMv8 [25]. Following this, we describe two
distinct use cases of the partial evaluator. First, in Section III,
we demonstrate the feasibility of its direct use by integrating
it into the CMU Binary Analysis Platform [5] to obtain a full
binary analysis toolchain. Second, in Section IV, we compare
the instruction semantics from two decompilation tools [29],
[31] with those derived from the partial evaluator, leveraging
existing translation validation techniques to automate the com-

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 36 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0009-0001-2599-2259
https://orcid.org/0000-0001-8758-0666
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_36
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_36
https://creativecommons.org/licenses/by/4.0/

parison [32]. Finally, we explore related work and conclude
in Sections V and VI respectively.

II. APPROACH

The foundation of this work is the machine-readable ar-
chitecture (MRA) published by ARM [33]. This is the for-
mal specification of the ARM architecture, used internally
for verification and validation of their hardware. The MRA
specification is a comprehensive description of the architec-
ture’s intricacies and behaviours, describing registers, memory
behaviour (including faults and translation), interrupts, and
the behaviour of exceptions. For our purposes, we are most
interested in the opcode decoder and instruction semantics.
These are expressed within the MRA using ARM’s architec-
ture specification language (ASL).

ASL [34] is domain-specific imperative language for spec-
ification of instruction behaviours and architectural details.
Some notable features are its arbitrary-precision integer and
real types, dependently-sized bitvector types, pattern matching,
and exception handling.

We make use of ASLi, an open-source library for interacting
with ASL [35] which provides a lexer, parser, interpreter, and
AST transformer. We extend ASLi with a static transformation
process to extract instruction semantics and simplify them
using partial evaluation.

In doing so, we produce the semantics of individual instruc-
tions in a proper subset of ASL called reduced ASL. Reduced
ASL represents instruction semantics with restricted control
flow statements and a minimal set of primitive operations
based on SMT-LIB’s theory of bitvectors. This allows for easy
integration with other tools and straightforward translation into
other intermediate languages for binary analysis.

Our extension of ASLi with partial evaluation, which we
call ASLp, is introduced in Section II-B.

A. Machine-readable architecture example

The MRA specification provides a comprehensive descrip-
tion of the hardware’s behaviours. To detail these behaviours
concisely, the specification groups instructions into broad
classes based on their function and addressing mode. Specifi-
cally, a single __encoding in the specification handles several
mnemonics, disambiguating them by fields extracted from the
opcode. As an example, the encoding in Listing 1 describes
the semantics for add and sub with shifted operands. The
pseudocode contains considerable complexity with branches
and subroutines to handle flags, different data sizes, and
various bitshift options. Even more details are contained within
the function calls and overloaded array operations.

In the encoding, __field defines slices of the opcode,
the __decode section extracts information from fields, and
the __execute block gives the operational semantics of
the instruction. When lifting a single opcode, the __decode
block can be evaluated ahead of time and combined with the
__execute statements to produce a simplified summary of the
instruction’s behaviour. This is explained in the next section,
Section II-B.

__encoding aarch64_integer_arith_add_sub_shiftedreg
__field Rd 0 +: 5
[...]
__decode
integer d = UInt(Rd); // destination operand
integer n = UInt(Rn); // first operand
integer m = UInt(Rm); // second operand
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1'); // add or sub
boolean setflags = (S == '1'); // set flags?

if shift == '11' then UNDEFINED;
if sf == '0' && imm6[5] == '1' then UNDEFINED;

// logical/arithmetic, left/right shift
ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

__execute
bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 =

ShiftReg(m, shift_type, shift_amount);
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1,
operand2, carry_in);

if setflags then
PSTATE.[N,Z,C,V] = nzcv;

X[d] = result;

Listing 1: ASL encoding of integer add/subtract with a shifted
register operand, from the arch_instrs.asl file.

To support a common specification across architecture
versions and optional extensions, instruction behaviours are
often guarded by feature flags denoting differences in their
behaviours across possible hardware implementations. This
is accomplished with stub functions, i.e. functions declared
without implementations, that are later overridden to select
the desired behaviour. Some examples of these are:
boolean HasArchVersion(ArchVersion version);
boolean HaveEL(bits(2) el); // exception levels
boolean HaveSVE(); // scalable vectors
boolean HaveBTIExt(); // branch target ident.
boolean HaveDITExt(); // data indep. timing

The feature flags offer substantial control over the specifi-
cation, permitting it to be tailored to the underlying hardware
as necessary. We leverage this functionality to make our
assumptions over the hardware precise and explicit, overriding
these feature flags as a form of configuration to our partial
evaluation process.

B. Partial evaluation implementation

The key to extracting useful semantics from the MRA
specification is partial evaluation, a program transformation
applicable in contexts where a subset of the program’s inputs
are known in advance. These known inputs are propagated
throughout the program body, permitting the early evaluation
of computations and simplification of language structures

275

X[1] = ZeroExtend(
(X[2][0 +: 32] + (X[3][0 +: 32] << 4)), 64);

Listing 2: Residual program for add w1, w2, w3, LSL 4

based on identified constraints. The residual program pro-
duced by this transform consumes any remaining unknown
inputs to generate a result equivalent to that of the original
program [36].

For example, Listing 2 is the residual program of
add w1, w2, w3, LSL 4, from the partial evaluation of
Listing 1. Since this specifies various inputs ahead of time
(e.g. register usage, bitvector widths and operation mode),
the program can be significantly simplified. This process
extends to function calls, such as AddWithCarry(), which
are inlined and simplified down to primitive operations (e.g.
ZeroExtend(), << and +). The final residual program suc-
cinctly represents the instruction’s effects in terms of unknown
inputs—here, values held in the register array X.

We implement our ASL partial evaluator (ASLp)1 by aug-
menting the existing ASLi [35] to perform online partial
evaluation [37]. This approach preserves the structure of the
existing interpreter but extends it to consider a symbolic state,
in which variables map to one of the following:

1) Known v: A known concrete value v
2) Expr e: The result of a simplified pure expression e
3) Unknown: An unknown value
Known encodes inputs and intermediary calculations that

are known ahead of time, with Unknown encoding the in-
verse. Expr encodes intermediary calculations over Unknown
variables and is used to identify simplifications.

Our partial evaluator aslp(prog, sym) produces a residual
program for the program prog given the symbolic state sym.
We define correctness of aslp in terms of the existing inter-
preter, eval, such that the residual program will produce an
equivalent final state as the original program given agreement
between sym and the initial concrete state, st:

∀prog, st, sym ·
(∀x, e · sym(x) = Expr e =⇒ st(x) = eval(e, st)) ∧
(∀x, v · sym(x) = Known v =⇒ st(x) = v) =⇒
eval(aslp(prog, sym), st) = eval(prog, st)

where eval(prog, st) returns the final state for program prog
and eval(e, st) returns the value of expression e.

The partial evaluator maintains the symbolic state through
a forward traversal of the program, evaluating language struc-
tures where possible and building the residual program other-
wise. We list some of the applied partial evaluation techniques:

1) Expression Simplification: Rewrite rules are applied
during the construction of Expr e terms. These transforms are
critical to matching the simplicity of existing lifter outputs as,
without them, the abstract nature of ASL introduces redundant
operations. For instance, bitvector calculations may include
redundant slicing, concatenation and extension operations due
to the use of shared code paths. These are aggressively

1Available at: https://github.com/UQ-PAC/aslp

rewritten, generally by distributing slicing operations over sub-
expressions to identify additional simplification opportunities.

2) Aggregate Values: ASL enables various aggregate val-
ues, such as tuples, records and arrays. We unpack these
structures into their individual components and transform
operations over them accordingly. As an example, consider
ASL’s syntax for a destructuring assignment to multiple fields
of a record in PSTATE.[N,Z,C,V] = nzcv. In this operation,
the 4 bits of the bitvector nzcv are extracted into the corre-
sponding fields (N,Z,C,V) of the PSTATE record. The partial
evaluation process lowers this operation into four assignments
to the individual fields of the appropriate slice of nzcv.

3) Function Inlining: ASL supports functions to imple-
ment common functionality. We inline all calls to ensure we
emit a single code sequence for an instruction, excluding
those to a configurable set of primitive functions. Inlining
is implemented by introducing a fresh variable to represent
the function result and stitching the callee and caller bodies
together appropriately. This stitching process is complicated
by the limited control flow expressible in ASL, demanding
transforms detailed later in Item II-B5.

The primitive function set enables the abstraction of com-
plex processor features. For instance, memory accesses in
the MRA specification are complex, including details such as
virtual address translation. As these complexities are generally
ignored during binary analysis, the inlining process is config-
ured to treat various memory operations as primitives. These
function calls are later translated into corresponding primitives
in binary analysis tools, as detailed in Sections III and IV. A
similar technique is applied to model floating-point operations.

4) Iteration: Loops are widely used in instruction speci-
fications, notably to encode operations over vector elements.
The bounds on these loops are generally known during partial
evaluation, permitting their elimination via unrolling. While
this increases program size, it significantly simplifies subse-
quent analysis. When loop bounds are unknown, all iterating
language structures are lowered into while loops and emitted
into the residual program.

5) Branching Control Flow: ASL supports various branch-
ing control flow structures, such as if statements, ternary
operators and pattern matching. Often, branch conditions can
be resolved during partial evaluation, eliminating the branch.
If not, these structures are lowered into if statements and all
possible branches are explored, merging their symbolic states
when control flow eventually rejoins.

As the state merge process can cause loss of analysis
precision, we may defer the control flow join by duplicating
the statements appearing after an if statement into both
branches. Moreover, this transform is necessary when inlining
a function with a return statement within a branch, as a
means to represent the execution of the inlined function’s body
after the conditional return.

Note that this transform may result in an exponential
increase in code size, given a sequence of branches. Con-
sequently, it is not applied to branching structures derived
from an unrolled loop, as seen in various vector instructions

276

https://github.com/UQ-PAC/aslp

assumptions

hex encoding ASL reduced ASL reduced ASL · · ·

ARM MRA state state

decoder partial eval

eval

state comparison

transforms

eval

Fig. 1. Overview of ASLp’s partial evaluation pipeline. Dotted lines indicate some external input and dashed lines represent state comparison.

with conditional behaviours per vector element. It is applied
in a majority of cases however, as residual programs for
instructions generally contain at most a single branch.

C. Transforms

After partial evaluation, transformations are applied to the
output to further simplify its representation. This includes dead
code elimination and common sub-expression elimination to
remove unnecessary and duplicated calculations introduced
during partial evaluation.

Furthermore, the MRA specification makes extensive use
of arbitrary-precision integers, a feature rarely considered in
binary analysis frameworks. Consequently, we convert these
operations into bounded equivalents to successfully integrate
residual programs into these frameworks.

This is possible as the processor state is specified using
types of a bounded size, e.g. a 64-bit register’s value is
known to fit within 64 bits. Therefore, while instructions may
be specified with arbitrary-precision operations, only some
bounded component of their effects will ultimately interact
with the processor state. We determine these bounds using a
simple interval analysis over the residual program. Given these
intervals, we transform all integer variables and operations into
corresponding bitvector equivalents of the required size.

D. Testing

To validate the partial evaluator, we implement differential
testing [38] between the original ASL specification and its
reduced form (denoted by the “state comparison” dashed
arrow in Figure 1). Although this is not a formal proof of
correctness, it increases our confidence in the validity of our
implementation.

We perform this testing on a subset of the ARMv8 instruc-
tions, chosen to be a representative sample of application-level
opcodes with predictable behaviours. Specifically, we include:

• integer and arithmetic instructions,
• floating-point instructions,
• branch instructions,
• vector instructions,
• memory load/store instructions, and
• atomic instructions (sequential semantics only).
To implement differential testing, we leverage the existing

ASL interpreter to evaluate both the original specification
and the partial evaluator’s output for a particular instruction

encoding. We then compare the final states for the two
executions, with a mismatch indicating a potential bug in
the partial evaluator. For each ARMv8 mnemonic, we test
various combinations of register operands and flag values with
a randomly initialised machine state for the interpreter.

The partial evaluator passes these tests for almost all instruc-
tion families, with errors limited to uncommon ASL features
which we currently do not support. Notably, multiple bugs in
the existing ASL interpreter were identified during this testing,
which we detail in Appendix A.

III. BINARY ANALYSIS TOOLCHAIN

The CMU Binary Analysis Platform (BAP) is a toolkit and
library supporting the analysis of binary programs. Given a bi-
nary file, it provides disassembly, control flow reconstruction,
and instruction semantics in its BAP intermediate language
(BIL). Moreover, it is built with a modular plugin system,
enabling the development of additional analyses and lifters.

We develop a plugin to integrate our ARMv8 semantics
into BAP by translating ASLp’s reduced ASL into BIL and
interfacing with BAP’s knowledge base. With this, we are able
to leverage the existing BAP machinery and combine it with
our derived semantics, easily obtaining a full binary analysis
toolchain.

To demonstrate the viability of the resulting lifter, we com-
pare its output with that of an existing ARMv8 plugin2 across
a series of programs, summarised in Table I. The ASLp variant
of BAP successfully lifts a superset of instructions relative to
those supported by the existing plugin, capturing additional
memory and vector operations. Notably, the ASLp variant
successfully lifts all instructions in the example binaries except
for 2508 instructions implementing floating-point operations,
for which the conversion to BAP’s semantics is unclear.

To evaluate the complexity of the produced programs, we
compare the line counts of their outputs and average line
length. The ASLp variant consistently produced a shorter
representation with an average line length of 29.45 characters,
comparable to the 29.47 characters of the existing imple-
mentation. A manual inspection of the results attributes these
differences to alternative representations of flag calculations
and branching conditions. Moreover, multiple semantic errors
in the existing lifter were identified, such as incorrect operation

2We use the following, as it is the most comprehensive ARMv8 plugin
to our knowledge: https://github.com/BinaryAnalysisPlatform/bap/pull/1546

277

https://github.com/BinaryAnalysisPlatform/bap/pull/1546

TABLE I
BAP COMPARISON

Program Lifted Instructions Time (s) Size (lines)
BAP ASLp BAP ASLp BAP ASLp

bzip2 25254 25275 8.55 10.60 37658 35727
cntlm 15899 15908 7.59 8.64 34691 33064
gcc 152036 153673 63.88 77.43 391241 375623
gzip 17501 17554 6.82 8.00 35283 33682

oggenc 56227 56817 18.70 24.67 106448 101464

widths and memory address calculations. We do not consider
a detailed semantic comparison of the two outputs, instead
focusing such efforts on other lifters in Section IV.

The ASLp variant introduces additional overhead, increas-
ing lifting time by roughly 20%. This is unsurprising, due
to the additional analysis required to reduce and translate the
ASL specification into BAP’s representation. We believe this
is an acceptable trade-off, as the ASL implementation provides
greater coverage of the ARMv8 architecture with a stronger
argument for correctness. Moreover, these benefits extend
to any other architectures specified in ASL, avoiding the
substantial effort needed to manually encode such semantics
in BAP’s existing infrastructure.

IV. SEMANTIC COMPARISON OF LIFTERS

Ours is not the first project to provide semantics for the
ARMv8 architecture. Although we have trustworthy semantics
from the architecture model, there are many existing lifters
in active use with their own instruction semantics. Instead of
replacing these, we can validate their semantics by comparing
them with the ASL lifter. In this way, we can gain a level of
confidence in their instruction semantics over and above fuzz
testing or hardware testing.

The semantic comparison is done using the translation
validation tool from Alive2 [32] which verifies that a given
LLVM IR program refines a source program—that is, the target
program’s behaviours are a subset of the source program’s
behaviours. The tool was developed to verify compiler and
optimisation passes, but here it is used to test for equivalence
of the semantics from different lifters. Alive2 supports this by
performing its refinement checks bidirectionally.

To test the output of ASLp, which emits reduced ASL, we
developed a translator3 from reduced ASL to LLVM IR and
compare its result with other lifters that produce LLVM IR.
We choose RetDec and Remill to demonstrate this process.

Although these lifters share a common output language, the
representation of registers, memory, and other hardware-level
state differs in each. To compare them, we translate the lifter
outputs into a unified “dialect” of LLVM IR. This dialect needs
to be simple to aid Alive2’s reasoning while capturing enough
of the machine state to faithfully represent the semantics we
wish to compare.

We design this unified state representation as follows. Reg-
isters are modelled as global integer variables of various sizes:

• 31 64-bit general purpose registers, x0 to x30,
• 32 128-bit vector registers, v0 to v31,

3Available at: https://github.com/UQ-PAC/llvm-translator

declare noundef i8 @load_8(i64 noundef)
inaccessiblememonly nounwind willreturn
readonly

declare noundef void @store_8(i64 noundef, i8)
inaccessiblememonly nounwind willreturn

Listing 3: Memory load/store functions. 8, 16, 32, and 64-bit
versions are defined.

• 4 1-bit flag registers, nf, zf, cf, and vf,
• a 64-bit pc register, and a 64-bit sp register.

Representing memory requires more careful consideration,
since many instructions can load/store memory at arbitrary
addresses. In LLVM, this is conventionally done with a
inttoptr (“integer to pointer”) cast, but Alive2 cannot reason
about these operations. Instead, we approximate these by
modelling memory as uninterpreted functions, as seen in
Listing 3. In order for two programs to verify as equivalent,
the source and target must have identical calls in the same
order. This is an overapproximation of memory behaviours
but is sufficient for verifying a single instruction’s semantics.

To reduce the overapproximation, LLVM attribute tags are
used on each declarations to constrain the effects of these
intrinsics on memory and global variables.

The inaccessiblememonly tag indicates the functions
only read from or write to memory not visible to the caller.
This is well-suited to representing the memory and its effects
(virtual address translation, alignment, etc.) and indicates that
the loads/stores are independent of register values but interacts
with other loads and stores. Load functions are additionally
tagged as readonly, indicating that the inaccessible memory
is not modified.

The willreturn tag indicates that these functions will
terminate (i.e. not loop forever). Combined with nounwind, it
means the function will terminate without raising an exception
(i.e. without jumping back up the call stack).

As a consequence of using Alive2 for validation, the seman-
tic comparison in this work is done with respect to the formal
semantics of LLVM IR [39]. However, LLVM IR is designed
for use within optimising compilers as a compilation target
of higher-level languages As such, it is intentionally under-
specified; some details are left as undefined behaviour (UB)
to allow for different implementations. Moreover, it introduces
“undefined” and “poison” values into each type so compilers
may exploit particular instances of undefined behaviour for
optimisation. These features are useful in compilation but less
suitable for our purposes.

Formal semantics of instruction-internal behaviours, includ-
ing the ARMv8 model we consider, should be precise and not
exhibit any undefined behaviour. Undefined and poison values
do not occur naturally within the architecture specification lan-
guage. To handle these, we annotate many LLVM operations
as noundef and nonnull to assert values are never unde-
fined/poison or null. These will invoke undefined behaviour
when their assumption is violated, which is acceptable since
two programs will verify as long as the UB occurs in the same
way in both cases.

278

https://github.com/UQ-PAC/llvm-translator

reduced ASL LLVM IR (ASL) LLVM IR •

hex encoding LLVM IR (RetDec) LLVM IR •

LLVM IR (Remill) LLVM IR •

ASLp

ASL→LLVM

RetDec

Remill

translator

translator

translator

opt tool

opt tool

opt tool

Alive2

Alive2

Fig. 2. Overview diagram of the lifter evaluation process. ASLp indicates the pipeline of Figure 1. Dashed lines indicate semantic comparison, and filled
dots are the same type as their predecessor.

TABLE II
EVALUATION RESULTS

RetDec Remill
Count Equivalent Mismatch Timeout Unsupported Equivalent Mismatch Timeout Unsupported

Branch 162 74 9 10 69 120 1 37 4
Integer 14442 10147 608 415 3272 12058 15 1238 1131
Memory 6414 3864 618 0 1932 5057 88 0 1269
Vector binary 19170 264 426 0 18480 2997 0 0 16173
Vector unary 1098 9 153 0 936 333 0 0 765
Total 41286 14358 1814 425 24689 20565 104 1275 19342

With the comparison framework set up as above, evaluation
of the lifters was conducted for each opcode, as outlined
in Figure 2. For each opcode of interest, we perform the
following:

1) Separately disassemble the instruction with each lifter.
The ASL lifter produces a reduced ASL program which
is translated to LLVM IR by a pattern-matching trans-
lator.

2) The LLVM IR from each lifter is transformed into
the unified state and memory representation described
above.

3) The LLVM optimiser opt is run on each output to
simplify the resulting structures and allow for easier
comparisons.

4) For each lifter under test, alive-tv checks for equiv-
alence between its output and ASLp’s LLVM IR.

5) If Alive2 can prove the equivalence, it reports the two
outputs are equivalent. Otherwise it reports a mismatch
or time out. A mismatch may be a difference in memory
states or undefined behaviour. Where lifters do not
match, Alive2 gives input values which cause the mis-
match and we investigate the discrepancies by manually
comparing the LLVM IR with the ARM ISA.

We used a subset of the integer, logical, branching and vector
instructions tested in Section II-D to evaluate the three lifters.
The results are summarised in Table II, organised by classes
of instructions. Both RetDec and Remill were compared with
the ASL lifter with a timeout of 20 seconds. The “Equiva-
lent” column indicates both are semantically equivalent, and
“Mismatch” indicates a difference in memory state or unde-
fined behaviours. The “Unsupported” instructions are those
supported by the ASL lifter but not the lifter under test.

A. RetDec

RetDec [31], developed by Avast Software, is a retargetable
decompiler with plugins for IDA Pro and radare2. Here, we
analyse its Capstone2LLVMIR component which provides its
instruction semantics in LLVM IR. The produced IR is similar
to our unified representation: registers are mutable global vari-
ables, memory operations used inttoptr instructions, and
intrinsic functions handle program flow and branching. Since
the goal of Capstone2LLVMIR is to lift to higher-level C/C++,
it “does not aim to fully translate (give meaning/semantics to)
all assembly instructions” [31].

Despite this, RetDec lifted a large fraction of the instructions
tested. However, it had some inaccuracies in key implementa-
tion details and shortcomings with vector instructions. These
are explained in more detail below.

Overflow flag computation: The overflow flag (vf) com-
putation is incorrect for instructions which incorporate the
carry flag (cf), e.g., adcs, sbcs. In these cases, vf is set
when adding the carry twice would result in an overflow, when
it should only be considered once. For example, this occurs
with adcs xzr, x0, xzr (bytecode 1f001fba) when cf
is set and x0 is 263−2. This computation would not overflow,
but RetDec’s semantics indicate vf would be set. This error
affects approximately 240 integer opcodes tested.

lshl/lshr/ashr poison: The LLVM instructions shl, lshr
and ashr for bitvector shifts are defined to return a poison
value when the shift amount is equal to or greater than the
register size. However, ARMv8 shift instructions, such as lsl,
lsr, asr and ror, are well defined in such scenarios, shifting
by the desired amount modulo the size. RetDec ignores this
difference, naively converting between the two.

For example, RetDec lifts lsr x1, x1, x0 (2124c09a)
to an LLVM snippet containing lshr i64, %X1, %X0. This

279

operation will return poison when %X0 exceeds 63, where the
ARMv8 specification would return 0. These inaccuracies make
up 72 mismatches of integer opcodes.

Moreover, RetDec generates invalid shifts in various other
cases, such as extr mnemonics and instructions with register
operand rotations. These cases contain shifts that will always
return poison, e.g., shl i32 %3, 32. This affects 162 op-
codes, such as and x0, x0, xzr, ror #0 (0000df8a).

clz poison: clz counts the number of zero bits before the
first one bit in a bitvector, starting at the most significant bit.
RetDec uses LLVM’s @llvm.ctlz.* intrinsic functions to
implement this behaviour. However, these calls are configured
such that they will return poison when the bitvector is zero,
instead of returning its width. For example, when x0 is
zero clz x0, x0 (0010c0da) should set x0 to 64, but the
RetDec result will produce poison.

uxtx/sxtx truncating to 32-bit: Various ARMv8 mnemonics
accept register extension modes to specify how registers of
different widths should be extended prior to applying an opera-
tion. For instance, uxtw specifies a zero-extension from 32-bit
to 64-bit and sxtw specifies a signed-extension from 32-bit to
64-bit. Due to encoding quirks, it is possible to encode various
modes that are effectively no-ops, such as uxtx for a zero-
extension from 64-bit to 64-bit. However, RetDec lifts such
cases incorrectly, truncating 64-bit registers down to 32-bit and
then extending back to the original size. This error affects 220
opcodes, such as add x0, x1, x0, uxtx (2060208b).

Shifted uxtw/sxtw truncation: ARMv8 allows for the specifi-
cation of shifted 32-bit offsets in memory address calculations.
For instance, str w0, [x0, w0, uxtw #2] (005820b8),
will perform a store to x0+ (ZeroExtend(w0, 64) << 2).
where w0 is a 32-bit register. However, RetDec lifts these
address calculations such that the shift is applied before the
appropriate sign- or zero-extension. This results in the loss of
w0’s upper two bits and, subsequently, an incorrect address
calculation. This affects 360 opcodes with sxtw operands,
and 126 with uxtw.

sxtw extension: When specifying a memory access with a
32-bit offset, ARMv8 permits the application of either a zero-
or a sign-extension to pad the value to 64-bit. RetDec always
produces a zero-extension however, leading to incorrect ad-
dresses for sxtw. For example, str w0, [x1, w0, sxtw]

(20c820b8) exhibits this behaviour. This error affects the
same 360 sxtw opcodes as above.

udiv/sdiv by zero: LLVM’s udiv and sdiv integer division
instructions trigger undefined behaviour when the denominator
is zero, instead of a zero result as defined in the ARMv8
specification. RetDec fails to account for this mismatch, for ex-
ample, lifting udiv x0, x0, x0 (0008c09a) to an LLVM
snippet that triggers undefined behaviour when x0 is zero.

Pre-increment address: Load/store pair instructions load or
store two words at adjacent locations in memory, given the
address of the first word and an increment. With pre-increment
addressing, the address register should be incremented by
the given offset prior to the memory access. However, the
increment is added to the address of the second word in-

stead of the first, leading to incorrect values in the updated
address register. For example, stp xzr, xzr, [x0, #16]!

(1f7c81a9) increments x0 by 24 instead of 16. This affects
102 variants of stp. Other paired memory operations appear
to lift correctly.

SIMD instructions: For the majority of vector instructions,
RetDec returns incorrect semantics; it treats the operands as
ordinary registers and does not vectorise operations. For ex-
ample, add v0.8b, v1.8b, v1.8 (2084210e) produces:
%0 = load i128, i128* @v1
%1 = load i128, i128* @v1
%2 = add i128 %0, %1
store i128 %2, i128* @v0

whereas the correct operation would consider v1 as 8 separate
bytes, adding each byte elementwise. The same deficiency
affects all vector instructions, leading to mismatches for all
such opcodes. There are 579 such opcodes across the binary
and unary vector instructions. The few ‘equivalent’ results for
vector instructions occur when this discrepancy does not affect
correctness, e.g. bitwise logical operations and subtraction of
a register from itself.

B. Remill

Remill [29], developed by Trail of Bits, is a library provid-
ing LLVM IR instruction semantics for various architectures.
As it “focuses on accurately lifting instructions” [29], it has
seen wide adoption both individually and as part of the
McSema binary decompiler [40]. Remill was found to have
much fewer discrepancies than RetDec when compared with
the ASL semantics.

sdiv overflow: When performing signed division over n-
bit two’s complement integers, the calculation (−2n−1)/(−1)
will overflow, as 2n−1 is not representable in n-bit two’s com-
plement. Under ARMv8, this is defined as returning −2n−1,
i.e. the truncation of 2n−1. However, Remill lifts this operation
to LLVM’s sdiv instruction, which treats an overflow as
undefined behaviour. For example, this error manifests in
sdiv x1, x0, x1 (010cc19a).

ldp/strb with writeback: ARMv8’s memory addressing
modes support incrementing an address register before or after
memory is accessed, in a process called writeback. When the
data and address registers of these operations overlap, the
implementation is permitted to select one of several acceptable
behaviours. For instance, loads with overlapping registers may:
skip the writeback operation, writeback an unknown value,
treat the operation as a no-op or consider the instruction
undefined. For stores with overlaps, it may: store the original
value of the overlapping register (before writeback), store an
unknown value, or act as a no-op or undefined opcode.

As an example, ldp x1, x0, [x1], #-8 (2180ffa8)
accesses a pair of words at memory address x1 then decre-
ments x1 by 8. However, this overlaps with the use of
x1 as a data register, holding the first loaded value. The
ASL lifter is explicitly configured to skip the writeback, i.e.,
the decrement, keeping the loaded value. Remill does the
opposite, overwriting the loaded value with the decremented

280

address. The correct outcome here is ultimately dependent
on the hardware implementation, potentially leading to either
interpretation being correct. However, the ASLp approach
makes such configuration explicit, whereas the behaviour is
silently assumed by Remill.
strb w0, [x0], #-1 (00f41f38) is a more concerning

example, featuring an overlapping post-indexed store. The
ASL lifter stores the original value of w0 to the memory
address x0, and then decrements x0 by 1. Remill, however,
performs the store and skips the writeback operation. Ac-
cording to the specification, this is not an allowed behaviour,
indicating an invalid lifting.

These inconsistencies affect overlapping ldp, ldpsw,
strb, and strh opcodes. These make up the 88 mismatching
memory instructions. Other variants, notably ldr and str,
did not have these discrepancies.

smaddl: When lifting fused multiply-add instructions,
Remill includes “no signed wrap” annotations on the cor-
responding LLVM operations, returning poison in the case
of signed overflow. However, this is unnecessary, as these
ARMv8 instructions are specified to implement standard trun-
cation behaviour in such scenarios. This accounts for all 15
of Remill’s mismatched integer instructions.

br xzr: The e0031fd6 opcode should disassemble to
br xzr, semantically a jump to address 0. However, the
semantics produced by Remill jump to the value held in sp
instead. This is the only mismatch on branch instructions.

C. Bugs found

We reported the above inconsistencies to the relevant
projects. Additionally, we identified bugs in Alive2:

• There was a soundness issue caused by an incorrect
peephole optimisation in an integer comparison operation.

• Type punning in LLVM (loading from a pointer that
stores a different type) is defined to return poison, but
this was not implemented by Alive’s semantics due to an
incorrect optimisation.

These Alive2 bugs were reported and fixed by its maintainers
during the course of our work.

V. RELATED WORK

The field of binary decompilation and analysis is vast and
represents decades of ongoing research. Similar to this work,
standalone hardware architecture models have been developed
for use in decompilation tools. Notable examples of this
include Remill and GHIDRA’s sleigh library [30]. While these
libraries are immediately applicable to many decompilation
tasks and support multiple ISAs, they lack a formal foundation.
For instance, the formal semantics of their output language is
unclear [41], [42] and the derivation of their models is rarely
documented.

Various approaches to decompilation have been proposed
that build on trustworthy architecture models. For instance,
Decompilation into Logic [27] leverages architecture encod-
ings specified within the HOL4 theorem prover [43]. These

specifications are simplified, using the theorem prover’s rewrit-
ing engines, to derive concise semantics for individual instruc-
tions. Similar techniques have been applied in other theorem
provers [44], [45], [28], potentially leveraging symbolic ex-
ecution to further improve the rewriting process [46]. The
produced representations are suitable for reasoning within
theorem provers, but cannot be easily integrated into decompi-
lation tools, due to the use of abstract logic constructs in their
results. An exception to this is HolBA [47], which successfully
coverts these logic constructs into an imperative language, at
the expense of significantly slower lifting times.

Existing work has explored the application of partial eval-
uation to decompilation. For instance, Gómez-Zamalloa et
al. [48] develop a lifter from Java bytecode to Prolog via the
partial evaluation of an interpreter for the former written in the
latter. While their approach features similar implementation
details to ours, such as careful inlining configuration, they
consider a wholistic perspective, partially evaluating whole
programs with the intention to directly validate the residual
Prolog representation.

In recent years, attention has turned to the validation of
decompilers. The concept of differential testing for lifted IRs
was first explored by Kim et al. [13] with the MeanDiff tool. In
this work, three unproven x86 lifters (PyVEX [49], BAP [5],
and BINSEC [50]) were compared to each other using an
equivalent approach to Section IV. While similar to our work,
we benefit from a trustworthy ISA semantics for ARMv8,
providing a higher level of assurance and greater instruction
coverage.

Dasgupta et al. [26] apply a similar technique to validate
instruction semantics derived from Remill with respect to
their own model of x86-64, written in K [51]. The validated
Remill instruction semantics are subsequently concatenated to
decompile the entire program. It is unclear whether instruction
semantics could be directly derived from their trusted model,
as done in Section III.

VI. CONCLUSION

This work documents the wide-reaching benefits and ap-
plications of a canonical, accurate, and comprehensive ISA
specification. With architecture specifications provided by
ARM, we can provide a solid, trustworthy foundation for
binary disassembly and lifting. Partial evaluation allows us to
summarise these semantics into a minimal IR, for easy inte-
gration with other analysis tools, with our BAP ARMv8 plugin
as an example. Moreover, we demonstrate that the produced
representation is no more complex than that of existing, man-
ually encoded lifters. We also show the effectiveness of formal
semantics for validating the results of established binary lifters
using existing LLVM analysis and reasoning tools. The amount
of errors we found, in some cases central to whole families of
opcodes, demonstrates the importance of a reference semantics
that can be instrumented for automated checkers. Altogether,
this leads to more trustworthy binary lifting with promising
future applications, providing trustworthiness in a field which
demands high levels of assurance.

281

Acknowledgements: We would like to thank James Paterson
and Andrew Brown, who both contributed to the implementa-
tion of this work.

REFERENCES

[1] K. Thompson, “Reflections on trusting trust,” Commun. ACM,
vol. 27, no. 8, pp. 761–763, 1984. [Online]. Available: https:
//doi.org/10.1145/358198.358210

[2] V. D’Silva, M. Payer, and D. X. Song, “The correctness-security
gap in compiler optimization,” in 2015 IEEE Symposium on Security
and Privacy Workshops, SPW 2015, San Jose, CA, USA, May 21-22,
2015. IEEE Computer Society, 2015, pp. 73–87. [Online]. Available:
https://doi.org/10.1109/SPW.2015.33

[3] G. Barthe, S. Blazy, R. Hutin, and D. Pichardie, “Secure compilation
of constant-resource programs,” in 34th IEEE Computer Security
Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-
25, 2021. IEEE, 2021, pp. 1–12. [Online]. Available: https:
//doi.org/10.1109/CSF51468.2021.00020

[4] G. Balakrishnan and T. W. Reps, “WYSINWYX: What You
See Is Not What You eXecute,” ACM Trans. Program. Lang.
Syst., vol. 32, no. 6, pp. 23:1–23:84, 2010. [Online]. Available:
https://doi.org/10.1145/1749608.1749612

[5] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary
analysis platform,” in Computer Aided Verification, G. Gopalakrishnan
and S. Qadeer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 463–469.

[6] F. Wang and Y. Shoshitaishvili, “Angr - the next generation of
binary analysis,” in IEEE Cybersecurity Development, SecDev 2017,
Cambridge, MA, USA, September 24-26, 2017. IEEE Computer
Society, 2017, pp. 8–9. [Online]. Available: https://doi.org/10.1109/
SecDev.2017.14

[7] A. Flores-Montoya and E. M. Schulte, “Datalog disassembly,” in 29th
USENIX Security Symposium, USENIX Security 2020, August 12-14,
2020, S. Capkun and F. Roesner, Eds. USENIX Association, 2020,
pp. 1075–1092. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/flores-montoya

[8] N. Ramsey and M. F. Fernandez, “Specifying representations of machine
instructions,” ACM Trans. Program. Lang. Syst., vol. 19, no. 3, pp. 492–
524, 1997. [Online]. Available: https://doi.org/10.1145/256167.256225

[9] C. Cifuentes and S. Sendall, “Specifying the semantics of machine
instructions,” in 6th International Workshop on Program Comprehension
(IWPC ’98), June 24-26, 1998, Ischia, Italy. IEEE Computer Society,
1998, pp. 126–133. [Online]. Available: https://doi.org/10.1109/WPC.
1998.693332

[10] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “PACMAN: attacking
ARM pointer authentication with speculative execution,” in ISCA ’22:
The 49th Annual International Symposium on Computer Architecture,
New York, New York, USA, June 18 - 22, 2022, V. Salapura, M. Zahran,
F. Chong, and L. Tang, Eds. ACM, 2022, pp. 685–698. [Online].
Available: https://doi.org/10.1145/3470496.3527429

[11] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. H. Dave, B. Davis, K. Gudka,
B. Laurie, S. J. Murdoch, R. M. Norton, M. Roe, S. D. Son,
and M. Vadera, “CHERI: A hybrid capability-system architecture for
scalable software compartmentalization,” in 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015. IEEE Computer Society, 2015, pp. 20–37. [Online]. Available:
https://doi.org/10.1109/SP.2015.9

[12] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Prémillieu, A. Reid,
A. Rico, and P. Walker, “The ARM scalable vector extension,”
IEEE Micro, vol. 37, no. 2, pp. 26–39, 2017. [Online]. Available:
https://doi.org/10.1109/MM.2017.35

[13] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K. Cha,
“Testing intermediate representations for binary analysis,” in Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2017. IEEE Press, 2017, p. 353–364.

[14] ARM, “ARM Architecture Reference Manual for A-profile architecture,”
2023.

[15] Intel Corporation, “Intel A64 and IA-32 Architectures Software Devel-
oper’s manual,” 2023.

[16] A. Reid, “Who guards the guards? Formal validation of the
Arm v8-M architecture specification,” Proc. ACM Program. Lang.,
vol. 1, no. OOPSLA, pp. 88:1–88:24, 2017. [Online]. Available:
https://doi.org/10.1145/3133912

[17] S. Heule, E. Schkufza, R. Sharma, and A. Aiken, “Stratified synthesis:
automatically learning the x86-64 instruction set,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, C. Krintz and E. D. Berger, Eds. ACM, 2016, pp. 237–250.
[Online]. Available: https://doi.org/10.1145/2908080.2908121

[18] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.
Norton, P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark,
N. Krishnaswami, and P. Sewell, “ISA semantics for ARMv8-a,
RISC-V, and CHERI-MIPS,” Proc. ACM Program. Lang., vol. 3, no.
POPL, jan 2019. [Online]. Available: https://doi.org/10.1145/3290384

[19] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML: a
verified implementation of ML,” in The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014, S. Jagannathan
and P. Sewell, Eds. ACM, 2014, pp. 179–192. [Online]. Available:
https://doi.org/10.1145/2535838.2535841

[20] X. Leroy, “A formally verified compiler back-end,” J. Autom.
Reason., vol. 43, no. 4, pp. 363–446, 2009. [Online]. Available:
https://doi.org/10.1007/s10817-009-9155-4

[21] K. Nienhuis, A. Joannou, T. Bauereiss, A. C. J. Fox, M. Roe,
B. Campbell, M. Naylor, R. M. Norton, S. W. Moore, P. G. Neumann,
I. Stark, R. N. M. Watson, and P. Sewell, “Rigorous engineering
for hardware security: Formal modelling and proof in the CHERI
design and implementation process,” in 2020 IEEE Symposium on
Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 2020, pp. 1003–1020. [Online]. Available:
https://doi.org/10.1109/SP40000.2020.00055

[22] T. Bauereiss, B. Campbell, T. Sewell, A. Armstrong, L. Esswood,
I. Stark, G. Barnes, R. N. M. Watson, and P. Sewell, “Verified security
for the Morello capability-enhanced prototype Arm architecture,” in
Programming Languages and Systems - 31st European Symposium
on Programming, ESOP 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, ser. Lecture Notes in Computer
Science, I. Sergey, Ed., vol. 13240. Springer, 2022, pp. 174–203.
[Online]. Available: https://doi.org/10.1007/978-3-030-99336-8 7

[23] D. Lockhart, B. Ilbeyi, and C. Batten, “Pydgin: generating fast
instruction set simulators from simple architecture descriptions
with meta-tracing JIT compilers,” in 2015 IEEE International
Symposium on Performance Analysis of Systems and Software,
ISPASS 2015, Philadelphia, PA, USA, March 29-31, 2015. IEEE
Computer Society, 2015, pp. 256–267. [Online]. Available: https:
//doi.org/10.1109/ISPASS.2015.7095811

[24] A. C. J. Fox, “Formal specification and verification of ARM6,”
in Theorem Proving in Higher Order Logics, 16th International
Conference, TPHOLs 2003, Rom, Italy, September 8-12, 2003,
Proceedings, ser. Lecture Notes in Computer Science, D. A. Basin
and B. Wolff, Eds., vol. 2758. Springer, 2003, pp. 25–40. [Online].
Available: https://doi.org/10.1007/10930755 2

[25] A. Reid, “Trustworthy specifications of ARM® v8-A and v8-M system
level architecture,” in Proceedings of the 16th Conference on Formal
Methods in Computer-Aided Design, ser. FMCAD ’16. Austin, Texas:
FMCAD Inc, 2016, p. 161–168.

[26] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Roşu,
“A complete formal semantics of x86-64 user-level instruction set
architecture,” in Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2019.
New York, NY, USA: Association for Computing Machinery, 2019,
p. 1133–1148. [Online]. Available: https://doi.org/10.1145/3314221.
3314601

[27] M. O. Myreen, M. J. C. Gordon, and K. Slind, “Decompilation into
logic - Improved,” in Formal Methods in Computer-Aided Design,
FMCAD 2012, Cambridge, UK, October 22-25, 2012, G. Cabodi
and S. Singh, Eds. IEEE, 2012, pp. 78–81. [Online]. Available:
https://ieeexplore.ieee.org/document/6462558/

[28] M. Sammler, A. Hammond, R. Lepigre, B. Campbell, J. Pichon-
Pharabod, D. Dreyer, D. Garg, and P. Sewell, “Islaris: Verification of
machine code against authoritative ISA semantics,” in Proceedings of
the 43rd ACM SIGPLAN International Conference on Programming

282

https://doi.org/10.1145/358198.358210
https://doi.org/10.1145/358198.358210
https://doi.org/10.1109/SPW.2015.33
https://doi.org/10.1109/CSF51468.2021.00020
https://doi.org/10.1109/CSF51468.2021.00020
https://doi.org/10.1145/1749608.1749612
https://doi.org/10.1109/SecDev.2017.14
https://doi.org/10.1109/SecDev.2017.14
https://www.usenix.org/conference/usenixsecurity20/presentation/flores-montoya
https://www.usenix.org/conference/usenixsecurity20/presentation/flores-montoya
https://doi.org/10.1145/256167.256225
https://doi.org/10.1109/WPC.1998.693332
https://doi.org/10.1109/WPC.1998.693332
https://doi.org/10.1145/3470496.3527429
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1145/3133912
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/3290384
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1109/SP40000.2020.00055
https://doi.org/10.1007/978-3-030-99336-8_7
https://doi.org/10.1109/ISPASS.2015.7095811
https://doi.org/10.1109/ISPASS.2015.7095811
https://doi.org/10.1007/10930755_2
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601
https://ieeexplore.ieee.org/document/6462558/

Language Design and Implementation, ser. PLDI 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 825–840.
[Online]. Available: https://doi.org/10.1145/3519939.3523434

[29] Trail of Bits, “lifting-bits/remill: Library for lifting machine code to
LLVM bitcode,” https://github.com/lifting-bits/remill, 2022.

[30] National Security Agency, “Sleigh,” https://github.com/
NationalSecurityAgency/ghidra, 2022.

[31] Avast Software, “avast/retdec: RetDec is a retargetable machine-code
decompiler based on LLVM.” https://github.com/avast/retdec, 2022.

[32] N. P. Lopes, J. Lee, C. Hur, Z. Liu, and J. Regehr, “Alive2: bounded
translation validation for LLVM,” in PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021, S. N. Freund
and E. Yahav, Eds. ACM, 2021, pp. 65–79. [Online]. Available:
https://doi.org/10.1145/3453483.3454030

[33] ARM, “ARM developer exploration tools,” 2023.
[34] A. Reid, “ARM’s architecture specification language,” Aug 2016. [On-

line]. Available: https://alastairreid.github.io/specification languages/
[35] ——, “Using ASLi with Arm’s V8.6-A ISA specification,” Jan 2020.

[Online]. Available: https://alastairreid.github.io/using-asli/
[36] Y. Futamura, “Partial computation of programs,” in RIMS Symposia on

Software Science and Engineering. Springer Berlin Heidelberg, 1983,
pp. 1–35. [Online]. Available: https://doi.org/10.1007/3-540-11980-9
13

[37] E. Sumii and N. Kobayashi, “A hybrid approach to online and
offline partial evaluation,” High. Order Symb. Comput., vol. 14, no.
2-3, pp. 101–142, 2001. [Online]. Available: https://doi.org/10.1023/A:
1012984529382

[38] W. M. McKeeman, “Differential testing for software,” Digit. Tech.
J., vol. 10, no. 1, pp. 100–107, 1998. [Online]. Available: https:
//www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf

[39] LLVM Project, “LLVM language reference manual,” https://llvm.org/
docs/LangRef.html, 2022.

[40] Trail of Bits, “lifting-bits/mcsema: Framework for lifting x86, amd64,
aarch64, sparc32, and sparc64 program binaries to LLVM bitcode,”
https://github.com/lifting-bits/mcsema, 2022.

[41] N. Naus, F. Verbeek, D. Walker, and B. Ravindran, “A formal semantics
for P-Code,” in Verified Software. Theories, Tools and Experiments - 14th
International Conference, VSTTE 2022, Trento, Italy, October 17-18,
2022, Revised Selected Papers, ser. Lecture Notes in Computer Science,
A. Lal and S. Tonetta, Eds., vol. 13800. Springer, 2022, pp. 111–128.
[Online]. Available: https://doi.org/10.1007/978-3-031-25803-9 7

[42] L. Li and E. L. Gunter, “K-LLVM: A relatively complete semantics
of LLVM IR,” in 34th European Conference on Object-Oriented
Programming, ECOOP 2020, November 15-17, 2020, Berlin, Germany
(Virtual Conference), ser. LIPIcs, R. Hirschfeld and T. Pape, Eds., vol.
166. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 7:1–
7:29. [Online]. Available: https://doi.org/10.4230/LIPIcs.ECOOP.2020.7

[43] K. Slind and M. Norrish, “A brief overview of HOL4,” in Theorem
Proving in Higher Order Logics, 21st International Conference,
TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings,
ser. Lecture Notes in Computer Science, O. A. Mohamed, C. A.
Muñoz, and S. Tahar, Eds., vol. 5170. Springer, 2008, pp. 28–32.
[Online]. Available: https://doi.org/10.1007/978-3-540-71067-7 6

[44] I. Roessle, F. Verbeek, and B. Ravindran, “Formally verified big step
semantics out of x86-64 binaries,” in Proceedings of the 8th ACM
SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2019, Cascais, Portugal, January 14-15, 2019, A. Mahboubi and
M. O. Myreen, Eds. ACM, 2019, pp. 181–195. [Online]. Available:
https://doi.org/10.1145/3293880.3294102

[45] F. Verbeek, P. Olivier, and B. Ravindran, “Sound C code decompilation
for a subset of x86-64 binaries,” in Software Engineering and Formal
Methods - 18th International Conference, SEFM 2020, Amsterdam,
The Netherlands, September 14-18, 2020, Proceedings, ser. Lecture
Notes in Computer Science, F. S. de Boer and A. Cerone, Eds.,
vol. 12310. Springer, 2020, pp. 247–264. [Online]. Available:
https://doi.org/10.1007/978-3-030-58768-0 14

[46] A. Armstrong, B. Campbell, B. Simner, C. Pulte, and P. Sewell, “Isla:
Integrating full-scale ISA semantics and axiomatic concurrency models,”
in Computer Aided Verification - 33rd International Conference, CAV
2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, ser.
Lecture Notes in Computer Science, A. Silva and K. R. M. Leino,
Eds., vol. 12759. Springer, 2021, pp. 303–316. [Online]. Available:
https://doi.org/10.1007/978-3-030-81685-8 14

[47] A. Lindner, R. Guanciale, and R. Metere, “TrABin: Trustworthy
analyses of binaries,” Sci. Comput. Program., vol. 174, pp. 72–89,
2019. [Online]. Available: https://doi.org/10.1016/j.scico.2019.01.001

[48] M. Gómez-Zamalloa, E. Albert, and G. Puebla, “Modular decompilation
of low-level code by partial evaluation,” in Eighth IEEE International
Working Conference on Source Code Analysis and Manipulation
(SCAM 2008), 28-29 September 2008, Beijing, China. IEEE
Computer Society, 2008, pp. 239–248. [Online]. Available: https:
//doi.org/10.1109/SCAM.2008.35

[49] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware,” 2015.

[50] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent,
“The BINCOA framework for binary code analysis,” in Computer
Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, ser. Lecture
Notes in Computer Science, G. Gopalakrishnan and S. Qadeer,
Eds., vol. 6806. Springer, 2011, pp. 165–170. [Online]. Available:
https://doi.org/10.1007/978-3-642-22110-1 13

[51] G. Rosu and T. Serbanuta, “An overview of the K semantic framework,”
J. Log. Algebraic Methods Program., vol. 79, no. 6, pp. 397–434,
2010. [Online]. Available: https://doi.org/10.1016/j.jlap.2010.03.012

APPENDIX

A. ASL Interpreter Bugs

We identified multiple bugs in the existing ASL interpreter
in the process of testing our partial evaluator. Note that
the ASL interpreter, as open-sourced by ARM, offered no
guarantee of correctness. We fixed these issues in our partial
evaluation fork1.

• Simultaneous assignments to multiple record fields
were evaluated in the wrong order. For example,
PSTATE.[N,Z,C,V] = nzcv should assign bit 0 of
nzcv to the V field, bit 1 to C and so on. Instead, the
reverse order was used, e.g. bit 0 was incorrectly assigned
to N.

• ASL defines reference parameters which allow functions
to modify their arguments directly. This was implemented
in the parser but its semantics were not handled in
the evaluation code, instead treating them as regular
parameters.

• The interpreter’s evaluation function would become stuck
after breaking from a ‘while’ loop, due to a parsing
ambiguity.

283

https://doi.org/10.1145/3519939.3523434
https://github.com/lifting-bits/remill
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://github.com/avast/retdec
https://doi.org/10.1145/3453483.3454030
https://alastairreid.github.io/specification_languages/
https://alastairreid.github.io/using-asli/
https://doi.org/10.1007/3-540-11980-9_13
https://doi.org/10.1007/3-540-11980-9_13
https://doi.org/10.1023/A:1012984529382
https://doi.org/10.1023/A:1012984529382
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://github.com/lifting-bits/mcsema
https://doi.org/10.1007/978-3-031-25803-9_7
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1145/3293880.3294102
https://doi.org/10.1007/978-3-030-58768-0_14
https://doi.org/10.1007/978-3-030-81685-8_14
https://doi.org/10.1016/j.scico.2019.01.001
https://doi.org/10.1109/SCAM.2008.35
https://doi.org/10.1109/SCAM.2008.35
https://doi.org/10.1007/978-3-642-22110-1_13
https://doi.org/10.1016/j.jlap.2010.03.012

Formal Methods in Computer-Aided Design 2023

Cycle and Commute: Rare-Event Probability
Verification for Chemical Reaction Networks

Landon Taylor
Utah State University
Logan, Utah, USA

landon.jeffrey.taylor@usu.edu

Bryant Israelsen
Utah State University
Logan, Utah, USA

bryant.israelsen@usu.edu

Zhen Zhang
Utah State University
Logan, Utah, USA

zhen.zhang@usu.edu

Abstract—In synthetic biological systems, rare events can cause
undesirable behavior leading to pathological effects. Due to
their low observability, rare events are challenging to analyze
using existing stochastic simulation methods. Chemical Reac-
tion Networks (CRNs) are a general-purpose formal language
for modeling chemical kinetics. This paper presents a fully
automated approach to efficiently construct a large number
of concurrent traces by expanding a sample of known traces.
These traces constitute a partial state space containing only
traces leading to a rare event of interest. This state space
is then used to compute a lower bound for the rare event’s
probability. We propose a novel approach for the analysis of
highly concurrent CRNs, including a CRN reaction independence
analysis and an algorithm that exploits CRN concurrency to
rapidly enumerate parallel traces. We then present a novel
algorithm to add cycles to a partial state space to further increase
the rare event’s probability lower bound to its actual value. The
resulting prototype tool, RAGTIMER, demonstrates improvement
over stochastic simulation and probabilistic model checking.

Index Terms—concurrency, rare events, chemical reaction
networks

I. INTRODUCTION

Chemical Reaction Networks (CRNs) are a general-purpose
language for modeling chemical kinetics in genetic regulatory
networks [1], molecular programming [2], and biochemical
reaction systems [3]. Probabilistic behavior is inherent to many
systems modeled in CRNs. For example, gene and protein
expressions include reactions that occur simultaneously with
distinct probabilities. Further, noisy biological systems can
easily introduce unexpected and erroneous behavior. In these
systems, rare events are often highly relevant, as they can
represent infrequent but undesirable behavior that may lead
to pathological consequences. Obtaining reliability guarantees
is thus essential for CRNs. Existing formal verification tech-
niques, such as probabilistic model checking (PMC), can pro-
vide provable guarantees to quantify a rare event’s probability
in CRNs. In practice, it is often necessary to generate a large
number of traces to guarantee an accurate lower bound for a
rare-event probability, as a single trace or a small number of
traces often yields an insufficient estimate. Existing PMC tools
are often unable to enumerate large or infinite state spaces to
gather traces and verify a rare event’s probability [4]. The
computation of a rare event’s probability can easily become
intractable in this case.

This paper presents a fully automated approach to exploit a
CRN model’s concurrency to rapidly expand a small sample of
traces into a partial state space that only includes traces leading
to a rare event of interest. This partial state space guarantees a
lower bound for the rare-event probability. We first propose an
independence relation analysis for CRN reactions. It enables
a novel parallel trace discovery algorithm that effectively
expands a small number of traces. Additionally, we present a
novel algorithm to detect and add productive cycles to explored
states. Together, the constructed partial state space is used to
compute the rare event’s probability lower bound.

In benchmarking tests, a prototype implementation, Cycle &
Commute expansion of the Random Assume Guarantee Test-
ing Induced Model Executions for Reachability (RAGTIMER)
tool [5], demonstrates encouraging results for several challeng-
ing CRN models. We believe that this unique combination
of parallel trace discovery and cycle addition has not been
proposed elsewhere and is a fully automated, effective, and
user-friendly alternative to existing rare-event simulation ap-
proaches for the analysis of CRN rare-event properties.

II. MOTIVATING EXAMPLE

The modified yeast polarization model [6] was modified
from the pheromone-induced G-protein cycle in Saccha-
romyces cerevisia [7] with a constant ligand population that
keeps it away from reaching equilibrium [8], as follows:

R1 : ∅ 0.0038−−−−→ R, R2 : R 4.00×10−4

−−−−−−−→ ∅,
R3 : L + R 0.042−−−→ RL + L, R4 : RL 0.010−−−→ R,
R5 : RL + G 0.011−−−→ Ga + Gbg, R6 : Ga

0.100−−−→ Gd,

R7 : Gd + Gbg
1.05×103−−−−−−→ G, R8 : ∅ 3.21−−→ RL.

This CRN has eight chemical reactions interacting with
the species vector [R,L,RL,G,Ga, Gbg, Gd]. All reaction
propensities are in molecules per second. The initial state s0 =
[50, 2, 0, 50, 0, 0, 0] represents the corresponding molecule
count. This model incurs a large state space due to its highly
concurrent nature, e.g., R1 and R8 are both independent of all
other reactions. Also, by inspection, one can see that at least
100 reactions must execute to reach a state where Gbg = 50.
As discussed in Section VIII, this model challenges several
cutting-edge probabilistic model checking tools.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 37 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0002-4071-3625
https://orcid.org/0000-0002-9537-2645
https://orcid.org/0000-0002-8269-9489
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_37
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_37
https://creativecommons.org/licenses/by/4.0/

III. PRELIMINARIES

1) Chemical Reaction Networks (CRNs): A CRN is a tuple
M composed of m chemical species X = {X0, . . . ,Xm−1},
n reactions R = {R0, . . . ,Rn−1}, an initial state s0 : Xm →
Z⩾0, and a vector of all species’ initial molecule count, where
m,n ∈ Z⩾0 and m,n < ∞. A CRN is represented as a
Vector Addition System (VAS) as follows, adapted from [9]. A
reaction tuple Ri = ⟨rvi,pvi, ki, θi⟩ includes the following:
a reactant vector rvi ∈ Zm

⩾0 representing the stoichiometry
of reactants, a product vector pvi ∈ Zm

⩾0 representing the
stoichiometry of products, a reaction rate coefficient ki ∈ R+,
and a propensity function θi : Zm

⩾0 → R+ representing the
probability that Ri occurs in a state. The state change vector,
λi = pvi−rvi, represents the molecule count update for each
species involved in Ri. In this work, all CRN models follow
the Stochastic Chemical Kinetic (SCK) assumption, which
requires that each reaction Ri occurs nearly instantaneously,
practically limiting elements of λi to the values of 0,±1,±2
and at most three reactants in one reaction [1].

2) CRN Semantics: The underlying model of a CRN is
a Continuous-time Markov Chain (CTMC), where state up-
dates occur in discrete amounts and the probability of state
change is a function of time. Formally, a CTMC is a tuple
C = ⟨S, s0,R,L⟩ where S is a finite state set called the state
space; s0 ∈ S is the initial state; R : S × S → R⩾0 is the
transition rate matrix; and L : S → 2AP is a state labeling
function with atomic proposition set AP . A reaction Ri is
enabled in state s if its propensity function θi(s) evaluates to a
positive value. The propensity function is the product of ki and
the number of possible combinations of reactant molecules:
θi(s) = ki

∏︁
Xj∈Reactanti

(s[j]). Reactanti ⊆ X is the set of
reactants for Ri: Reactanti = {Xα | rvi[α] > 0,∀0 ⩽ α <
m}. The propensity function is the transition rate R(s, s′)
from state s to s′ in the CTMC C induced by a CRN. The
probability that reaction Ri is selected to occur out of many
reactions is p(s, s′) = R(s,s′)

E(s) , where the exit rate E(s) =∑︁
s′∈post(s) R(s, s′) is the sum of all enabled reaction rates in

s. A CTMC has a non-zero probability of staying in a state.
The probability of exiting a state s in time interval [0, t] is
1−e−E(s)·t, where t ∈ R⩾0 represents real time. For example,
R3 is executed from the given initial state in the motivating
example to reach s1 = [49, 2, 1, 50, 0, 0, 0]. In this state, rv5

and pv5 for R5 are [0, 0, 1, 1, 0, 0, 0] and [0, 0, 0, 0, 1, 1, 0],
respectively; k5 is 0.011; and θ5(s1) = k5(s1[2])(s1[3]) =
0.011 · 1 · 50 = 0.55 > 0, indicating that R5 is enabled in s1.
The state change vector λ5 is [0, 0,−1,−1, 1, 1, 0]. Additional
enabled reactions and their propensities at this state are R1

(0.0038), R2 (0.0196), R3 (4.116), R4 (0.01), and R8 (3.21).
The exit rate E(s1) is 7.9094 and the probability that R5

executes is 0.55/7.9094 ≈ 0.0695.
3) Time-bounded Reachability Property and Target States:

In Continuous Stochastic Logic (CSL) [10], [11], the non-
nested time-bounded transient reachability probability is speci-
fied as P=?(♢[0,T] Ψ). It represents the probability of reaching
rare-event Ψ -states within a time bound of T . In this work, a

target Ψ is an equality condition on exactly one species and
is not satisfied in s0. Formally, let condition Ψ be XΨ = CΨ ,
where CΨ ∈ Z⩾0 and s0(XΨ) ̸= CΨ . A state si is a
target state sΨ if and only if si |= Ψ . This work provides
a guaranteed lower bound on the solution to P=?(♢[0,T] Ψ).

4) Model Execution: Denote an execution of reaction Ri

from state sk as s′k = sk+λi. Denote “reaction Ri is enabled
to execute at state sk” as ∀0 ⩽ α < m, sk[α]+λi[α] ⩾ 0. Let
a run Ξ indicate a sequence of reactions. Reactions Ri and
Rj are adjacent if Rj immediately follows Ri in Ξ. Run Ξ
is a valid run from a state si (i.e., Valid(Ξ) holds for si) if no
reaction in Ξ is disabled when Ξ’s execution begins at state si.
A trace ρ indicates a valid run starting with s0 and terminating
at a target state sΨ . A seed trace is a trace used as an input for
the methods presented in this paper. Note that CRNs are often
provided without upper bounds on the species count, which
creates an infinite-state CTMC. However, because this work
explores only finite traces from s0 to Ψ -states, the partial state
space constructed from these traces is finite.

In this work, seed traces are generated using the trace gen-
eration feature in RAGTIMER. RAGTIMER uses compositional
testing with assume-guarantee reasoning to rapidly generate
many shortest traces.

IV. RELATED WORK

A CRN can be represented as a Vector Addition System
(VAS) [9], sometimes described as a Petri net [12]. Reacha-
bility analysis, cycle detection, and other properties make VAS
a convenient formalism to represent a CRN [13]–[16].

Rare-event properties often found in CRNs pose a challenge
to modern stochastic simulation and probabilistic verification
methods due to their extremely low observability. The ef-
fectiveness of the weighted Stochastic Simulation Algorithm
(wSSA) [17] heavily relies on a user-specified probability
biasing scheme to favor reactions leading to a rare event.
Extensions of wSSA (e.g., [18]–[20]) have substantially im-
proved its efficiency. As an alternative to wSSA, the weighted
ensemble (WE) technique [21], [22] has been used to sam-
ple CRN rare events [23], [24]. Existing statistical model
checking (SMC) techniques (e.g., [25], [26]) integrate rare-
event methods. Importance sampling [27], [28] weighs the
rare-event probability to bias simulation in order to increase
the likelihood of encountering rare events of interest. It then
compensates for the loss to yield an unbiased probability.
In importance splitting [29]–[31], an importance function,
potentially constructed manually, is used to reward or ter-
minate simulation traces to divide a model’s state space into
contiguous levels ordered by increasing likelihood of reaching
a rare event [32], [33]. Authors of [34] present an auto-
mated importance function derivation technique and recently
re-implemented the extended RESTART with the prolonged
retrials importance technique [35], [36] in the SMC engine
modes [34], [37], available in the MODEST TOOLSET [38].

The proposed method is fully automated and does not
require expert knowledge of the CRN model. It is less compu-
tationally intensive than other rare-event analysis methods, as

285

it neither requires rare-event biasing computations nor wastes
computational effort pursuing runs that do not lead to a rare
event. Lastly, it yields a probability lower-bound with provable
guarantees instead of a probability estimate.

V. CRN INDEPENDENCE AND COMMUTABILITY

CRNs are intrinsically highly concurrent. Consider the
motivating example in Section II. Reactions R1 and R8 are
always enabled, regardless of the current state of the CRN. By
leveraging properties of the VAS representation of a CRN, we
present a novel analysis of the independence relation among
CRN reactions, enabling effective state space exploration.

A. Independence Relation for CRN Reactions

The study of action independence can be traced back to the
work of Lipton [39] and Mazurkiewicz [40] on commuting
concurrent actions. Mazurkiewicz traces are equivalent classes
of action sequences. Action independence has also been the
foundation of partial order reduction techniques (e.g. [41]–
[43]) for verifying concurrent system correctness. We propose
an independence relation specific to reactions in a CRN.

Definition 1 (Independence of CRN Reactions): Two ad-
jacent reactions Ri and Rj (defined in Section III-4) are
independent and enabled at state sk if and only if:

1) Ri and Rj can execute in either order from sk:
(sk + λi) + λj = (sk + λj) + λi.

2) Rj is enabled after Ri executes at sk:
∀0 ⩽ α < m, (sk + λi)[α] + λj [α] ⩾ 0.

3) Ri is enabled after Rj executes at sk:
∀0 ⩽ α < m, (sk + λj)[α] + λi[α] ⩾ 0.

If Ri and Rj are not independent, they are dependent.
Because a VAS representation of a CRN reaction involves

only vector addition, condition (1) is true in every state for
which both conditions (2) and (3) hold. That is, because
vector addition is commutative and associative, firing a series
of enabled reactions from a designated state in any order
always results in the same final state. Conditions (2) and
(3) thus become sufficient and necessary conditions for the
independence of CRN reactions.

B. Commutability of Reactions

Conditions (2) and (3) described above enable reaction inde-
pendence (and thus commutability) to be further categorized.
We propose three classes to represent commutability between
adjacent reactions: trivially, semi-trivially, and conditionally
commutable pairs. Adjacent reactionsRi andRj are a trivially
commutable pair iff ∀ 0 ⩽ α < m, λi[α], λj [α] ∈ Z⩾0.
That is, Ri and Rj are trivially commutable at all states if
they require no reactants to produce their products. Ri and
Rj are a semi-trivially commutable pair iff ∀ 0 ⩽ α <
m, rvi[α] = 0 ∨ rvj [α] = 0. That is, Ri and Rj are
semi-trivially commutable at sk if they share no reactants and
are both enabled at sk. Intuitively, reactions R2 and R4 in
the motivating example are semi-trivially independent because
they share no reactants. If a state sk provides sufficient R to
enable R2 and sufficient RL to enable R4, then it is always

the case that R2 and R4 are enabled to execute in any order
from sk. If Ri and Rj are neither trivially nor semi-trivially
commutable, they are conditionally commutable.

Trivially and semi-trivially commutable pairs do not require
explicitly checking conditions (2) or (3), enabling state ex-
ploration to bypass the need to simulate adjacent reactions
to determine commutability. In trivially commutable pairs, λi

and λj contain only non-negative integers, so it is always the
case that λi+λj contains only non-negative integers. In semi-
trivially commutable pairs, each element of λi + λj contains
at least the lowest negative value in reactants of either λi or
λj , because Ri and Rj do not share reactants. Thus, one
reaction in a semi-trivially commutable pair cannot disable
the other, so if Equation 1 holds, conditions (2) and (3) must
also hold. Checking Equation 1 removes the need to simulate
semi-trivially commutable reactions directly, conserving effort
while exploring the state space. Conditionally commutable
pairs require conditions (2) and (3) to be checked explicitly.

∀0 ⩽ α < m, (sk[α] + λi[α] ⩾ 0 ∧ sk[α] + λj [α] ⩾ 0) (1)

C. Sequences of Conditionally Commutable Reactions

Given a run consisting of a sequence of κ (potentially re-
peating) reactions Ξ = R0,R1, . . . ,Rκ−1, it may be desirable
to check that firing a sequence of reactions Ξ from s0 produces
a valid run (i.e. each reaction in Ξ is enabled when Ξ is
executed in order). If Ξ contains conditionally commutable
pairs of reactions, Equation 2 checks that Ξ is a valid run
from a state sx. In the motivating example, a valid run from
the initial state s0 is R8, R5; while an invalid run from s0 is
R5, R8 because R5 is not enabled from the initial state, but
firing R8 enables the execution of R5.

Valid(Ξ) := (∀j ⩽ κ, 0 ⩽ i < m, sx +

j∑︂
α=0

λα[i] ⩾ 0) (2)

VI. PARALLEL TRACES VIA COMMUTATION

Exploring the inherent concurrency in CRN models helps
to discover traces contributing to a rare event’s probability.
These traces may be obtained by various methods. Results
presented in this paper use traces generated by the prototype
tool RAGTIMER. CRN models often contain a large volume
of parallel traces (i.e., traces that differ by a small number
of reactions or arrive at the same state while passing through
alternative intermediate states).

To obtain a lower bound for the rare event’s probability, we
desire to accumulate probability from a large number of traces
to a rare event as efficiently as possible. We suggest parallel
traces are an efficient way to accumulate probability for rare
events. Algorithm 1 finds parallel traces using Equations 1
and 2 to discover pairs of independent, commutable reactions.
For example, interrupting a seed trace from the motivating
example by firing R1 at a random state forms a nearly-
identical trace and increases the overall probability lower
bound relative to the seed trace alone.

Figure 1 illustrates this principle on a small toy example. In
this example, the seed trace (blue) contains reactions R0, R1,

286

and R2. By interrupting this seed trace with a universally-
enabled reaction Ra, it is possible to obtain many parallel
traces and increase the lower-bound of the probability of reach-
ing a target state. This particular example shows two unique
target states with four additional traces, so the probability of
reaching a target is increased compared to the probability of
the seed trace alone. In some models, parallel traces arrive
at the same target state as the seed trace via an alternative
reaction sequence. Having two target states, as is the case
in Figure 1, is allowed but not required for parallel trace
exploration; only target state s′Ψ is required.

s0 s1 s2 sΨ

s'0 s'1 s'2 s'Ψ

Ra Ra Ra Ra

R0 R1 R2

R0 R1 R2

Fig. 1: Parallel trace construction via transition commutation.

A. Trace Commutation Algorithm

Algorithm 1 details the procedure for exploring parallel
traces contained in the “Traces” set, which contains seed traces
generated by RAGTIMER or a user’s method of choice. As the
main procedure, BUILDTRACES builds a partial state space for
each seed trace in “Traces”, then calls the recursive function
COMMUTE on each trace, which recursively explores traces
parallel to each seed trace and builds a partial state space
as it explores. Using commutability conditions presented in
Section V, Algorithm 1 attempts to find commutable reactions
along the entire length of a seed trace. To efficiently explore
traces leading to a rare event, it attempts to commute reactions
that are enabled from every state along the seed trace.

In Figure 1, for instance, line 2 of Algorithm 1 selects the
seed trace R0, R1, R2 as ρ. In lines 3 and 4, it builds a
partial state space for the seed trace, then discovers Ra ∈ E.
In COMMUTE, it executes the prefix (line 11), which is initially
empty but is extended during recursion to list the sequence of
commuted reactions to fire before firing the reactions from the
seed trace. In lines 12 and 13, states along the parallel trace
ρ′ (shown in yellow on the top of Figure 1) are discovered.
In lines 14 and 15, ρ′ is built from the commuted transition
Ra. Finally, in line 16, the function recursively attempts
to commute transitions along the parallel trace ρ′, which
now includes prefix Ra. This recursive process is shown in
Figure 2. The seed trace, shown in blue with s0, leads to
the discovery of three parallel traces shown in yellow. These
traces, with sb, sc, and sd, are then recursively analyzed. For
instance, it may lead to the discovery of two more parallel
traces, shown in green with states se and sf .

Algorithm 1 Commuting universally enabled transitions

Require: M = ⟨X,R, s0⟩, Ψ , Traces.
1: procedure BUILDTRACES
2: for Trace ρ in Traces do
3: Build the state space for states along ρ
4: E ← enabled reactions along ρ
5: COMMUTE(∅, ρ, E)
6: BUILDCYCLES ▷ Defined formally in Algorithm 2
7: Clean up the model to save time and memory
8: Export explicit state-transition matrices
9: procedure COMMUTE(Prefix, ρ, Enabled)

10: for Ra ∈ Enabled do
11: Execute Prefix.
12: Fire Ra from each state in ρ to find ρ′

13: E′ ← enabled reactions along ρ′.
14: Execute Ra from s0 of ρ to find s′0 in ρ′.
15: Execute reactions in ρ from s′0 to construct ρ′.
16: COMMUTE((Prefix.append(Ra)), ρ′, E′)

s
Ψs2s1se

s
Ψs2s1sc

s
Ψ

s'
Ψ

s2

s'2

s1

s'1

s0

sb

s
Ψs2s1sf

s
Ψs2s1sd

Fig. 2: Recursively-commuted partial state space.

B. Termination Conditions on Algorithm 1

Algorithm 1 does not necessarily terminate. Thus, we
propose two methods for determining when to terminate
commutation recursion:

1) The user can specify a maximum recursion depth. This
is a naive approach, but it guarantees termination and
gives flexibility to advanced users; or

2) The algorithm can terminate based on the time bound
T from the model’s CSL property P=?(♢[0,T] Ψ).
The mean state residence time for si is provided by
MRT(si) = 1/E(si). The sum of mean state residence
times along a trace provides the average duration for that
trace. If the average trace duration exceeds or approaches
the property time bound, it is likely not worth exploring
further as traces will become increasingly unlikely. This
approach requires less understanding of the model and
algorithm, so it provides less flexibility but a more
streamlined user experience.

Algorithm 1 is implemented as an extension of the RAG-
TIMER tool. In this implementation, a user can specify if they
prefer to terminate by recursion depth or by analyzing average
trace durations. Approach (1) terminates trivially. Termination
of approach (2) is justified because each reaction adds a

287

positive amount of time to the total average trace duration.
The algorithm will thus either explore the entire available
state space or the average duration will eventually increase to
meet the termination threshold. It is our experience that a very
small time or depth bound is sufficient to obtain a significant
probability boost in the seed traces.

C. Exporting Explicit Models

After exploring parallel traces, each unexplored enabled
reaction at any state is replaced by an absorbing reaction (i.e.,
a new reaction transitioning to an absorbing state) with an
equivalent probability. Formally, let En(si) represent the set
of all reactions enabled in state si. Let Disc(si) represent
the set of all reactions added to the explicit state space, such
that Disc(si) ⊆ En(si). Let Undisc(si) represent the set
reactions in En(si) but not included in the explicit state space,
such that Undisc(si) = En(si)−Disc(si).

Let A(si), defined in Equation 3, indicate the sum of
transition rates directed from state si to an abstract absorbing
state. The absorbing state preserves probability correctness by
consuming any probability that would have been directed to an
unexplored portion of the state space. To obtain a probabilistic
lower-bound, it is assumed that the absorbing state does not
satisfy Ψ . An explicit state space can then be exported for
model checking in a tool such as PRISM [44] or Storm [45].

A(si) =
∑︂

Rj∈Undisc(si)

θ(sj) (3)

D. Lower-Bound Probability Guarantee

Because the presented method explicitly enumerates traces,
the probability obtained by performing probabilistic model
checking on the explicit state graph is guaranteed to be a
lower bound. The seed trace is known to reach a target state,
so finding parallel traces through commutation also produces
traces leading to the same target state. This method is efficient
because every state and reaction (except the absorbing state)
is guaranteed to contribute to a rare event’s probability.

VII. CYCLES FOR PROBABILITY RECAPTURE

CRN models often contain cyclic behavior. Including cycles
in a state space is an effective way to increase the total number
of explored traces without greatly increasing the total number
of states explored. In many models, the exploration of cycles
can increase the probability lower bound by redirecting some
of the probability that would otherwise be redirected to an
absorbing state (see Section VI-C) to a target state.

While a number of cycle exploration methods have been
explored (in [13], for instance), we found a simple combina-
torial analysis of reactions sufficient to efficiently generate a
large number of cycles for the purposes of this work. This
approach involves testing multisets of reactions up to a user-
specified bound and selecting multisets of reactions such that
the sum of state change vectors corresponding to reactions
within each multiset is equal to the zero vector.

Formally, a cycle ci is a κ-multiset containing κ reactions
such that the sum of all reaction state change vectors in

ci is the zero vector. Let “CycleList” be a set of known
cycles. Algorithm 2 presents an approach to augmenting the
probability lower bound by adding cycles into a partial state
space. Let ω(ci) represent a permutation of reactions in ci,
with Ω(ci) defined as the set of all possible ω(ci). Define
min(ω(ci)) as a vector of length m (i.e., a vector with one
element per species) such that ∀0 ≤ α < m, min(ω(ci))[α] =
minRj∈ω(ci)

∑︁j
k=0 λk[α]. In Line 4 of Algorithm 2, this is

achieved via a vector copy operation. Intuitively, the min-
imal value of species α in ω(ci) is either non-negative,
indicating species α is never consumed, or it is negative. If
min(ω(ci))[α] = −γ, at some point, ω(ci) has consumed and
has not replenished γ molecules of species l. In Algorithm 2,
min(ω(ci)) determines which states are candidates for the
addition of ω(ci). If a state si does not provide enough of
a given reactant to execute ω(ci), i.e. if Valid(ω(ci)) does
not hold at state si, cycle ω(ci) cannot be added to si. By
finding the minimal value for a molecule count during a cycle,
it becomes unnecessary to simulate a cycle from every state
to determine if it is possible to add the cycle to the state. This
saves computational effort while enabling cycles to be added to
every allowable state. Maximum cycle lengths are specified by
users, and all allowable cycles up to the user-specified length
are added to the state space.

In the motivating example, executing R2 followed by R1

constitutes a permutation ω(c) of the cycle with length two,
i.e., c = {R1,R2}. Because this cycle causes a degradation
of R followed by a generation of R, min(ω(c))[0] = −1. That
is, ω(c) can only be added to state si if si[0] ⩾ 1.

Algorithm 2 Adding cycles to a partial state space

Require: M = ⟨X,R, s0⟩, CycleList.
1: procedure BUILDCYCLES
2: for Cycle ci in CycleList do
3: for Cycle permutation ω(ci) in Ω(ci) do
4: min(ω(ci))← minRj∈ω(ci)

∑︁j
k=0 λk

5: for State sx in discovered state space do
6: for α ∈ [0,m) do
7: if sx[α] + min(ω(ci))[α] ≥ 0 then
8: Add ω(ci) to sx

Adding even one cycle to a trace can increase the probability
of that trace. Because Algorithm 1 produces an explicit state
space, the task of evaluating the overall probability impact of
cycles is given to a probabilistic model checker. This enables
only a few additional states in the explicit state space to
influence the probability of the model by providing a larger
number of traces. For example, Figure 3 shows the partial state
space from Figure 1. An arbitrary cycle (represented by three
green states) is enabled to be executed from five states, so
rather than direct reactions from those states to an absorbing
state, the cycles redirect part of the probability back into the
trace leading to the target rare-event state. Note that in this
example, the cycle is not added to state s1. In a realistic model,
this happens when s1 does not provide sufficient reactants to

288

enable the full execution of the cycle.

s0 s1 s2 s
Ψ

s'0 s'1 s'2 s'
Ψ

Ra Ra Ra Ra

R0 R1 R2

R0 R1 R2

Fig. 3: Cycles added to five states in a partial state space.

It is occasionally the case that cycles add states and tran-
sitions (and thus computation time and memory for proba-
bilistic model checking) to a state space without contributing
significantly to the rare event’s probability bound. This is
largely the case when one or more states along a cycle has
a large absorbing rate relative to its other outgoing rates (i.e.,
when it is more likely that starting a cycle will lead to an
absorbing state than return to the original trace). If enough
of the probability that flows into the cycle does not flow back
toward the target state, the cycle is not sufficiently valuable and
need not be added. Given a desirable threshold T (in our tests,
a high threshold of around 0.98) of the ratio A(si)/E(si),
Lines 7-8 of Algorithm 2 may be adapted to include a cycle
addition benefit heuristic as shown in Equation 4. The ratio
A(si)/E(si) intuitively represents how much probability is
directed to an absorbing state versus into a trace.

if sx[y] +min(ω(ci))[y] ≥ 0 ∧A(si)/E(si) < T
then Add ω(ci) to sx (4)

VIII. RESULTS AND DISCUSSION

The parallel trace exploration and cycle addition methods
presented in this paper are implemented as part of a prototype
tool, RAGTIMER, which interfaces with the PRISM API [44].
Prototype versions of RAGTIMER and its Cycle & Commute
expansion are freely available1. This tool quickly generates
many seed traces. The benchmarking results presented in this
paper were obtained on an AMD Ryzen Threadripper 12-Core
3.5 GHz Processor and 132 GB of RAM, running Ubuntu
22.04 LTS. We allocated one CPU and 16 GB of RAM to
test our approach on all four challenging case studies and
compared our method’s results to those of other probabilis-
tic verification tools. In each case study, “Default Cycle &
Commute” indicates that the default settings for RAGTIMER
are used. The default settings include generating 100 shortest

1RAGTIMER v0.0 (trace generation) and v0.1 (Cycle & Commute) are
available as releases at https://github.com/fluentverification/ragtimer/tags.

traces, using a fixed recursion bound of 20 (i.e., limit the
number of calls to the COMMUTE function in Algorithm 1
to 20), and adding cycles of two reactions after state space
construction. These default settings give users an acceptable
result for most models, while “Optimized Cycle & Commute”
indicates custom settings for each model.

1) Single Species Production-Degradation Model: The
model describes a production-degradation interaction between
two species [17]: R1 : S1

1.0−−→ S1+S2,R2 : S2
0.025−−−→ ∅. The

initial state for the species vector [S1, S2] is s0 = [1, 40],
while the desired CSL property is P=?(♢[0,100] S2 = 80).
Figure 4a shows an increase in the lower bound of the
model’s probability as the parallel trace exploration recursion
bound increases during exploration of a single seed trace. The
probability bound asymptotically approaches the actual rare-
event probability, which is 3.0631 × 10−7 [17]. Figure 4b
shows that while the probability increases exponentially, the
number of states increases linearly. Thus, we argue this method
explores a productive part of the state space. Partial state space
exploration required less than 4 seconds at any recursion depth.

0 5 10 15 20 25 30
Recursion Bound

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Pr
ob

ab
ili

ty

1e 7

(a)

0 5 10 15 20 25 30
Recursion Bound

50

60

70

80

90

100

St
at

e
Co

un
t

(b)

Fig. 4: Single Species Production-Degradation Model.

It is interesting to compare the methods presented in this
paper to simple trace generation, which RAGTIMER is already
capable of. In our benchmarks, RAGTIMER generated a single
seed trace for this model with a probability of 1.03 × 10−16

in 13.26 seconds. It then generated 43 additional traces,
increasing the state space’s probability to 1.34×10−16 in 31.35
seconds. By expanding the seed trace using methods presented
in this paper, however, RAGTIMER achieved a probability
bound of 2.99×10−7 in 21.21 seconds, including the duration
of trace generation, commuting, and model checking. This
is a reasonable lower bound to the true probability of the
model (3.0631 × 10−7). Table I summarizes these results. In
all result tables, “Default Commuting Options” indicates that
the default options implemented in RAGTIMER are selected;
“Optimized Commuting Options” indicates that configurations
were modified to produce an improved result. In this model,
the default settings produced the best probability bound.

2) Enzymatic Futile Cycle Model: A futile cycle interaction
is modeled in this CRN with six species reacting through six
reactions [17]:

R1 : S1 + S2
1.0−−→ S3, R2 : S3

1.0−−→ S1 + S2,

R3 : S3
0.1−−→ S1 + S5, R4 : S4 + S5

1.0−−→ S6,

R5 : S6
1.0−−→ S4 + S5, R6 : S6

0.1−−→ S4 + S2.

289

https://github.com/fluentverification/ragtimer/tags

TABLE I: Single-Species Production-Degradation Model.

Method Probability Runtime (s)
Generate 1 Trace ⩾ 1.03× 10−16 13.26
Generate 44 Traces ⩾ 1.34× 10−16 31.35
Default Cycle & Commute ⩾ 2.99× 10−7 23.21
Optimized Cycle & Commute ⩾ 2.99× 10−7 23.21

The initial molecule count for species vector
[S1, S2, S3, S4, S5, S6] forms the initial state:
s0 = [1, 50, 0, 1, 50, 0] and the rare-event property of
interest is P=?(♢[0,100] S5 = 25). Figure 5 shows the
probability and state count for this model’s partial state space
as the recursion depth increases for a single seed trace. The
probability bound sharply increases while the state space
grows linearly, illustrating that for this model, states that are
considered in the partial state space contribute significantly
to the probability bound. State space construction required
less than four seconds for all recursion depths for this
model. RAGTIMER generated one shortest seed trace for this

0 5 10 15 20 25 30
Recursion Bound

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ili

ty

1e 26

0 5 10 15 20 25 30
Recursion Bound

80

100

120

140

160

St
at

e
Co

un
t

Fig. 5: Enzymatic Futile Cycle Model.

model with a probability of 1.73 × 10−78 in 15.52 seconds.
Generating 99 more traces increased the probability bound to
2.71× 10−64 in 41.1 seconds. By expanding 100 seed traces
using methods presented in this paper, RAGTIMER achieved
a probability bound of 4.32 × 10−18 in 31.69 seconds,
including time for trace generation, commuting, and model
checking. This is an improvement of 60 orders of magnitude
that requires less runtime than generating a small sample
of additional traces. Table II summarizes these results. This
model’s results appear to be influenced by the quality of
the seed traces used to generate the partial state space. Its
optimized settings involve asking RAGTIMER to generate a
set of short but unique seed traces. After generating 42 unique
traces, it explored a recursion depth of 10 and added all
possible cycles of length two to the state space. Further, cycle

TABLE II: Enzymatic Futile Cycle Model.

Method Probability Runtime (s)
Generate 1 Trace ⩾ 1.73× 10−78 15.52
Generate 100 Traces ⩾ 2.71× 10−64 41.10
Default Cycle & Commute ⩾ 1.45× 10−26 27.92
Optimized Cycle & Commute ⩾ 4.32× 10−18 31.69

addition boosts the probability of this model without requiring
significant additional time. We ran 36 tests to account for
this method’s stochastic nature and found that adding only
cycles of length two to the model as described in Section VII

increased the average discovered lower probability bound by
two orders of magnitude (from 2.28×10−21 to 4.92×10−19)
while increasing the average total runtime by less than one
second (from 25.6 to 26.4 seconds).

3) Modified Yeast Polarization Model: The rare event of
interest for our motivating example is the rapid build-up of
Gbg . This is described by the probability of the molecule
count of Gbg increasing from 0 to 50 within 20 seconds:
P=?(♢[0,20] Gbg = 50). When this model is simulated using
the standard stochastic simulation algorithm (SSA) imple-
mented in the PRISM probabilistic model checking tool, the
total probability for over 500, 000 traces is rounded to 0 due to
floating-point precision limitations, indicating that SSA alone
produced a probability lower than 4.9 × 10−324. However,
when two seed traces are expanded, the probability is found
to be greater than 5.8 × 10−72 after a recursion depth of
6 and with a state space consisting of about 3500 states,
produced in less than 10 seconds, as can be seen in Figure 6.
Because of this model’s infinite state space, the state count

0 1 2 3 4 5 6
Recursion Bound

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8
Pr

ob
ab

ili
ty

1e 72

0 1 2 3 4 5 6
Recursion Bound

500

1000

1500

2000

2500

3000

3500

St
at

e
Co

un
t

Fig. 6: Modified Yeast Polarization Model.

and probability both appear to increase nearly-linearly with
recursion depth. Therefore, the states in this model’s partial
state space contribute significantly to its probability bound.

RAGTIMER generated 100 seed traces for which PRISM
is unable to compute a nonzero probability (due to floating-
point constraints). By expanding these seed traces using meth-
ods presented in this paper, however, RAGTIMER achieved
a probability of 5.26 × 10−26 in 125.64 seconds, including
trace generation, commuting, and model checking time. These
results are summarized in Table III. Optimized settings for this
model are identical to default settings, but the optimal test used
a set of 100 higher-probability seed traces due to the stochastic
nature of RAGTIMER trace generation.

TABLE III: Modified Yeast Polarization Model.

Method Probability Runtime (s)
Generate 1 Trace ⩾ 0.0 23.34
Generate 100 Traces ⩾ 0.0 66.78
Default Cycle & Commute ⩾ 1.01× 10−32 167.11
Optimized Cycle & Commute ⩾ 5.26× 10−26 125.64

4) Simplified motility regulation model: This model con-
sists of nine species reacting through twelve reactions and
represents the genetic mechanism which regulates flagella

290

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Recursion Bound

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Pr

ob
ab

ili
ty

1e 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Recursion Bound

0

500

1000

1500

2000

2500

St
at

e
Co

un
t

Fig. 7: Simplified Motility Regulation Model.

formation in Bacillus subtilis [46]:

R1 : codY 0.1−−→ codY + CodY,

R2 : CodY 0.0002−−−−→ ∅,
R3 : flache 1.0−−→ flache + SigD,

R4 : SigD 0.0002−−−−→ ∅,
R5 : SigD hag 1.0−−→ SigD + hag + Hag,
R6 : Hag 0.0002−−−−→ ∅,
R7 : SigD + hag 0.01−−→ SigD hag,
R8 : SigD hag 0.1−−→ SigD + hag,
R9 : CodY + flache 0.02−−→ CodY flache,
R10 : CodY flache 0.1−−→ CodY + flache,
R11 : CodY + hag 0.01−−→ CodY hag,
R12 : CodY hag 0.1−−→ CodY + hag.

The initial molecule count for species vector [codY, flache,
SigD hag, CodY, CodY flache, hag,CodY hag, SigD, Hag]
forms the initial state s0 = [1, 1, 1, 10, 1, 1, 1, 10, 10]. The rare
event property is P=?(♢[0,10] CodY = 20). Figure 7 shows
that while a single seed trace’s probability is found to be zero,
expanding a single seed trace quickly increases the probability
bound to 1.45 × 10−10. Because the probability and state
count growth both appear to grow exponentially relative to
the recursion bound, it suggests the states explored by this
method contribute efficiently to the rare event probability.

Similarly to the Modified Yeast Reaction Model, generating
100 seed traces produced a low probability bound that was
rounded to zero. By expanding the seed trace using meth-
ods presented in this paper, however, RAGTIMER achieved a
probability of 1.42 × 10−9 in 34.67 seconds, including trace
generation, commuting, and model checking time. Results
from this model are summarized in Table IV. Due to this
model’s complexity, its default recursion depth is 2. Increasing
the recursion depth to 10 results in the optimized probability.

5) Comparison to modes rare-event simulation engine:
The modes statistical model checking tool in the MOD-
EST TOOLSET was able to compute rare-event probabilities
efficiently for the presented case studies, and the reported
probabilities closely match those reported in [17] and [23].
However, modes requires a compositional importance func-
tion for rare-event simulation, which limits the use of global
variables shared between multiple components. While manual
modifications to the model’s importance function can be made

to circumvent this, it requires user intervention and an in-depth
understanding of the CRN model and MODEST language.

TABLE IV: Simplified Motility Regulation Model.

Method Probability Runtime (s)
Generate 1 Trace ⩾ 0.0 13.39
Generate 100 Traces ⩾ 0.0 17.16
Default Cycle & Commute ⩾ 1.77× 10−11 28.05
Optimized Cycle & Commute ⩾ 1.42× 10−9 34.67

6) Comparison to probabilistic model checking tools: We
attempted to verify the modified yeast polarization model’s
rare event property with all species’ molecule counts bounded
by the reasonably large range of [0, 150] in the probabilistic
model checker Storm with the SYLVAN library [47]. Although
Storm completed symbolic state space construction quickly,
it failed to complete the CTMC analysis of the model within
30 days due to the task of converting a symbolic state space
to a sparse matrix representation for time-bounded transient
analysis. In another test, the state-truncation probabilistic
model checker STAMINA [48] produced a probability bound
of [1.64×10−6, 23.01×10−6] on the same model after 2 days.

7) Discussion: We claim that our method can compete
effectively against these tools because it requires no in-depth
understanding of a CRN model, a formal modeling language,
or a verification tool. Rather, it requires only a single trace
(obtainable from the implemented functionality in RAGTIMER
or another user-selected method). We argue that our method is
effective because increasing the recursion bound and number
of cycles in our benchmarks reliably provides an improved
probability bound, demonstrating this method explores an
effective region of a state space. This method can also be
used to gain insights to guide model synthesis, as it can report
information about which reactions and cycles cause a rare
event to be more likely. We firmly believe that this model
analysis is a useful tool to guide design decisions and reveal
design flaws, and that in many cases, it is more useful to a
user than a probability report alone.

IX. CONCLUSION

This paper presents a fully-automated approach to expand
a small sample of traces and build a partial state space
containing only states and transitions leading to a rare event
of interest in a CRN model. We propose CRN-specific inde-
pendence conditions accompanied by an algorithmic method
to effectively discover parallel traces that are guaranteed to
reach the rare event of interest. This increases the lower
bound for the rare event’s probability. Adding cycles to a
partial state space further increases the rare-event probability
lower bound. The promising results from the prototype tool
RAGTIMER demonstrate it as an effective and user-friendly
method for CRN model analysis. Future work may include
further investigation of the properties of cycles in CRN explicit
state spaces, integration with other existing probabilistic model
checking tools, and improvement on seed trace generation.

291

Acknowledgment: We thank Arnd Hartmanns (U. Twente)
for helping with MODEST TOOLSET; Chris Winstead (Utah
State U.), Chris Myers (U. Colorado Boulder), and Hao Zheng
(U. South Florida) for their feedback. This work was supported
by the National Science Foundation under Grant No. 1856733.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] C. J. Myers, Engineering Genetic Circuits, 1st ed., ser. Chapman &
Hall/CRC Mathematical and Computational Biology. Chapman &
Hall/CRC, July 2009.

[2] D. Soloveichik, G. Seelig, and E. Winfree, “Dna as a universal
substrate for chemical kinetics,” Proceedings of the National Academy
of Sciences, vol. 107, no. 12, pp. 5393–5398, 2010. [Online]. Available:
https://www.pnas.org/doi/abs/10.1073/pnas.0909380107

[3] V. Chellaboina, S. P. Bhat, W. M. Haddad, and D. S. Bernstein,
“Modeling and analysis of mass-action kinetics,” IEEE Control Systems
Magazine, vol. 29, no. 4, pp. 60–78, 2009.

[4] L. Buecherl, R. Roberts, P. Fontanarrosa, P. J. Thomas, J. Mante,
Z. Zhang, and C. J. Myers, “Stochastic hazard analysis of genetic
circuits in iBioSim and STAMINA,” ACS Synthetic Biology, vol. 10,
no. 10, pp. 2532–2540, 2021, pMID: 34606710. [Online]. Available:
https://doi.org/10.1021/acssynbio.1c00159

[5] B. Israelsen, L. Taylor, and Z. Zhang, “Efficient trace generation for rare-
event analysis in chemical reaction networks,” in Model Checking
Software, G. Caltais and C. Schilling, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 83–102.

[6] B. J. Daigle, M. K. Roh, D. T. Gillespie, and L. R. Petzold, “Automated
estimation of rare event probabilities in biochemical systems,” The
Journal of Chemical Physics, vol. 134, no. 4, p. 044110, Jan. 2011.

[7] B. Drawert, M. J. Lawson, L. Petzold, and M. Khammash, “The
diffusive finite state projection algorithm for efficient simulation of the
stochastic reaction-diffusion master equation,” The Journal of Chemical
Physics, vol. 132, no. 7, p. 074101, 2010. [Online]. Available:
https://doi.org/10.1063/1.3310809

[8] M. K. Roh, D. T. Gillespie, and L. R. Petzold, “State-dependent biasing
method for importance sampling in the weighted stochastic simulation
algorithm,” The Journal of Chemical Physics, vol. 133, no. 17, p.
174106, Nov. 2010.

[9] M. Češka and J. Křetı́nský, “Semi-quantitative abstraction and analysis
of chemical reaction networks,” in Computer Aided Verification, I. Dillig
and S. Tasiran, Eds. Cham: Springer International Publishing, 2019,
pp. 475–496.

[10] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Model-checking
continuous-time Markov chains,” ACM Transactions on Computational
Logic, vol. 1, no. 1, pp. 162–170, Jul. 2000.

[11] M. Kwiatkowska, G. Norman, and D. Parker, Stochastic Model Check-
ing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 220–270.

[12] I. Koch, “Petri Nets – A Mathematical Formalism to Analyze Chemical
Reaction Networks,” Molecular Informatics, vol. 29, no. 12, pp. 838–
843, 2010.

[13] J. Leroux, “Polynomial Vector Addition Systems With States,” in 45th
International Colloquium on Automata, Languages, and Programming
(ICALP 2018), July 9-13, 2018, Prague, Czech Republic, ser. LIPIcs,
I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella, Eds., vol.
107. Prague, Czech Republic: Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, Jul. 2018, pp. 134:1–134:13. [Online]. Available:
https://hal.science/hal-01711089

[14] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
“Modelling with Generalized Stochastic Petri Nets,” ACM SIGMETRICS
Performance Evaluation Review, vol. 26, no. 2, p. 2, Aug. 1998.

[15] D. Angeli, P. De Leenheer, and E. D. Sontag, “A Petri net approach to
the study of persistence in chemical reaction networks,” Dec. 2007.

[16] W. Czerwiński, S. Lasota, R. Lazić, J. Leroux, and F. Mazowiecki,
“Reachability in fixed dimension vector addition systems with states,”
May 2020.

[17] H. Kuwahara and I. Mura, “An efficient and exact stochastic simulation
method to analyze rare events in biochemical systems,” The Journal of
Chemical Physics, vol. 129, no. 16, p. 165101, Oct. 2008.

[18] C. Jegourel, A. Legay, and S. Sedwards, “Cross-entropy optimisation
of importance sampling parameters for statistical model checking,” in
Proceedings of the 24th international conference on Computer Aided
Verification, ser. CAV’12. Berlin, Heidelberg: Springer-Verlag, 2012,
pp. 327–342.

[19] M. Roh, B. J. J. Daigle, D. T. Gillespie, and L. R. Petzold, “State-
dependent doubly weighted stochastic simulation algorithm for auto-
matic characterization of stochastic biochemical rare events,” in Journal
of Chemical Physics, vol. 135. American Institute of Physics, 2011.

[20] M. K. Roh and B. J. Daigle, “Sparse++: improved event-based stochastic
parameter search,” BMC Systems Biology, vol. 10, no. 1, p. 109, 2016.
[Online]. Available: https://doi.org/10.1186/s12918-016-0367-z

[21] B. W. Zhang, D. Jasnow, and D. M. Zuckerman, “Efficient and verified
simulation of a path ensemble for conformational change in a united-
residue model of calmodulin,” Proceedings of the National Academy
of Sciences, vol. 104, no. 46, pp. 18 043–18 048, 2007. [Online].
Available: https://www.pnas.org/doi/abs/10.1073/pnas.0706349104

[22] J. L. Adelman and M. Grabe, “Simulating rare events using a
weighted ensemble-based string method,” The Journal of Chemical
Physics, vol. 138, no. 4, p. 044105, 2013. [Online]. Available:
https://doi.org/10.1063/1.4773892

[23] R. M. Donovan, A. J. Sedgewick, J. R. Faeder, and D. M. Zuckerman,
“Efficient stochastic simulation of chemical kinetics networks using a
weighted ensemble of trajectories,” The Journal of Chemical Physics,
vol. 139, no. 11, p. 115105, Sep. 2013.

[24] D. M. Zuckerman and L. T. Chong, “Weighted ensemble simulation:
Review of methodology, applications, and software.” Annu Rev Biophys,
vol. 46, pp. 43–57, May 2017.

[25] M. Okamoto, “Some inequalities relating to the partial sum
of binomial probabilities,” Annals of the Institute of Statistical
Mathematics, vol. 10, no. 1, pp. 29–35, 1959. [Online]. Available:
https://doi.org/10.1007/BF02883985

[26] A. Wald, “Sequential tests of statistical hypotheses,” The Annals of
Mathematical Statistics, vol. 16, no. 2, pp. 117–186, 1945. [Online].
Available: http://www.jstor.org/stable/2235829

[27] H. Kahn, “Random sampling (monte carlo) techniques in neutron
attenuation problems–I.” Nucleonics, vol. 6, no. 5, p. 27; passim, May
1950.

[28] H. Kahn and A. W. Marshall, “Methods of reducing sample size in
monte carlo computations,” Journal of the Operations Research Society
of America, vol. 1, no. 5, pp. 263–278, 1953. [Online]. Available:
https://doi.org/10.1287/opre.1.5.263

[29] H. Kahn and T. E. Harris, “Estimation of particle transmission by
random sampling,” National Bureau of Standards applied mathematics
series, vol. 12, pp. 27–30, 1951.

[30] M. N. Rosenbluth and A. W. Rosenbluth, “Monte carlo calculation of
the average extension of molecular chains,” The Journal of Chemical
Physics, vol. 23, no. 2, pp. 356–359, 1955. [Online]. Available:
https://doi.org/10.1063/1.1741967

[31] M. Villen-Altamirano, J. Villen-Altamirano et al., “Restart: a method for
accelerating rare event simulations,” Queueing, Performance and Control
in ATM (ITC-13), pp. 71–76, 1991.

[32] P. L’Ecuyer, F. Le Gland, P. Lezaud, and B. Tuffin, “Splitting Tech-
niques,” in Rare Event Simulation Using Monte Carlo Methods. John
Wiley & Sons, Ltd, 2009, ch. 3, pp. 39–61.

[33] M. Villén-Altamirano and J. Villén-Altamirano, The Rare Event Sim-
ulation Method RESTART: Efficiency Analysis and Guidelines for Its
Application. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.
509–547.

[34] C. E. Budde, P. R. D’Argenio, and A. Hartmanns, “Automated compo-
sitional importance splitting,” Science of Computer Programming, vol.
174, pp. 90–108, Apr. 2019.

[35] J. Villén-Altamirano, “Restart vs splitting: A comparative study,” Perfor-
mance Evaluation, vol. 121-122, pp. 38–47, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0166531616300839

[36] ——, “An improved variant of the rare event simulation method restart
using prolonged retrials,” Operations Research Perspectives, vol. 6, pp.
1–9, 2019. [Online]. Available: http://hdl.handle.net/10419/246387

[37] C. E. Budde and A. Hartmanns, “Replicating RESTART with prolonged
retrials: An experimental report,” in Tools and Algorithms for the
Construction and Analysis of Systems - 27th International Conference,
TACAS 2021, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2021, Luxembourg City,
Luxembourg, March 27 - April 1, 2021, Proceedings, Part II, ser.

292

https://www.pnas.org/doi/abs/10.1073/pnas.0909380107
https://doi.org/10.1021/acssynbio.1c00159
https://doi.org/10.1063/1.3310809
https://hal.science/hal-01711089
https://doi.org/10.1186/s12918-016-0367-z
https://www.pnas.org/doi/abs/10.1073/pnas.0706349104
https://doi.org/10.1063/1.4773892
https://doi.org/10.1007/BF02883985
http://www.jstor.org/stable/2235829
https://doi.org/10.1287/opre.1.5.263
https://doi.org/10.1063/1.1741967
https://www.sciencedirect.com/science/article/pii/S0166531616300839
http://hdl.handle.net/10419/246387

Lecture Notes in Computer Science, J. F. Groote and K. G. Larsen,
Eds., vol. 12652. Springer, 2021, pp. 373–380. [Online]. Available:
https://doi.org/10.1007/978-3-030-72013-1 21

[38] A. Hartmanns and H. Hermanns, “The Modest Toolset: An integrated
environment for quantitative modelling and verification,” in TACAS, ser.
LNCS, E. Ábrahám and K. Havelund, Eds., vol. 8413. Springer, 2014,
pp. 593–598.

[39] R. J. Lipton, “Reduction: A method of proving properties of parallel
programs,” Commun. ACM, vol. 18, no. 12, pp. 717–721, dec 1975.
[Online]. Available: https://doi.org/10.1145/361227.361234

[40] A. Mazurkiewicz, “Trace theory,” in Petri Nets: Applications and Rela-
tionships to Other Models of Concurrency, W. Brauer, W. Reisig, and
G. Rozenberg, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1987, pp. 278–324.

[41] D. Peled, “All from one, one for all: on model checking using represen-
tatives,” in Computer Aided Verification, C. Courcoubetis, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1993, pp. 409–423.

[42] P. Godefroid, “Using partial orders to improve automatic verification
methods,” in Computer-Aided Verification, E. M. Clarke and R. P.
Kurshan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991,
pp. 176–185.

[43] A. Valmari, “Stubborn sets for reduced state space generation,” in
Advances in Petri Nets 1990, G. Rozenberg, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1991, pp. 491–515.

[44] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of
probabilistic real-time systems,” in Proceedings of the 23rd International
Conference on Computer Aided Verification, ser. CAV’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 585–591.

[45] C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk, “The
probabilistic model checker Storm,” International Journal on Software
Tools for Technology Transfer, vol. 24, no. 4, pp. 589–610, Aug. 2022.

[46] D. B. Kearns and R. Losick, “Cell population heterogeneity during
growth of bacillus subtilis.” Genes & development, vol. 19 24, pp. 3083–
94, 2005.

[47] T. Dijk and J. Pol, “Sylvan: Multi-core framework for decision
diagrams,” Int. J. Softw. Tools Technol. Transf., vol. 19, no. 6,
pp. 675–696, nov 2017. [Online]. Available: https://doi.org/10.1007/
s10009-016-0433-2

[48] R. Roberts, T. Neupane, L. Buecherl, C. J. Myers, and Z. Zhang,
“STAMINA 2.0: Improving scalability of infinite-state stochastic model
checking,” in Verification, Model Checking, and Abstract Interpretation,
B. Finkbeiner and T. Wies, Eds. Cham: Springer International Publish-
ing, 2022, pp. 319–331.

293

https://doi.org/10.1007/978-3-030-72013-1_21
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1007/s10009-016-0433-2

Formal Methods in Computer-Aided Design 2023

Conformance Testing for Stochastic Cyber-Physical
Systems

Xin Qin1, Navid Hashemi1, Lars Lindemann1, and Jyotirmoy V. Deshmukh1

1Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, USA
{xinqin, navidhas, llindema, jdeshmuk}@usc.edu

Abstract—Conformance is defined as a measure of distance
between the behaviors of two dynamical systems. The notion
of conformance can accelerate system design when models of
varying fidelities are available on which analysis and control
design can be done more efficiently. Ultimately, conformance
can capture distance between design models and their real
implementations and thus aid in robust system design. In this
paper, we are interested in the conformance of stochastic dy-
namical systems. We argue that probabilistic reasoning over the
distribution of distances between model trajectories is a good
measure for stochastic conformance. Additionally, we propose
the non-conformance risk to reason about the risk of stochastic
systems not being conformant. We show that both notions have
the desirable transference property, meaning that conformant
systems satisfy similar system specifications, i.e., if the first model
satisfies a desirable specification, the second model will satisfy
(nearly) the same specification. Lastly, we propose how stochastic
conformance and the non-conformance risk can be estimated
from data using statistical tools such as conformal prediction. We
present empirical evaluations of our method on an F-16 aircraft,
an autonomous vehicle, a spacecraft, and Dubin’s vehicle.

I. INTRODUCTION

Cyber-physical systems (CPS) are usually designed using
a model-based design (MBD) paradigm. Here, the designer
models the physical parts and the operating environment of
the system and then designs the software used for perception,
planning, and low-level control. Such closed-loop systems are
then rigorously tested against various operating conditions,
where the quality of the designed software is evaluated against
model properties such as formal design specifications (or other
kinds of quantitative objectives). Examples of such property-
based analysis techniques include requirement falsification
[1]–[5], nondeterministic and statistical verification [6]–[13],
and risk analysis [14], [15].

MBD is a fundamentally iterative process in which the de-
signer continuously modifies the software to tune performance
or increase safety margins, or change plant models to perform
design space exploration [16], e.g., using model abstraction
or simplification [17]–[19], or to incorporate new data [20].
Any change to the system model, however, requires repeating
the property-based analyses as many times as the number of
system properties. The fundamental problem that we consider
in this paper is that of conformance [21]–[25]. The notion
of conformance is defined w.r.t. the input-output behavior of
a model. Typically, model inputs include exogenous distur-
bances or user-inputs to the model, user-controllable design
parameters, and initial operating conditions. For a given input
u, let y = S(u) denote the observable behavior of the model S.

Furthermore, let d(y1, y2) be a metric defined over the space
of the model behaviors. For deterministic models, two models
S1, S2 are said to be δ-conformant if for all inputs u it
holds that d(y1, y2) < δ where y1 = S1(u) and y2 = S2(u)
[22], [23], [25]. This notion of deterministic conformance is
useful to reason about worst-case differences between models.
However, most CPS applications use components that exhibit
stochastic behavior; for example, sensors have measurement
noise, actuators can have manufacturing variations, and most
physical phenomena are inherently stochastic. The central
question that this paper considers is: What is the notion of
conformance between two stochastic CPS models?

There are some challenges in comparing stochastic CPS
models; even if two models are repeatedly excited by the same
input, the pair of model behaviors that are observed may be
different for every such simulation. Thus, the observable be-
havior of a stochastic model is more accurately characterized
by a distribution over the space of trajectories. A possible way
to compare two stochastic models is to use measure-theoretic
techniques to compare the distance between the trajectory
distributions. A number of divergence measures such as the
f-divergences, e.g., the Kullback-Leibler divergence and the
total variation distance, or the Wasserstein distance may look
like candidate tools to compare the trajectory distributions.
However, we argue in this paper that a divergence is not the
right notion to use to compare stochastic CPS models. There
can be two stochastic models whose output trajectories are
very close using any trajectory space metric, but the divergence
between their trajectory distributions can be infinite. On the
other hand, there can be two trajectory distributions with zero
divergence for which the distance between trajectories can be
arbitrarily far apart.

This raises an interesting question: how do we then compare
two stochastic models? In this paper, we argue that probabilis-
tic bounds derived from the distribution of the distances be-
tween model trajectories (excited by the same input) gives us a
general definition of conformance that has several advantages,
as outlined below. We complement this probabilistic viewpoint
further and capture the risk that the distribution of the distancs
between model trajectories is large leveraging risk measures
[26].

First, we show that two stochastic systems that are confor-
mant under our definition inherit the property of transference
[22]. In simple terms, transference is the property that if the
first model has certain logical or quantitative properties, then

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_38 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_38
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_38
https://creativecommons.org/licenses/by/4.0/

the second model also satisfies the same (or nearly same)
properties. This property brings several benefits. Consider
the scenario where probabilistic guarantees that a model has
certain quantitative properties have been established after an
extensive and large number of simulations. Ordinarily, if
there were any changes made to the model, establishing such
probabilistic guarantees would require repeating the extensive
simulation-based procedure. However, transference allows us
to potentially sample from existing simulations for the first
model and sample a small number of simulations from the
modified model to establish stochastic conformance between
the models, thereby allowing us to establish probabilistic
guarantees on the second model. We demonstrate examples
of such transference w.r.t. quantitative properties arising from
quantitative semantics of temporal logic specifications and
control-theoretic cost functions.

Next, we show how we can efficiently compute these
probabilistic bounds using the notion of conformal prediction
[27], [28] from statistical learning theory. At a high-level,
conformal prediction involves computing quantiles of the em-
pirical distribution of non-conformity scores over a validation
dataset to obtain prediction intervals at a given confidence
threshold.

The contributions of this paper are summarized as follows:
• We define stochastic conformance as a probabilistic

bound over the distribution of distances between model
trajectories. We also define the non-conformance risk to
detect systems that are at risk of not being conformant.

• We show that both notions have the desirable transference
property, meaning that conformant systems satisfy similar
system specifications.

• We show how stochastic conformance and the non-
conformance risk can be estimated using statistical tools
from risk theory and conformal prediction.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the probability space (Ω,F , P) where Ω is the
sample space, F is a σ-algebra1 of Ω, and P : F → [0, 1] is
a probability measure. In this paper, our goal is to quantify
conformance of stochastic systems, i.e., systems whose inputs
and outputs form a probability space with an appropriately
defined measure. Let the two stochastic systems be denoted by
S1 and S2. The inputs and outputs of stochastic systems are
signals, i.e., functions from a bounded interval of positive reals
known as the time domain T ⊆ R≥0 to a metric space, e.g.,
the standard Euclidean metric. Each stochastic system Si then
describes an input-output relation Si : U × Ω → Y where U
and Y denote the sets of all input and output signals. We allow
input signals2 to be stochastic, and we use the notation U :
T×Ω → Rm to denote a stochastic input signals.3 Modeling
stochastic systems this way provides great flexibility, and Si

1A σ-algebra on a set Ω is a nonempty collection of subsets of Ω closed
under complement, countable unions, and countable intersections.

2Probability spaces over signals are defined by standard notions of cylinder
sets [6].

3We will instead of the probability measure P , defined over (Ω,F),
use more generally the notation Prob to be independent of the underlying
probability space that we induce, e.g., as a result of transformations via U .

can e.g., describe the motion of stochastic hybrid systems,
Markov chains, and stochastic difference equations.

Assume now that we apply the input signal U : T×Ω → Rm

to systems S1 and S2, and let the resulting output signals
be denoted by Y1 : T × Ω → Rn and Y2 : T × Ω → Rn,
respectively. We assume that the functions S1, S2, and U are
measurable so that the output signals Y1 and Y2 are well-
defined stochastic signals. One can hence think of Y1 and Y2

to be drawn from the distributions D1 and D2, respectively,
which are functions of the probability space (Ω,F , P) as well
as the functions S1, S2, and U . In this paper, we make no
restricting assumptions on the functions S1, S2, and U , and
consequently we make no assumptions on the distributions D1

and D2.
Informal Problem Statement. Let Y1 and Y2 be stochastic

output signals of the stochastic systems S1 and S2, respec-
tively, under the stochastic input signal U . How can we
quantify closeness of the stochastic systems S1 and S2 under
U? To answer this question, we will explore different ways
of defining system “closeness” of Y1 and Y2, and we will
present algorithms to compute these stochastic notions of
closeness. A subsequent problem that we consider is related to
transference of properties from one system to another system.
Particularly, given a signal temporal logic specification, can
we infer guarantees about the satisfaction of the specification
of one system from another system if the systems are close
under a suitable definition of closeness?

A. Distance Metrics and Risk Measures

To define a general framework for quantifying closeness
of stochastic systems, we will use i) different signal metrics
to capture the distance between individual realizations y1 :=
Y1(·, ω) and y2 := Y2(·, ω) of the stochastic signals Y1 and
Y2 where ω ∈ Ω is a single outcome, and ii) probabilistic
reasoning and risk measures to capture stochastic conformance
and non-conformance, respectively, under these signal metrics.

We first equip the set of output signals Y with a function
d : Y × Y → R that quantifies distance between signals. A
natural choice of d is a signal metric that results in a metric
space (Y, d). We use general signal metrics such as the metric
induced by the Lp signal norm for p ≥ 1. Particularly, define

dp(y1, y2) :=
(︂ ∫︁

T ∥y1(t)−y2(t)∥pdt
)︂1/p

so that the L∞ norm
can also be expressed as d∞(y1, y2) := supt∈T ∥y1(t)−y2(t)∥.

It is now easy to see that a signal metric d(Y1, Y2) evaluated
over the stochastic signals Y1 and Y2 results in a distribution
over distances between realizations of Y1 and Y2. To reason
over properties of d(Y1, Y2), we will use probabilistic reason-
ing but we will also consider risk measures [26] as introduced
next.

A risk measure is a function R : F(Ω,R) → R that maps
the set of real-valued random variables F(Ω,R) to the real
numbers. Typically, the input of R indicates a cost. There exist
various risk measures that capture different characteristic of
the distribution of the cost random variable, such as the mean
or the variance. However, we are particularly interested in tail
risk measures that capture the right tail of the cost distribution,
i.e., the potentially rare but costly outcomes.

295

In this paper, we particularly consider the value-at-risk
V aRβ and the conditional value-at-risk CV aRβ at risk level
β ∈ (0, 1). The V aRβ of a random variable Z : Ω → R is
defined as

V aRβ(Z) := inf{α ∈ R|Prob(Z ≤ α) ≥ β},

i.e., V aRβ(Z) captures the 1− β quantile of the distribution
of Z from the right. Note that there is an obvious connection
between value-at-risk and chance constraints, i.e., it holds that
Prob(Z ≤ α) ≥ β is equivalent to V aRβ(Z) ≤ α. The
CV aRβ of Z, on the other hand, is defined as

CV aRβ(Z) := inf
α∈R

(︁
α+ (1− β)−1E([Z − α]+)

)︁
where [Z − α]+ := max(Z − α, 0) and E(·) indicates the
expected value. When the function Prob(Z ≤ α) is continuous
(in α), it holds that CV aRβ(Z) = E(Z|Z ≥ V aRβ(Z)), i.e.,
CV aRβ(Z) is the expected value of Z conditioned on the
outcomes where Z is greater or equal than V aRβ(Z). Finally,
note that it holds that V aRβ(Z) ≤ CV aRβ(Z), i.e., CV aRβ

is more risk sensitive.
For our risk transference results that we present later, we

will require that R is monotone, positive homogeneous, and
subadditive:
• For two random variables Z,Z ′ ∈ F(Ω,R), the risk measure
R is monotone if Z(ω) ≤ Z ′(ω) for all ω ∈ Ω implies that
R(Z) ≤ R(Z ′).

• For a random variable Z ∈ F(Ω,R), the risk measure R is
positive homogeneous if, for any constant H ≥ 0, it holds
that R(HZ) = HR(Z).

• For two random variables Z,Z ′ ∈ F(Ω,R), the risk measure
R is subadditive if R(Z + Z ′) ≤ R(Z) +R(Z ′).

We remark that the V aRβ and the CV aRβ satisfies all three
properties [26].

B. System specifications

To express specifications, we use Signal Temporal Logic
(STL). Let y : T → Rn be a deterministic signal, e.g., a real-
ization of the stochastic signal Y . The atomic elements of STL
are predicates that are functions µ : Rn → {True,False}. For
convenience, the predicate µ is often defined via a predicate
function h : Rn → R as µ(y(t)) := True if h(y(t)) ≥ 0 and
µ(y(t)) := False otherwise. The syntax of STL is recursively
defined as

ϕ ::= True | µ | ¬ϕ′ | ϕ′ ∧ ϕ′′ | ϕ′UIϕ
′′ (1)

where ϕ′ and ϕ′′ are STL formulas. The Boolean operators
¬ and ∧ encode negations (“not”) and conjunctions (“and”),
respectively. The until operator ϕ′UIϕ

′′ encodes that ϕ′ has to
be true until ϕ′′ becomes true at some future time within the
time interval I ⊆ R≥0. We derive the operators for disjunction
(ϕ′ ∨ ϕ′′ := ¬(¬ϕ′ ∧ ¬ϕ′′)), eventually (FIϕ := ⊤UIϕ), and
always (GIϕ := ¬FI¬ϕ).

To determine if a signal y satisfies an STL formula ϕ
that is imposed at time t, we can define the semantics as a
relation |=, i.e., (y, t) |= ϕ means that ϕ is satisfied. While
the STL semantics are fairly standard [29], we recall them
in Appendix A in [30]. Additionally, we can define robust

semantics ρϕ(y, t) ∈ R that indicate how robustly the formula
ϕ is satisfied or violated [31], [32], see Appendix A in [30].
Larger and positive values of ρϕ(y, t) hence indicate that the
specification is satisfied more robustly. Importantly, it holds
that (y, t) |= ϕ if ρϕ(y, t) > 0.

III. CONFORMANCE FOR STOCHASTIC INPUT-OUTPUT
SYSTEMS

Our goal is now to quantify closeness of two stochastic
systems S1 and S2 under the input U . We present our
definitions for stochastic conformance and non-conformance
risk upfront, and provide motivation for these afterwards.

Definition 1. Let U : T × Ω → Rm be a stochastic input
signal, S1, S2 : U×Ω → Y be stochastic systems, and Y1, Y2 :
T×Ω → Rn be stochastic output signals with Y1 := S1(U, ·)
and Y2 := S2(U, ·). Further, let ϵ ∈ R be a conformance
threshold, δ ∈ (0, 1) be a failure probability, and d : Y×Y →
R be a signal metric. Then, we say that the systems S1 and
S2 under the input U are (ϵ, δ)-conformant if

Prob(d(Y1, Y2) ≤ ϵ) ≥ 1− δ. (2)

Additionally, let R : F(Ω,R) → R be a risk measure and
r ∈ R be a risk threshold. Then, S1 and S2 under the input
U are at risk of being r-non-conformant if

R(d(Y1, Y2)) > r. (3)

Eq. (2) is referred to as stochastic conformance and Eq. (3)
as non-conformance risk. Let us now motivate and discuss
these two definitions. While the definition of conformance in
equation (2) appears natural at first sight, there are at least two
competing ways of defining stochastic conformance. First, as
Y1 and Y2 are distributions, it would be possible to define
conformance as D(Y1, Y2) where D is a distance function
that measures the difference between two distributions, such
as a divergence (Kullback–Leibler or f -divergence). However,
our definition provides an intuitive interpretation in the signal
space where system specifications are typically defined, while
it is usually difficult to provide such an interpretation for di-
vergences between distributions. Additionally, the divergence
between Y1 and Y2 may be unbounded (or zero) even when
equation (2) holds (does not hold).

Proposition 1. There exist stochastic systems S1 and S2 and
distance metrics d where equation (2): i) is satisfied for ϵ > 0
and δ = 0, i.e., w.p. 1, but where the divergence between the
systems is unbounded, and ii) is not satisfied for any given
ϵ > 0 and δ ∈ (0, 1), but where the divergence between the
systems is zero.

Proof. Let us first prove i). For simplicity, consider systems
S1 and S2 where the stochastic input and output signals are
defined over the time domain T := {t0, . . . , tT }. Further,
for all t ∈ T let y1(t) := 0 and y2(t) := ϵ. Clearly,
equation (2) is satisfied, e.g., for d∞. The distributions D1

and D2 (joint distributions of Y1(t) and Y2(t), respectively)
are Dirac distributions centered at 0 and ϵ, respectively. The
Kullback–Leibler divergence between these two distributions
is ∞ [33].

296

Let us now prove ii). Let T consist of a single time point
for simplicity so that Y1 and Y2 are random variables defined
over a sample space R. Let D1 and D2 be the same uniform
distribution over [0, a]. Clearly, the divergence between D1 and
D1 is zero. We know that the distribution of Y := Y1−Y2 has
support on [−a, a], and that the probability density function of
Y is p(y) := 1/a− |y|/a2. We can now compute Prob(|y| ≤
ϵ) = 2ϵ/a − ϵ2/a2. Given ϵ > 0 and δ ∈ (0, 1), we pick
an δ̄ ∈ (0, 1) such that δ̄ > δ. We then solve the quadratic
equation 2ϵ/a − ϵ2/a2 = 1 − δ̄ subject to the constraint that
ϵ ≤ a. Consequently, we find that a ≥ ϵ/(1−δ̄)(1+

√
δ̄) results

in Prob(|y| ≤ ϵ) < 1− δ so that (2) is not satisfied.

Another way of defining stochastic conformance was pre-
sented in [34] where the authors consider a task-specific defini-
tion of stochastic conformance where satisfaction probabilities
are required to be approximately equal. In other words, two
stochastic systems are called c-approximately probabilistically
conformant if |Prob((Y1, τ) |= ϕ) − Prob((Y2, τ) |= ϕ)| ≤ c.
In this definition, it may happen that two systems are c-
approximately probabilistically conformant for a small value
of c, while the systems produce completely different behaviors
and individual realizations y1 and y2 are vastly different.
Additionally to not being task specific, our definition covers
the risk of being r-non-conformant in equation (3).

Finally, we would like to remark that the definition of
conformance in equation (2) is related to the definition of
non-conformance risk in equation (3). In fact, when the risk
measure R is the value-at-risk V aRβ , then we know that

V aRβ(d(Y1, Y2)) > r ⇔ Prob(d(Y1, Y2) ≤ r) < β

since V aRβ(d(Y1, Y2)) ≤ r is equivalent to Prob(d(Y1, Y2) ≤
r) ≥ β according to Section II. Consequently, if β := 1−δ and
r := ϵ then V aRβ(d(Y1, Y2)) > r implies that the systems S1

and S2 under U are not (ϵ, δ)-conformant.
The notion of conformance in Definition 1 is useful when

the input U describes internal inputs such as system parameters
(an unknown mass), exogeneous disturbances from known
sources, or initial system conditions. In other words, the dis-
tribution U is known, making U a known unknown. However,
in case of external inputs that could be manipulated (e.g. user
inputs that represent rare malicious attacks), the input U may
be unknown, making U an unknown unknown. We therefore
provide an alternative definition of conformance.

Definition 2. Let U ∈ U be an unknown deterministic input
signal, S1, S2 : U×Ω → Y be stochastic systems, and Y1, Y2 :
T × Ω → R be stochastic output signals with Y1 := S1(U, ·)
and Y2 := S2(U, ·). Further, let ϵ ∈ R be a conformance
threshold, δ ∈ (0, 1) be a failure probability, and d : Y×Y →
R be a signal metric. Then, we say that the systems S1 and
S2 are (ϵ, δ)-conformant if

Prob
(︂
sup
U∈U

d(Y1, Y2) ≤ ϵ
)︂
≥ 1− δ. (4)

Additionally, let R : F(Ω,R) → R be a risk measure and
r ∈ R be a risk threshold. Then, we say that the systems

S1 and S2 under the input U are at risk of being r-non-
conformant if

R
(︂
sup
U∈U

d(Y1, Y2)
)︂
> r. (5)

Based on this definition, note that it will be inherently more
difficult to verify Definition 2 compared to Definition 1 due
to the sup-operator.

IV. TRANSFERENCE OF SYSTEM PROPERTIES UNDER
CONFORMANCE

We expect two systems S1 and S2 that are (ϵ, δ)-conformant
in the sense of Definitions 1 and 2 to have similar behaviors
with respect to satisfying a given system specification. There-
fore, we will define the notion of transference with respect to
a performance function C : Y → R that measures how well
a signal y ∈ Y satisfies this system specification. Towards
capturing similarity between S1 and S2 with respect to C, the
signal metric d has to be chosen carefully.

Definition 3. Let d : Y×Y be a signal metric and C : Y → R
be a performance function. Then, we say that C is Hölder
continuous w.r.t. d if there exists constants H, γ > 0 such
that, for any two signals y1, y1 : T → Rn, it holds that

|C(y1)− C(y2)| ≤ Hd(y1, y2)
γ (6)

A specific example of the performance function C is the
robust semantics ρϕ of an STL specification ϕ. In fact, the
robust semantics ρϕ are Hölder continuous w.r.t. the sup-norm
d∞ for constants H = 1 and γ = 1 [35, Lemma 2]. For the
convenience of the reader, we state the proof of [35, Lemma
2] with the notation used in this paper in Appendix B in [30].
The robust semantics are also Hölder continuous w.r.t. the
Skorokhod metric, see Appendix C in [30]. A commonly used
performance function in control is C(y) =

∫︁ T

0
y(t)⊤y(t)dt,

and we note that this choice of C is Hölder continuous w.r.t.
d1 as shown in Appendix D in [30]. Finally, note that the
Hölder continuity condition in equation (6) implies that, for
any constants c, ϵ ∈ R, it holds that(︁

C(y1) ≥ c ∧ d(y1, y2) ≤ ϵ
)︁

⇒ C(y2) ≥ c−Hϵγ .
(7)

A. Transference under stochastic conformance

With the definition of C being Hölder continuous w.r.t.
d, we can now derive a stochastic transference result under
stochastic conformance as per Definition 1.

Theorem 1. Let the premises in Definitions 1 and 3 hold.
Further, let the systems S1 and S2 under the input U be (ϵ, δ)-
conformant so that equation (2) holds and let C be Hölder
continuous w.r.t. d so that equation (6) holds. Then, it holds
that

Prob
(︁
C(Y1) ≥ c

)︁
≥ 1− δ̄ ⇒

Prob
(︁
C(Y2) ≥ c−Hϵγ

)︁
≥ 1− δ − δ̄.

Proof. By assumption, it holds that Prob(d(Y1, Y1) ≤ ϵ) ≥
1 − δ and Prob(C(Y1) ≥ c) ≥ 1 − δ̄ so that we know that

297

Prob(d(Y1, Y1) > ϵ) ≤ δ and Prob(C(Y1) < c) ≤ δ̄. We can
now apply the union bound over these two events so that

Prob
(︁
d(Y1, Y1) > ϵ ∨ C(Y1) < c

)︁
≤ δ + δ̄.

From here, we can simply see that

Prob
(︁
d(Y1, Y1) ≤ ϵ ∧ C(Y1) ≥ c

)︁
≥ 1− δ − δ̄.

Since C is Hölder continuous w.r.t. d, which implies that
equation (7) holds, it is easy to conclude that Prob(C(Y2) ≥
c−Hϵγ) ≥ 1− δ − δ̄.

Theorem 1 tells us that i) (ϵ, δ)-conformance of systems S1

and S2 under U , and ii) Hölder continuity of the performance
function C w.r.t. the metric d enables us to derive a proba-
bilistic lower bound for the performance of system S2 w.r.t.
C from the performance of system S1.

We can derive a transference result similar to Theorem
1 when we assume that the systems S1 and S2 are (ϵ, δ)-
conformant in the sense of Definition 2 instead of Definition 1.

Theorem 2. Let the premises in Definitions 2 and 3 hold.
Further, let the systems S1 and S2 be (ϵ, δ)-conformant so
that equation (4) holds and let C be Hölder continuous w.r.t.
d so that equation (6) holds. Then, it holds that

Prob
(︁
inf
U∈U

C(Y1) ≥ c
)︁
≥ 1− δ̄ ⇒

Prob
(︁
inf
U∈U

C(Y2) ≥ c−Hϵγ
)︁
≥ 1− δ − δ̄

Proof. By assumption, it holds that Prob(supU∈U d(Y1, Y1) ≤
ϵ) ≥ 1 − δ and Prob(infU∈U C(Y1) ≥ c) ≥ 1 − δ̄ so
that we know that Prob(supU∈U d(Y1, Y1) > ϵ) ≤ δ and
Prob(infU∈U C(Y1) < c) ≤ δ̄. We can now apply the union
bound over these two events so that

Prob
(︁
sup
U∈U

d(Y1, Y1) > ϵ ∨ inf
U∈U

C(Y1) < c
)︁
≤ δ + δ̄.

From here, we can simply see that

Prob
(︁
sup
U∈U

d(Y1, Y1) ≤ ϵ ∧ inf
U∈U

C(Y1) ≥ c
)︁
≥ 1− δ − δ̄.

This equation tells us that, for each U ∈ U , we have

Prob
(︁
d(Y1, Y1) ≤ ϵ ∧ C(Y1) ≥ c

)︁
≥ 1− δ − δ̄.

Since C is Hölder continuous w.r.t. d, we know that equation
(6) holds for each U ∈ U . Consequently, we can conclude that
Prob(infU∈U C(Y2) ≥ c−Hϵγ) ≥ 1− δ − δ̄ .

B. Transference under non-conformance risk

On the other hand, by considering the notion of r-non-
conformance risk, we expect that two systems S1 and S2 that
are not at risk of being r-non-conformant have a similar risk of
violating a specification. Here, we define the risk of violating
a specifications by following ideas from [14] as R(−C(Y1))
and R(−C(Y2)).

Theorem 3. Let the premises in Definitions 1 and 3 hold.
Further, let the systems S1 and S2 under the input U not
be at risk of being r-non-conformant so that equation (3)
does not hold (i.e., R(d(Y1, Y2)) ≤ r) and let C be Hölder

continuous w.r.t. d with γ = 1 so that equation (6) holds. If
the risk measure R is monotone, positive homogeneous, and
subadditive, it holds that

R(−C(Y2)) ≤ R(−C(Y1)) +Hr.

Proof. We can derive the following chain of inequalities

R(−C(Y2))
(a)

≤ R(−C(Y1) +Hd(Y1, Y1))

(b)

≤ R(−C(Y1)) +R(Hd(Y1, Y1))

(c)
= R(−C(Y1)) +HR(d(Y1, Y1))

(d)

≤ R(−C(Y1)) +Hr

where (a) follows since C is Hölder continuous w.r.t. d and
since R is monotone, (b) follows since R is subadditive,
and (c) follows since R is positive homogeneous, while the
inequality (d) follows since S1 and S2 under U are not at risk
of being r-non-conformant, i.e., R(d(Y1, Y2)) ≤ r.

This result implies that the risk of system S2 w.r.t. the
performance function C is upper bounded by the risk of system
S1 w.r.t. C if the systems S1 and S2 are not at risk of being
r-non-conformant. We remark that a similar result appeared in
our prior work [35]. Here, we present these results in the more
general context of conformance and extend the result as we use
general performance functions C, which additionally requires
R to be positive homogeneous. Additionally, we derive a
transference result similar to Theorem 3 when we assume
that the systems S1 and S2 are not at risk of being r-non-
conformant in the sense of Definition 2 instead of Definition 1.

Theorem 4. Let the premises in Definitions 2 and 3 hold.
Further, let the systems S1 and S2 not be at risk of being
r-non-conformant so that equation (5) does not hold (i.e.,
R(supU∈U d(Y1, Y2)) ≤ r) and let C be Hölder continuous
w.r.t. d with γ = 1 so that equation (6) holds. If the risk mea-
sure R is monotone, positive homogeneous, and subadditive,
it holds that

R(− inf
U∈U

C(Y2)) ≤ R(− inf
U∈U

C(Y1)) +Hr.

Proof. We can derive the following chain of inequalities

R(− inf
U∈U

C(Y2))
(a)

≤ R(− inf
U∈U

C(Y1) +H sup
U∈U

d(Y1, Y1))

(b)

≤ R(− inf
U∈U

C(Y1)) +R(H sup
U∈U

d(Y1, Y1))

(c)
= R(− inf

U∈U
C(Y1)) +HR(sup

U∈U
d(Y1, Y1))

(d)

≤ R(− inf
U∈U

C(Y1)) +Hr

where (a) follows since − infU∈U C(Y2) = supU∈U −C(Y2),
since C is Hölder continuous w.r.t. d, and since R is monotone,
(b) follows since R is subadditive, and (c) follows since R
is positive homogeneous. The inequality (d) follows since
S1 and S2 are not at risk of being r-non-conformant, i.e.,
supU∈U R(d(Y1, Y2)) ≤ r.

298

V. STATISTICAL ESTIMATION OF STOCHASTIC
CONFORMANCE

We propose algorithms to compute stochastic conformance
and the non-conformance risk. In practice, note that one will
be limited to discrete-time stochastic systems to apply these
algorithms.

A. Estimating stochastic conformance

To estimate stochastic conformance, we use conformal
prediction which is a statistical tool introduced in [28], [36] to
obtain valid uncertainty regions for complex prediction models
without making assumptions on the underlying distribution or
the prediction model [27], [37]–[40]. Let Z,Z(1), . . . , Z(k)

be k + 1 independent and identically distributed random
variables modeling a quantity known as the nonconformity
score. Our goal is to obtain an uncertainty region for Z
based on Z(1), . . . , Z(k), i.e., the random variable Z should be
contained within the uncertainty region with high probability.
Formally, given a failure probability δ ∈ (0, 1), we want
to construct a valid uncertainty region over Z (defined in
terms of a value Z̄) that depends on Z(1), . . . , Z(k) such that
Prob(Z ≤ Z̄) ≥ 1− δ.

By a surprisingly simple quantile argument, see [27, Lemma
1], one can obtain Z̄ to be the (1 − δ)th quantile of the
empirical distribution of the values Z(1), . . . , Z(k) and ∞.
By assuming that Z(1), . . . , Z(k) are sorted in non-decreasing
order, and by adding Z(k+1) := ∞, we can equivalently obtain
Z̄ := Z(p) where p := ⌈(k + 1)(1 − δ)⌉ with ⌈·⌉ being the
ceiling function.

We can now use conformal prediction to estimate stochastic
conformance as defined in Definition 1 by setting Z :=
d(Y1, Y2). We therefore assume that we have access to a
calibration dataset Dcal that consists of realizations y

(i)
1 and

y
(i)
2 from the stochastic signals Y1 ∼ D1 and Y2 ∼ D2,

respectively.

Theorem 5. Let the premises of Definition 1 hold and Dcal

be a calibration dataset with datapoints (y
(i)
1 , y

(i)
2) drawn

from D1 × D2. Further, define Z(i) := d(y
(i)
1 , y

(i)
2) for all

i ∈ {1, . . . , |Dcal|} and Z(|Dcal|+1) := ∞, and assume that the
Z(i) are sorted in non-decreasing order. Then, it holds that
Prob(d(Y1, Y2) ≤ Z̄) ≥ 1 − δ with Z̄ defined as Z̄ := Z(p)

where p :=
⌈︁
(|Dcal| + 1)(1 − δ)

⌉︁
. Thus, the systems S1 and

S2 under the input U are (ϵ, δ)-conformant if Z̄ ≤ ϵ.

We see that checking stochastic conformance as defined in
Definition 1 is computationally simple when we have a calibra-
tion dataset Dcal. Checking stochastic conformance as defined
in Definition 2, however, is more difficult due to the existence
of the sup-operator. To compute this notion of conformance,
we make two assumptions: i) the set U is compact, and ii) for
every realization ω ∈ Ω, the function d(Y1(·, ω), Y2(·, ω)) is
Lipschitz continuous with Lipschitz constant L. While knowl-
edge of the Lipschitz constant L would presume knowledge
about the closeness of the systems S1 and S2, it would only
provide a conservative over-approximation. We will, however,
not need to know the Lipschitz constant L and estimate L
instead along with probabilistic guarantees.

Algorithm 1 Conformance Estimation as per Definition 2
Input: Failure probability δ ∈ (0, 1) and grid size κ > 0
Output: Z̄ such that Prob(supU∈U d(Y1, Y2) ≤ Z̄ +
Lκ) ≥ 1− δ

1: Construct κ-net Ū of U
2: for Ū ∈ Ū do
3: Obtain calibration set DŪ

cal consisting of realizations
(y

(i)
1 , y

(i)
2) under Ū

4: Compute Z̄Ū := Z(p) by applying Theorem 5 but
instead using dataset DŪ

cal

5: Z̄ := maxŪ∈Ū Z̄Ū

Our approach is summarized in Algorithms 1 and 2. Al-
gorithm 1 computes Z̄ such that Prob(supU∈U d(Y1, Y2) ≤
Z̄+Lκ) ≥ 1− δ when L is known and where κ is a gridding
parameter, while Algorithm 2 estimates the Lipschitz constant.
We present a description of these algorithms upfront and state
their theoretical guarantees afterwards.

In line 1 of Algorithm 1, we construct a κ-net Ū of U , i.e.,
we construct a finite set Ū so that for each U ∈ U there exists
a Ū ∈ Ū such that d̄(U, Ū) ≤ κ where d̄ : U × U → R
is a metric. For this purpose, simple gridding strategies can
be used as long as the set U has a convenient representation.
Alternatively, randomized algorithms can be used that sample
from U [41]. In lines 2-4, we apply Theorem 5 for each
element Ū ∈ Ū . Therefore, we obtain realizations (y

(i)
1 , y

(i)
2)

from D1×D2 under Ū (line 3). We then compute Z̄Ū so that
Prob(d(Y1(Ū , ·), Y2(Ū , ·)) ≤ Z̄Ū) ≥ 1 − δ (line 4). Finally,
we set Z̄ := maxŪ∈Ū Z̄Ū (line 5).

In Algorithm 2, we compute L̄ such that Prob(L ≤ L̄) ≥
1 − δL. We uniformly sample control inputs (U ′, U ′′) (line
2), obtain realizations (y′1, y

′
2) from D1 × D2 under U ′ and

realizations (y′′1 , y
′′
2) from D1 × D2 under U ′′ (line 3), and

compute the non-conformity score L(i) (line 4). In line 5, we
obtain an estimate L̄ of the Lipschitz constant L that holds
with a probability of 1 − δL over the randomness introduced
in Algorithm 1.

Theorem 6. Let the premises of Definition 2 hold. If the Lip-
schitz constant L of d(Y1(·, ω), Y2(·, ω)) is known uniformly
over ω ∈ Ω, then, for a gridding parameter κ > 0, the output
Z̄ of Algorithm 1 ensures that

Prob(sup
U∈U

d(Y1, Y2) ≤ Z̄ + Lκ) ≥ 1− δ

Thus, the systems S1 and S2 are (ϵ, δ)-conformant if Z̄+Lκ ≤
ϵ. Otherwise, let δL ∈ (0, 1) be a failure probability, then the
output L̄ of Algorithm 2 ensures that

Prob(sup
U∈U

d(Y1, Y2) ≤ Z̄ + L̄κ) ≥ 1− δ − δL

where Prob is defined over the randomness introduced in
Algorithm 2.

Proof. From line 4 of Algorithm 1 we know that
Prob(d(Y1(Ū , ·), Y2(Ū , ·)) ≤ Z̄Ū) ≥ 1 − δ for each Ū ∈ U .

299

Algorithm 2 Lipschitz Constant Estimation of L
Input: Failure probabilities δL ∈ (0, 1), grid size κ > 0,
calibration size KL > 0
Output: L̄ such that Prob(supU∈U d(Y1, Y2) ≤ Z̄ +
L̄κ) ≥ 1− δ − δL

1: for i from 1 to KL do
2: Sample (U ′, U ′′) uniformly from U × U
3: Obtain realizations (y′1, y

′
2) under U ′ and (y′′1 , y

′′
2) under

U ′′

4: Compute L(i) := |d(y′1, y′2)− d(y′′1 , y
′′
2)|/d̄(U ′, U ′′)

5: Compute L̄ := L(p) where p :=
⌈︁
(KL + 1)(1− δ′′)

⌉︁

Due to Lipschitz continuity, we can conclude that for each
U ∈ U that is such that d̄(U, Ū) ≤ κ it holds that

Prob(d(Y1, Y2) ≤ Z̄Ū + Lκ) ≥ 1− δ.

Since Ū is a κ-net of U , it follows that
Prob(supU∈U d(Y1, Y2) ≤ Z̄ + Lκ) ≥ 1− δ.

For the second part of the proof, note that from line 5 of
Algorithm 2 we know that Prob(L ≤ L̄) ≥ 1−δL. We can now
union bound over this event and Prob(d(Y1(Ū , ·), Y2(Ū , ·)) ≤
Z̄Ū) ≥ 1− δ so that

Prob(d(Y1(Ū , ·), Y2(Ū , ·)) ≤ Z̄Ū ∧ L ≤ L̄) ≥ 1− δ − δL.

The rest of the proof follows as in the first part.

B. Estimating non-conformance risk

We next briefly summarize how to estimate the value-at-
risk and the conditional value-at-risk following standard results
such as from [14], [42] and [43], respectively.

Proposition 2. Let the premises of Definition 1 hold and Dcal

be a calibration dataset with datapoints (y(i)1 , y
(i)
2) drawn from

D1 × D2. Let β ∈ (0, 1) be a risk level and γ ∈ (0, 1) be a
failure threshold. Define Z(i) := d(y

(i)
1 , y

(i)
2) for each i ∈

{1, . . . , |Dcal|} and assume that Prob(Z ≤ α) is continuous
in α. Then,

Prob
(︁
V aRβ ≤ V aRβ(d(Y1, Y2)) ≤ V aRβ

)︁
≥ 1− γ.

where we have V aRβ :=

inf
{︂
α ∈ R

⃓⃓⃓ ˆ︃Prob(Z ≤ α)−
√︂

ln(2/γ)
2|Dcal| ≥ β

}︂
and

V aRβ := inf
{︂
α ∈ R

⃓⃓⃓ ˆ︃Prob(Z ≤ α) +
√︂

ln(2/γ)
2|Dcal| ≥ β

}︂
with the empirical cumulative distribution functionˆ︃Prob(Z ≤ α) := 1

|Dcal|
∑︁|Dcal|

i=1 I(Z(i) ≤ α) and the
indicator function I.

For estimating CV aRβ(Z), we assume that the ran-
dom variable d(Y1, Y2) has bounded support, i.e., that
Prob(d(Y1, Y2) ∈ [a, b]) = 1. Note that d(Y1, Y2) is usually
bounded from below by a := 0 if d is a metric. To obtain an
upper bound, we assume that the distance function saturated
at b, e.g., by clipping values larger than b to b. In practice,
this means that realizations that are far apart already have a
large distance and are capped to b.

Proposition 3. Let the premises of Definition 1 hold and Dcal

be a calibration dataset with datapoints (y(i)1 , y
(i)
2) drawn from

D1 × D2. Let β ∈ (0, 1) be a risk level and γ ∈ (0, 1) be a
failure threshold. Define Z(i) := d(y

(i)
1 , y

(i)
2) for each i ∈

{1, . . . , |Dcal|} and assume that Prob(d(Y1, Y2) ∈ [a, b]) = 1.
Then, it holds that

Prob
(︁
CV aRβ ≤ CV aRβ(d(Y1, Y2)) ≤ CV aRβ

)︁
≥ 1− γ.

where CV aRβ := ˆ︂CV aRβ +
√︂

5 ln(3/γ)
|Dcal|(1−β) (b − a) and

CV aRβ := ˆ︂CV aRβ−
√︂

11 ln(3/γ)
|Dcal|(1−β) (b−a) where the empirical

estimate of CV aRβ(Z) is ˆ︂CV aRβ := infα∈R
(︁
α+(|Dcal|(1−

β))−1
∑︁|Dcal|

i=1 [Zi − α]+
)︁
.

As a consequence of these two lemmas, we know that with
a probability of 1− γ the systems S1 and S2 under the input
U are at risk of not being conformant if V aRβ ≥ α or
CV aRβ ≥ α based on the risk measure of choice.

VI. CASE STUDIES

We now demonstrate the practicality of stochastic confor-
mance and risk analysis through various case studies. For
validation, if we obtain the value Z̄ using a conformal pre-
diction procedure for a nonconformity score defined by the
random variable Z, i.e., such that Prob(Z ≤ Z̄) ≥ 1 − δ.
Then, given a test set Dtest, the validation score is defined as
V S(Z) := |{z ∈ Dtest | z ≤ Z̄}|/|Dtest|.

A. Dubin’s car.

Dubin’s car models the motion of a point mass vehicle.
The state variables are the x and y position, θ denotes the
steering angle and v the longitudinal velocity. While both θ
and v are typically assumed to be control inputs, we adapt
the case study from [44] where the angular velocity ω(t) at
each time t is assumed to be given so that θ(t) := Tsπ +∑︁t

i=1 ω(i)Ts where Ts := 0.1s. In this example, we assume
that ω(i) := π

50Ts
for i ∈ [1, 25], and ω(i) := − π

50Ts
for i ∈

[26, 50]. The velocity v(t) is provided by a feedback controller.
The dynamics are assumed to have additive white Gaussian
noise ηx(t), ηy(t) ∼ N (0, 0.005). The dynamical equations
of motion are as described below:

x(t+1) = x(t)+Tsv(t) cos(θ(t)) + ηx(t)

y(t+1) = y(t)+Tsv(t) sin(θ(t)) + ηy(t)

The two systems that we compare have two different feed-
back controllers. The first feedback controller uses the method
from [44], [45] and the second controller uses the method from
[46]. We plot a set of sampled trajectories in Fig. 1a. This fig-
ure also shows the set of initial states I := [−1, 0]× [−1, 0].
The controller aims to ensure that the system trajectory stays
within a series of sets T1 through T50, the corresponding
STL specification is ϕdubin :=

⋀︁50
i=1 F[i−1,i] ([xi yi] ∈ Ti).

For the experiments that follow, we uniformly sampled initial
states from I and noise ηx, ηy from the described Gaussian
distribution.
Effect of calibration set size. In the first experiment, we wish
to benchmark the effect of the size of the calibration set Dcal

300

(a) Targets in Du-
bin’s car

(b) CARLA: Cross-track error sig-
nals for S1, S2

(c) F16: altitude signals for S1, S2 (d) Spacecraft Trajectories

Fig. 1: The solid lines refer to Y1 and the dashed lines refer to Y2; in each of the displayed plots, the initial condition for each
pair of realizations is the same.

(a) Trajectory distance on validation set (b) Robustness on validation set con-
troller 1

(c) Robustness on validation set con-
troller 2

Fig. 2: Distance and robustness histogram for Dubin’s car with δ = δ̄ = 0.05. We use CV aR(d) to denote CV aR(d(Y1, Y2)).
The c1 and ϵ are the values of conformal prediction on the calibration set of ρϕdubin(Y1) and d∞(Y1, Y2).

for various distance metrics. The results are shown in Table I.
The table shows that with smaller sizes of the calibration set,
we get a more conservative ϵ for d∞ (which translates into
a higher validation score). The V aR is almost identical to
the value of ϵ at larger Dcal sizes. We note that the CV aR
values change with the value of V aR. A similar trend can be
observed the Skorokhod distance and the L2-metric.
Empirical evaluation of transference. We empirically demon-
strate that Theorem 1 holds. We use C(Y) = ρϕdubin(Y),
i.e., the robust semantics w.r.t. the property ϕdubin, and the
L∞ signal metric d∞. The results are shown in Table II. We
can see that the predicted upper bound for the robustness of
realizations of Y2 w.r.t. ϕdubin is negative (c1− ϵ), so it is not
possible to conclude that the second system satisfies ϕdubin

with probability greater than 1 − δ − δ̄. However, we note
that c2 is indeed greater than the bound (c1 − ϵ). Similarly,
we show that Theorem 3 is also empirically validated by
computing the CV aR values for the first system and the risk
measure on d∞(Y1, Y2). We show the empirical distributions
of d∞(Y1, Y2), and ρϕdubin(Yi) for i = 1, 2 in Figure 2.
Empirical evaluation of Theorem 2. We next apply Algo-
rithms 1 and 2 to this case study. We grid the initial set of
states evenly into 25 cells with a grid size of κ = 0.02. We
sample 650 trajectories on each cell to obtain their calibration
sets. Algorithm 2 gives Z̄ = 0.7562 and Lκ = 0.0687, giving
Z̄+Lκ = 0.8249. We then evaluate on two test sets of unseen
initial conditions with |Dtest| = 1000, 2500. The success rate

on the test sets are 0.9996 and 1.0, with the goal success rate
being 0.9. The experiments demonstrate the effectiveness of
Theorem 6.

B. F-16 aircraft.

The F-16 aicraft control system from [47] uses a 13-
dimensional non-linear plant model based on a 6 d.o.f. airplane
model, and its dynamics describe force equations, moments,
kinematics, and engine behavior. We alter the original system
S1 from [47] to a modified version S2 by changing the
controller gains. We evaluate the performance of the two
systems on the ground collision avoidance scenario with the
specification ϕgcas := G[0,T](h ≥ 1000) where T is the
mission time and h is the altitude. For data collection, we
perform uniform sampling of the initial states. We assume
that the x-center of gravity (xcg) of the aircraft is a stochastic
parameter with uniform distribution on [0, 0.8]. We obtain a
calibration set Dcal of size 1000 by uniform sampling of the
initial states and the xcg parameter. We separately sample 3000
signals for Dtest. The results of transference and risk estimates
are shown in Table III.

C. Autonomous Driving using the CARLA simulator.

CARLA is a high-fidelity simulator for testing of au-
tonomous driving systems [48]. We consider two learning-
based lane-keeping controllers from [14], one being an im-
itation learning controller (S1) and another being a learned

301

Distance |Dcal| ϵ d(Y1, Y2)

Metric V S(d(Y1, Y2)) V aR(d(Y1, Y2)) CV aR(d(Y1, Y2))

d∞

50 0.7825 0.987 0.7183 0.7947
1000 0.7163 0.956 0.7148 0.7647
2000 0.7122 0.952 0.712 0.7814
3000 0.7118 0.952 0.7117 0.7862

dsk
(Skorokhod
Distance)

50 0.6723 0.953 0.6517 0.7181
1000 0.6722 0.972 0.6711 0.7156
2000 0.6645 0.96 0.6639 0.7106
3000 0.6619 0.952 0.6613 0.7079

d2

50 2.6086 0.937 2.503 2.612
1000 2.7339 0.96 2.732 3.048
2000 2.7071 0.944 2.706 3.044
3000 2.7238 0.955 2.722 3.0929

TABLE I: Effect of calibration set size on the validation score and risk measures. The size of the test set, i.e., |Dtest|, is 1000.
We use the conformal prediction procedure from Section V to obtain ϵ as defined in Definition 1 for δ = 0.05.

|Dcal| c1 ϵ V S(ρ1) V S(d∞) c2 Thm 1 CV aR Thm.3

valid? −d∞ −ρ1 −ρ2 valid?

δ = 0.2, 100 0.31 0.59 0.95 0.76 0.21 Y 0.90 -0.28 0.00 Y
δ̄ = 0.05 3K 0.30 0.60 0.95 0.79 0.20 Y 0.93 -0.27 0.03 Y

δ = 0.1, 1K 0.30 0.67 0.96 0.92 0.15 Y 0.79 -0.27 0.02 Y
δ̄ = 0.05 3K 0.30 0.66 0.95 0.91 0.15 Y 0.81 -0.27 0.03 Y

δ = 0.05, 2K 0.31 0.71 0.94 0.95 0.11 Y 0.78 -0.27 0.02 Y
δ̄ = 0.05 3K 0.30 0.71 0.95 0.95 0.11 Y 0.79 -0.27 0.03 Y

TABLE II: Empirical evaluation of transference. Let ρi be short-hand for ρφdubin(Yi) for i = 1, 2, and d∞ be short-hand
for d∞(Y1, Y2). Using Theorem 5, we show Prob(ρ1 ≥ c1) > 1 − δ̄, and Prob(d∞ ≤ ϵ) > 1 − δ. The validity scores
for each guarantee on a test set Dtest with 1000 samples are shown. The value c2 is obtained using Theorem 5 on ρ2
and observe that it exceeds c1 − ϵ, validating Theorem 1. Similarly, we report the CV aR values for −ρ1 and d∞, and
CV aR(−ρ1) + CV aR(d∞) ≥ CV aR(−ρ2) for all cases, validating Theorem 3.

Case Study Spec |Dcal| |Dtest| V S(ρ1) V S(d∞) ϵ V aR(d∞)

F-16 ϕgcas 1K 3K 0.95 0.98 200 200
CARLA ϕcte 700 300 0.94 0.96 1.88 1.87
Satellite ϕsat 7K 3K 0.96 0.97 0.18 0.18

TABLE III: Transference results for various case studies. We use δ = 0.05 and δ̄ = 0.05. As before, ρ1 is used as short-hand
for ρϕ(Y1) for each spec, and d∞ is used as short-hand for d∞(Y1, Y2).

barrier function controller (S2). We obtain 1000 trajectories
from each controller during a 180 degree left turn, and we
use 700 of them for calibration and 300 for testing. In this
data, the initial states (ce, θe) are drawn uniformly from
[−1, 1]× [−0.4, 0.4] where ce is the deviation from the center
of the lane center (cross track error) and θe is the orientation
error. The STL specification ϕcte := G(|ce| ≤ 2.25) restricts
|ce| to be bounded by 2.25. The results are shown in Table III.

D. Spacecraft Rendezvous

Next, we consider a spacecraft rendezvous problem from
[49]. Here, a deputy spacecraft is to rendezvous with a
master spacecraft while staying within a line-of-sight cone.
The system is a 4D model s = [x, y, vx, vy]

⊤ where
x, y ∈ R are the relative horizontal and vertical distances
between the two spacecrafts and vx, vy ∈ R are the relative
vertical and horizontal velocities. There are two different
feedback controllers, using the same control algorithms
we used in Dubin’s car example (i.e., the controllers from
[44], [45] and [46]). The STL specification is a reach-

302

Case Study Spec |Dcal| |Dtest| δ CV aR

d∞ −ρ1 −ρ2

F-16 ϕgcas 1K 3K 0.01 200.3 -62.3 -62.3
CARLA ϕquad 7K 3K 0.01 2.04 -0.31 0.88
Satellite ϕsat 7K 3K 0.01 0.19 0.0 0.08

TABLE IV: Empirical validation of risk transference for all case studies. As before, ρi is short-hand for ρϕ(Yi), and d∞ is
short-hand for d∞(Y1, Y2). Here, we set the risk level β = δ in each case.

avoid specification (visually depicted in Fig. 1d), which
requires the system to always stay in the yellow region
and eventually reach the target rectangle T shown: ϕsat :=
G[1,5] (y, |y|, |vx|, |vy| ≤ −|x|, ymax, vx,max, vy,max) ∧
F[1,5]s ∈ T . The set of initial states is I =
[−0.1, 0.1] × [−0.1, 0.1]. The system is assumed
to have additive Gaussian process noise with zero
mean and a diagonal covariance matrix with variances
10−4, 10−4, 5 × 10−8, 5 × 10−8. We uniformly sample 100
different initial states from I and 100 noise values sampled
from the noise distribution. We divide the dataset into Dcal

and Dtest with sizes 7K and 3K respectively. The results are
shown in Table III.
Discussion on results for Transference across case studies.
We omit the column for Table III that shows the proportion
of Dtest of the realizations of Y2 for which the bound c1 − ϵ
exceeds c2, where the ci’s are the conformal bounds on ρi’s.
For all case studies this ratio was either 1.0 or close to
1.0, establishing the empirical validity of Theorem 1. We
also observe that above results show that it is feasible to
use stochastic conformance in a control improvization loop,
where we want to change a system controller (perhaps for
optimizing a performance objective) while allowing only some
degradation on probabilistic safety guarantees.

VII. RELATED WORK

Conformance has found applications in cyber-physical sys-
tem design [50], [51] as well as in drug testing and other
applications [52]–[54]. Our work is inspired by existing works
for conformance of deterministic systems by which we mean
that systems are non-stochastic, see [21], [55] for surveys. The
authors in [23]–[25] considered conformance testing between
hybrid system. To capture distance between hybrid system
trajectories that may exhibit discontinuities, signal metrics
were considered that simultaneously quantify distance in space
and time, resembling notions of system closeness in the
hybrid systems literature [56], [57]. For instance, [23] proposes
(T, J, (τ, ϵ))-closeness where τ and ϵ capture both timing
distortions and state value mismatches, respectively, and where
T and J quantify limits on the total time and number of
discontinuities, respectively. A stronger notion compared to
(T, J, (τ, ϵ))-closeness was proposed in [22] by using the
Skoroghod metric. The benefit of [22] over the other notion is
that it preserves the timing structure. All these works derive
transference results with respect to timed linear temporal logic
or metric interval temporal logic specifications.

Conformance of stochastic systems has been less studied.
The authors in [58] propose precision and recall conformance
measures based on the notion of entropy of stochastic au-
tomata. The authors in [59] use the Wasserstein distance
to quantify distance between two stochastic systems, which
is fundamentally different from our approach. (Bi)simulation
relations for stochastic systems were studied in [60]–[62].
Such techniques can define behavioral relations for systems
[63], [64], and they can be used to transfer verification results
between systems [65]. The authors in [66] utilize such behav-
ioral relations to verify RL policies between a concrete and an
abstract system. We remark that bisimulations are difficult to
compute, see e.g., [67], unlike our approach. Probably closest
to our work is [34]. However, in this paper conformance
is task specific which allows two systems to be conformant
w.r.t. a system specification even when the systems produce
completely different trajectories. Additionally, we consider a
worst-case notion of conformance where no information about
the input that excites both stochastic systems is available.

VIII. CONCLUSION

We studied conformance of stochastic dynamical systems.
Particularly, we defined conformance between two stochastic
systems as probabilistic bounds over the distribution of dis-
tances between model trajectories. Additionally, we proposed
the non-conformance risk to reason about the risk of stochastic
systems not being conformant. We showed that both notions
have the transference property, meaning that conformant sys-
tems satisfy similar system specifications. Lastly, we showed
how stochastic conformance and the non-conformance risk can
be estimated from data using statistical tools such as conformal
prediction.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their feedback. The National Science Foundation sup-
ported this work through the following grants: CAREER
award (SHF-2048094), CNS-1932620, CNS-2039087, FMitF-
1837131, CCF-SHF-1932620, the Airbus Institute for Engi-
neering Research, and funding by Toyota R&D and Siemens
Corporate Research through the USC Center for Autonomy
and AI.

REFERENCES

[1] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Ničković, and S. Sankaranarayanan, “Specification-based monitoring
of cyber-physical systems: a survey on theory, tools and applications,”
Lectures on Runtime Verification: Introductory and Advanced Topics,
pp. 135–175, 2018.

303

[2] Q. Thibeault, J. Anderson, A. Chandratre, G. Pedrielli, and G. Fainekos,
“Psy-taliro: A python toolbox for search-based test generation for cyber-
physical systems,” in Formal Methods for Industrial Critical Systems:
26th International Conference, FMICS 2021, Paris, France, August 24–
26, 2021, Proceedings 26. Springer, 2021, pp. 223–231.

[3] T. Akazaki, S. Liu, Y. Yamagata, Y. Duan, and J. Hao, “Falsification of
cyber-physical systems using deep reinforcement learning,” in Formal
Methods: 22nd International Symposium, FM 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 15-17, 2018,
Proceedings 22. Springer, 2018, pp. 456–465.

[4] J. V. Deshmukh and S. Sankaranarayanan, “Formal techniques for
verification and testing of cyber-physical systems,” Design Automation
of Cyber-Physical Systems, pp. 69–105, 2019.

[5] X. Qin, N. Aréchiga, A. Best, and J. Deshmukh, “Automatic testing with
reusable adversarial agents,” arXiv preprint arXiv:1910.13645, 2021.

[6] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[7] Y. Wang, M. Zarei, B. Bonakdarpour, and M. Pajic, “Statistical verifica-
tion of hyperproperties for cyber-physical systems,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–23,
2019.

[8] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model checking:
An overview,” in Proceedings of the International conference on runtime
verification, St. Julians, Malta, November 2010, pp. 122–135.

[9] A. Legay and M. Viswanathan, “Statistical model checking: challenges
and perspectives,” International Journal on Software Tools for Technol-
ogy Transfer, vol. 17, pp. 369–376, 2015.

[10] G. Agha and K. Palmskog, “A survey of statistical model checking,”
ACM Transactions on Modeling and Computer Simulation (TOMACS),
vol. 28, no. 1, pp. 1–39, 2018.

[11] A. Abate, A. Edwards, M. Giacobbe, H. Punchihewa, and D. Roy,
“Quantitative verification with neural networks for probabilistic pro-
grams and stochastic systems,” 2023.

[12] Y. Zhao and K. Y. Rozier, “Probabilistic model checking for comparative
analysis of automated air traffic control systems,” in 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2014,
pp. 690–695.

[13] X. Qin, Y. Xia, A. Zutshi, C. Fan, and J. V. Deshmukh, “Statistical
verification of cyber-physical systems using surrogate models and con-
formal inference,” in 2022 ACM/IEEE 13th International Conference on
Cyber-Physical Systems (ICCPS), 2022, pp. 116–126.

[14] L. Lindemann, L. Jiang, N. Matni, and G. J. Pappas, “Risk of stochastic
systems for temporal logic specifications,” ACM Transactions on Em-
bedded Computing Systems, vol. 22, no. 3, pp. 1–31, 2023.

[15] P. Akella, A. Dixit, M. Ahmadi, J. W. Burdick, and A. D. Ames,
“Sample-based bounds for coherent risk measures: Applications to
policy synthesis and verification,” arXiv preprint arXiv:2204.09833,
2022.

[16] A. D. Pimentel, “Exploring exploration: A tutorial introduction to
embedded systems design space exploration,” IEEE Design & Test,
vol. 34, no. 1, pp. 77–90, 2016.

[17] W. H. Schilders, H. A. Van der Vorst, and J. Rommes, Model order
reduction: theory, research aspects and applications. Springer, 2008,
vol. 13.

[18] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7,
pp. 971–984, 2000.

[19] C. Belta, B. Yordanov, and E. A. Gol, Formal methods for discrete-time
dynamical systems. Springer, 2017, vol. 15.

[20] A. S. Polydoros and L. Nalpantidis, “Survey of model-based rein-
forcement learning: Applications on robotics,” Journal of Intelligent &
Robotic Systems, vol. 86, no. 2, pp. 153–173, 2017.

[21] H. Roehm, J. Oehlerking, M. Woehrle, and M. Althoff, “Model con-
formance for cyber-physical systems: A survey,” ACM Transactions on
Cyber-Physical Systems, vol. 3, no. 3, pp. 1–26, 2019.

[22] J. V. Deshmukh, R. Majumdar, and V. S. Prabhu, “Quantifying con-
formance using the skorokhod metric,” in Computer Aided Verification:
27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part II 27. Springer, 2015, pp. 234–250.

[23] H. Abbas, B. Hoxha, G. Fainekos, J. V. Deshmukh, J. Kapinski,
and K. Ueda, “Conformance testing as falsification for cyber-physical
systems,” arXiv preprint arXiv:1401.5200, 2014.

[24] H. Abbas, H. Mittelmann, and G. Fainekos, “Formal property verifica-
tion in a conformance testing framework,” in 2014 Twelfth ACM/IEEE
Conference on Formal Methods and Models for Codesign (MEM-
OCODE). IEEE, 2014, pp. 155–164.

[25] H. Y. Abbas, Test-based falsification and conformance testing for cyber-
physical systems. Arizona State University, 2015.

[26] A. Majumdar and M. Pavone, “How should a robot assess risk? towards
an axiomatic theory of risk in robotics,” in Robotics Research. Springer,
2020, pp. 75–84.

[27] R. J. Tibshirani, R. Foygel Barber, E. Candes, and A. Ramdas, “Confor-
mal prediction under covariate shift,” in Proceedings of the Conference
on Neural Information Processing Systems, vol. 32, Vancouver, Canada,
December 2019.

[28] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a
random world. Springer Science & Business Media, 2005.

[29] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Proceedings of the Formal Techniques, Modelling
and Analysis of Timed and Fault-Tolerant Systems, Grenoble, France,
September 2004, pp. 152–166.

[30] X. Qin, N. Hashemi, L. Lindemann, and J. V. Deshmukh, “Confor-
mance testing for stochastic cyber-physical systems,” arXiv preprint
arXiv:2308.06474, 2023.

[31] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Proceedings of the International Conference
on Formal Modeling and Analysis of Timed Systems, Klosterneuburg,
Austria, September 2010, pp. 92–106.

[32] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[33] R. M. Gray, Entropy and information theory. Springer Science &
Business Media, 2011.

[34] Y. Wang, M. Zarei, B. Bonakdarpoor, and M. Pajic, “Probabilistic con-
formance for cyber-physical systems,” in Proceedings of the ACM/IEEE
12th International Conference on Cyber-Physical Systems, 2021, pp.
55–66.

[35] M. Cleaveland, L. Lindemann, R. Ivanov, and G. J. Pappas, “Risk
verification of stochastic systems with neural network controllers,”
Artificial Intelligence, vol. 313, p. 103782, 2022.

[36] G. Shafer and V. Vovk, “A tutorial on conformal prediction.” Journal of
Machine Learning Research, vol. 9, no. 3, 2008.

[37] A. N. Angelopoulos and S. Bates, “A gentle introduction to confor-
mal prediction and distribution-free uncertainty quantification,” arXiv
preprint arXiv:2107.07511, 2021.

[38] M. Fontana, G. Zeni, and S. Vantini, “Conformal prediction: A unified
review of theory and new challenges,” Bernoulli, vol. 29, no. 1, pp. 1 –
23, 2023.

[39] J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman,
“Distribution-free predictive inference for regression,” Journal of the
American Statistical Association, vol. 113, no. 523, pp. 1094–1111,
2018.

[40] M. Cauchois, S. Gupta, A. Ali, and J. C. Duchi, “Robust validation:
Confident predictions even when distributions shift,” arXiv preprint
arXiv:2008.04267, 2020.

[41] R. Vershynin, High-dimensional probability: An introduction with ap-
plications in data science. Cambridge university press, 2018, vol. 47.

[42] P. Massart, “The tight constant in the dvoretzky-kiefer-wolfowitz in-
equality,” The annals of Probability, pp. 1269–1283, 1990.

[43] Y. Wang and F. Gao, “Deviation inequalities for an estimator of the
conditional value-at-risk,” Operations Research Letters, vol. 38, no. 3,
pp. 236–239, 2010.

[44] A. P. Vinod and M. M. Oishi, “Affine controller synthesis for stochastic
reachability via difference of convex programming,” in 2019 IEEE 58th
Conference on Decision and Control (CDC). IEEE, 2019, pp. 7273–
7280.

[45] K. Lesser, M. Oishi, and R. S. Erwin, “Stochastic reachability for control
of spacecraft relative motion,” in 52nd IEEE Conference on Decision and
Control. IEEE, 2013, pp. 4705–4712.

[46] M. P. Vitus and C. J. Tomlin, “On feedback design and risk allocation in
chance constrained control,” in 2011 50th IEEE Conference on Decision
and Control and European Control Conference. IEEE, 2011, pp. 734–
739.

[47] P. Heidlauf, A. Collins, M. Bolender, and S. Bak, “Verification chal-
lenges in f-16 ground collision avoidance and other automated maneu-
vers,” in ARCH@ ADHS, 2018, pp. 208–217.

[48] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
Conference on robot learning. Mountain View, California: PMLR,
November 2017, pp. 1–16.

[49] A. P. Vinod, J. D. Gleason, and M. M. Oishi, “Sreachtools: a matlab
stochastic reachability toolbox,” in Proceedings of the 22nd ACM

304

international conference on hybrid systems: computation and control,
2019, pp. 33–38.

[50] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts, “Bench-
marks for model transformations and conformance checking,” in 1st
International Workshop on Applied Verification for Continuous and
Hybrid Systems (ARCH), 2014.

[51] H. Araujo, G. Carvalho, M. Mohaqeqi, M. R. Mousavi, and A. Sampaio,
“Sound conformance testing for cyber-physical systems: Theory and
implementation,” Science of Computer Programming, vol. 162, pp. 35–
54, 2018.

[52] R. Dimitrova, M. Gazda, M. R. Mousavi, S. Biewer, and H. Hermanns,
“Conformance-based doping detection for cyber-physical systems,” in
Formal Techniques for Distributed Objects, Components, and Systems:
40th IFIP WG 6.1 International Conference, FORTE 2020, Held as
Part of the 15th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2020, Valletta, Malta, June 15–19,
2020, Proceedings 40. Springer, 2020, pp. 59–77.

[53] S. Biewer, R. Dimitrova, M. Fries, M. Gazda, T. Heinze, H. Hermanns,
and M. R. Mousavi, “Conformance relations and hyperproperties for
doping detection in time and space,” arXiv preprint arXiv:2012.03910,
2020.

[54] R. Dimitrova, M. Gazda, M. R. Mousavi, S. Biewer, and H. Hermanns,
“Conformance-based doping detection for cyber-physical systems,” in
Formal Techniques for Distributed Objects, Components, and Systems,
A. Gotsman and A. Sokolova, Eds. Cham: Springer International
Publishing, 2020, pp. 59–77.

[55] N. Khakpour and M. R. Mousavi, “Notions of conformance testing
for cyber-physical systems: Overview and roadmap,” in 26th Interna-
tional Conference on Concurrency Theory (CONCUR 2015). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[56] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical systems,”
IEEE control systems magazine, vol. 29, no. 2, pp. 28–93, 2009.

[57] ——, “Hybrid dynamical systems: modeling stability, and robustness,”
Princeton, NJ, USA, 2012.

[58] S. J. Leemans and A. Polyvyanyy, “Stochastic-aware conformance
checking: An entropy-based approach,” in Advanced Information Sys-
tems Engineering: 32nd International Conference, CAiSE 2020, Greno-
ble, France, June 8–12, 2020, Proceedings 32. Springer, 2020, pp.
217–233.

[59] S. J. Leemans, A. F. Syring, and W. M. van der Aalst, “Earth movers’
stochastic conformance checking,” in Business Process Management
Forum: BPM Forum 2019, Vienna, Austria, September 1–6, 2019,
Proceedings 17. Springer, 2019, pp. 127–143.

[60] A. A. Julius, A. Girard, and G. J. Pappas, “Approximate bisimulation
for a class of stochastic hybrid systems,” in 2006 American Control
Conference. IEEE, 2006, pp. 6–pp.

[61] A. A. Julius and G. J. Pappas, “Approximations of stochastic hybrid
systems,” IEEE Transactions on Automatic Control, vol. 54, no. 6, pp.
1193–1203, 2009.

[62] S. Haesaert and S. Soudjani, “Robust dynamic programming for tempo-
ral logic control of stochastic systems,” IEEE Transactions on Automatic
Control, vol. 66, no. 6, pp. 2496–2511, 2020.

[63] G. Bian and A. Abate, “On the relationship between bisimulation
and trace equivalence in an approximate probabilistic context,” in
Foundations of Software Science and Computation Structures: 20th
International Conference, FOSSACS 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings 20. Springer, 2017,
pp. 321–337.

[64] A. A. Julius and A. Van Der Schaft, “Bisimulation as congruence in
the behavioral setting,” in Proceedings of the 44th IEEE Conference on
Decision and Control. IEEE, 2005, pp. 814–819.

[65] K. Zhang and M. Zamani, “Infinite-step opacity of nondeterministic
finite transition systems: A bisimulation relation approach,” in 2017
IEEE 56th Annual Conference on Decision and Control (CDC). IEEE,
2017, pp. 5615–5619.

[66] F. Delgrange, A. Nowe, and G. A. Pérez, “Wasserstein auto-encoded
mdps: Formal verification of efficiently distilled rl policies with many-
sided guarantees,” arXiv preprint arXiv:2303.12558, 2023.

[67] A. Girard and G. J. Pappas, “Approximate bisimulation: A bridge
between computer science and control theory,” European Journal of
Control, vol. 17, no. 5-6, pp. 568–578, 2011.

305

Formal Methods in Computer-Aided Design 2023

MediK: Towards Safe Guideline-based Clinical
Decision Support

Manasvi Saxena
University of Illinois

Urbana, IL, United States
msaxena2@illinois.edu

Shuang Song
University of Illinois

Urbana, IL, United States
shuangs3@illinois.edu

Lui Sha
University of Illinois

Urbana, IL, United States
lrs@illinois.edu

Abstract—Clinical Best Practice Guidelines (BPGs) are sys-
tematically developed, evidence-based statements published by
medical institutions and associations that standardize diagnosis
and treatment for various clinical scenarios. When expressed
in an executable medium, BPGs can be utilized to build systems
that assist healthcare professionals (HCPs) with situation-specific
advice. Such systems, known as Guideline-based Clinical Decision
Support Systems (CDSSs), have been shown to improve patient
outcomes.

Several Domain-Specific Languages (DSLs) have been pro-
posed to facilitate expressing BPGs in a computer-interpretable
format that is easily comprehensible to HCPs. Given the safety-
critical nature of CDSSs, the need for such languages to have
complete formal semantics and an ecosystem of formal analysis
tools has been recognized. Moreover, since these languages evolve
over time to accommodate complexities in modeling BPGs, tools
for them must also be adaptable to changes. But, existing
languages lack complete formal semantics, or analysis tools
derived from them.

This work introduces MediK: a new DSL for expressing BPGs
with a complete executable formal semantics, and formal analysis
tools, including a model checker, symbolic execution engine,
and deductive verifier. As MediK’s tools are derived from its
semantics, any update to the language is automatically reflected
across all tools. To evaluate our approach, we collaborated with a
major pediatric hospital to develop a MediK-based CDSS for the
screening and management of Pediatric Sepsis and validated that
it satisfies desired safety properties. Our CDSS is Institutional
Review Board (IRB) approved and is slated to undergo clinical
simulations.

Index Terms—Semantics, Model checking

I. INTRODUCTION

Preventable Medical Errors (PMEs) characterized by incor-
rect intended treatment, or incorrect executions of intended
treatment present a significant challenge in Healthcare [1].
According to a seminal report on the subject [2], in 1997,
between 44,000 and 98,000 deaths were estimated to have
been caused by PMEs in the United States alone. A more
recent study analyzed data from the eight-year period between
2000 and 2008, and estimated that in 2013, the number of
deaths caused by PMEs was more than 250,000, making PMEs
the third-leading cause of death in the United States [3]. The
adverse effects of PMEs extend beyond patient outcomes. One
study estimated the financial burden of PMEs to the United

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1545002

States to be 19.5 billion dollars in 2008 [4]. According to
the authors of [1], PMEs caused psychological effects such
as anger and guilt in healthcare providers (HCPs), adversely
impacting their mental health.

One strategy to mitigate PMEs is to utilize evidence-based
statements published by hospital and medical associations
that codify recommended interventions for various clinical
scenarios called Best Practice Guidelines (BPGs) [5]. High
quality guidelines are routinely updated to account for results
from clinical trials and advances in medicine, and make
the latest diagnosis and treatment information accessible to
providers [6].

While BPGs have the potential to reduce medical errors,
their effectiveness hinges on the adherence of healthcare
providers to them. For example, consider Advanced Cardiac
Life Support (ACLS): a BPG published by the American
Heart Association (AHA) for management of a life threatening
condition called in-hospital cardiac arrest (IHCA) [7], [8].
Studies suggest that management of IHCA in 30% of adult,
and 17% of pediatric cases deviates from the AHA-prescribed
BPG, resulting in worse patient outcomes [9]–[13].

While BPG-adherence is difficult to achieve in practice [14],
[15], integrating BPGs with existing patient care-flow, and
making them readily-accessible when required can improve
adherence [16]. To this end, hospitals commission comput-
erized Decision Support Systems (CDSSs) that codify BPGs
and support HCPs with situation-specific advice. Such systems
have been shown to improve BPG-adherence [17], [18], and
evidence from multi-center clinical trials suggests that they
reduce PMEs [19], [20]. Thus, guideline-based CDSSs are
now considered imperative to the future of medical decision
making in general [21].

A guidelines-based CDSS usually consists of: (a) a trans-
lation of the guideline to an executable medium, called the
knowledge-base, (b) an interface for user-interaction, and,
(c) additional infrastructure that integrates with external data
sources such as sensors, health records [22]. Typically, to
develop a CDSS, domain experts in medicine collaborate with
computer scientists to develop requirements documentation
that presents the BPGs’s semantics in a manner amenable
to software development [23]. This documentation is then
utilized to develop the knowledge-base, which is subsequently
integrated with data sources (such as patient-parameter sensors

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 39 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0002-5191-131X
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_39
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_39
https://creativecommons.org/licenses/by/4.0/

and health records), and a User Interface (UI) to obtain
a complete system. Thus, the BPG serves as a functional
specification for the CDSS’s knowledge-base. But, the afore-
mentioned process has several limitations. First, the imple-
mentation, i.e., the knowledge-base may not concur with its
specification, i.e., the text-based BPG. BPGs are specified as
long, complex textual documents, where the exact meaning
of terms may not be explicitly stated, and recommendations
may be ambiguous [24]. Capturing and communicating these
complexities via requirements documentation is challenging,
and incorrect or incomplete documentation has resulted in
failed implementations [25]. Second, as BPGs evolve to reflect
new evidence or local adaptions, corresponding updates must
be made to the CDSS as well. However, due to the gap
between the BPG and the knowledge-base, effort must be
expended into bringing the knowledge-base to reflect said
updates.

To address above mentioned limitations, several Domain
Specific Languages (DSLs) for directly expressing knowledge-
base as Computer Interpretable Guidelines (CIGs) have been
introduced. By providing mechanisms to facilitate representa-
tion of medical knowledge, such DSLs allow the CIG to serve
as both the system specification, i.e. the BPG, and implemen-
tation, i.e. the knowledge-base. This ensures that there is no
gap between the BPG and its executable counterpart. Given
the safety-critical nature of CDSSs, the need for formally
verified execution engines and analysis tools has been recog-
nized. To this end, some existing DSLs have partially-defined
semantics and support for verification via model-checking.
However, as identified by the authors of [26], [27], existing
languages lack a complete formal and executable semantics,
interpreters or compilers with correctness guarantees, and a
comprehensive suite of accompanying tools such as model-
checkers, symbolic-execution engines, and deductive verifiers.
The difficulties of formal analysis are further compounded by
the fact that CDSSs are concurrent systems involving inter-
actions with heterogeneous external agents such as sensors
and HCPs, making their analysis challenging. We address
these by introducing MediK (pronounced Medi-kay), a DSL
for expressing a CDSS’s knowledge-base as concurrently-
executing state machines. MediK provides:

1) A complete executable formal semantics specified in the
K semantics framework.

2) A correct-by-construction interpreter, and analysis tools
such as a model-checker and deductive verifier.

3) A uniform way of modeling heterogeneous agents for
both execution and analysis.

To evaluate our approach, we worked with the Children’s
Hospital of Illinois at OSF St. Francis Medical Center (referred
to as OSF in the remainder of this work) to develop a
CDSS for their pediatric sepsis management guidelines. The
MediK-based system expresses the guideline succinctly, and
allows establishing desired safety properties. To the best of
our knowledge, ours is the first system for sepsis management
with a set of safety guarantees.

We briefly describe the organization of this paper. In section
II, we present a real-word BPG for management of sepsis,
and use it to illustrate requirements that a DSL for encoding
clinical guidelines must satisfy. In section III, we describe
the MediK DSL, and illustrate how it addresses aforemen-
tioned requirements. To evaluate our approach, we utilized
MediK to implement a real-world CDSS for pediatric sepsis
management, which we describe in Section IV. In section
V, we discuss how MediK builds on existing work, mention
directions for future work in VI, and conclude in section VII.

II. MOTIVATING EXAMPLE

In this section, we introduce a real world BPG for man-
agement of sepsis in pediatric cases to motivate the need for
Guidelines-based Clinical Decision Support Systems, and to
illustrate characteristics that are desired of a DSL for such
systems.

Sepsis is life-threatening condition caused by the body’s
extreme response to an infection [28], and is a major cause of
morbidity and mortality in children [29]. Adverse outcomes
can, however, be mitigated through timely identification and
prompt treatment with antibiotics and intravenous (IV) fluids
[30], [31]. BPGs for screening and management of sepsis in
pediatric Emergency Departments (EDs) have shown effective-
ness in screening and management of sepsis [29], leading to
their adoption in many pediatric EDs [32], [33].

In Fig. 1, we present a simplified version of the screening
section of OSF’s sepsis management guideline. In essence,
when a patient arrives at the ED with a fever or an infection,
the HCP is supposed to obtain (a) the patient’s age, (b) any
conditions, such as cancer, immunosuppresssion, etc, that
increase likelihood of sepsis, and (c) the patient’s vital signs,

Patient Presents with abnormal
temperature/infection

Obtain Patient Age
and High-Risk

Conditions
Obtain Patient Weight

Sepsis Focused Assessments

The patient will be flagged as potentially septic due to an abnormal value in each of the
following buckets:

Bucket 1: heart rate, pulse quality, and/or blood pressure
Bucket 2: temperature
Bucket 3: mental status, capillary refill and/or high-risk conditions

Bucket 3

Altered Mental Status High Risk Conditions Impaired Perfusion

PEWS Behavior Irritable (2)
OR

PEWS Behavior Confused (3)

Splenectomy/Asplenia
Sickle Cell Disease

PICC/Central Venous Catheter
CSF Shunt

Tracheostomy
Indwelling Urinary Catheter

Cerebral Palsy
Developmental Palsy/Mental

Retardation
Cancer

Immunosuppresion
Petechial or Purpuric Rash
Obvious Source of Infection

PEWS Cardiovascular Gray/
Cap Refill 4 seconds (2)

OR
PEWS Cardiovascular Gray/Mottled/

Cap Refill 5 seconds (3)
OR

Flash Capillary Refill

Fig. 1: Pediatric sepsis screening BPG

307

Age Heart Rate Systolic BP Temp
0d− 1m > 205 < 60 < 36 or > 38

≥ 1m− 3m > 205 < 70 < 36 or > 38
≥ 3m− 1y > 190 < 70 < 36 or > 38.5

.
≥ 13y > 100 < 90 < 36 or > 38.5

TABLE I: Vital Signs Chart

such as heart rate, systolic blood pressure, respiratory rate, etc.

This information is then used to check for abnormalities in
clusters of linked information, called “buckets”. For instance,
if the patient’s heart rate is abnormal, then “bucket 1” is said
to have an abnormal value. Checking for such abnormalities
often involves the use of tables, such as TABLE I, that contain
normal ranges indexed by age. If the patient has at least one
abnormal value in every “bucket”, then he/she is flagged as
potentially septic.

The BPG-recommended treatment for sepsis involves multi-
ple concurrent workflows, such as screening for septic shock,
fluid resuscitation, and administering antibiotics. In Fig. 2, we
provide a version of the fluid resuscitation guideline used at
OSF. Briefly, if the patient is flagged as potentially septic,
the guideline suggests (i) obtaining any fluid-overload risks,
(ii) administering normal saline (typically over a period of
15 minutes), where the dosage is dictated by risks deter-
mined in previous step, (iii) assessing signs of fluid-overload,
(iv) evaluating patient responsiveness to normal saline upon
completion of the administering process, and, (v) determining
whether another fluid bolus should be administered based on
information from previous steps.

This real-world BPG exhibits characteristics common across

Obtain Fluid Overload Risks

15 minutes

Administer Fluid

Check Responsiveness

Check Fluid Overload Signs

Determine Dosage

Yes

Risks exist?

No

5-10 ml/kg
Normal Saline

20 ml/kg
Normal Saline

Determine Next Step

Stop fluid bolus;
Handle fluid overload

Maintenance fluid

Yes

Repeat fluid bolus

Stop fluid bolus;
Consider inotropic support

Signs of Fluid Overload?

Yes

Total dosage > 40 ml/kg?

No

Yes No

Positive responsiveness?

No

Repeat fluid bolus

Fig. 2: Fluid Resuscitation Guideline

Fig. 3: K Overview

many BPGs. Specifically BPGs typically:
• Involve concurrent workflows, such as administering

drugs, monitoring vitals, performing treatment, etc. There
may also be inter-workflow interactions. For instance,
a diagnosis of sepsis during the screening may require
modifications to an ongoing course antibiotics.

• Often specified in a flowchart-like notation. See [34] and
[35] for other flowchart-based BPGs for management of
cardiac arrest, and screening, risk-reduction, treatment
and survivorship in cancer care respectively.

• Require communication between heterogeneous agents
such as monitors and Electronic Health Records (EHRs).

• Often use tables indexed by parameters such as age,
weight, etc to present normal/abnormal ranges for mea-
surements, or recommended dosages for drugs.

Note that the aforementioned characteristics are not specific
to one guideline. According to a review paper on CIGs [24],
such DSLs should additionally (a) be formally defined, i.e,
have a formal syntax and semantics, and (b) have an execution
engine to provide decision support.

In the following sections, we describe how these character-
istics dictate the design philosophy behind MediK. We argue
that this philosophy makes MediK both intuitive to HCPs, and
suitable for expressing complex guidelines.

III. MEDIK

In this section, we introduce the MediK DSL for expressing
CIGs. MediK has designed to describe knowledge-base used
in safety-critical systems. Thus, it is vital that:

• The interpreter is correct w.r.t. the formal semantics.
• The language has a comprehensive suite of formal pro-

gram analysis tools.
• New features based on HCP feedback can be imple-

mented quickly, conveniently, and correctly.
We achieve this by defining MediK (i.e., its syntax and
semantics) in K. K is a rewriting-based framework for defining
executable semantics of languages, type systems and formal
analysis tools. It has been successfully used to define exe-
cutable semantics of many real world languages such as C
[36], Java [37], Javascript [38], and the Ethereum Virtual
Machine [39]. We will introduce K by need while discussing

308

MediK. For more details on K, we refer the reader to [40]
[41].

The K ecosystem provides a suite of tools, such as an
interpreter, model-checker, and deductive verifier that are
parametric over the language’s semantics, as shown in Fig.
3. Thus, by defining the semantics of MediK in K, we
obtain aforementioned tools for it without any extra effort.
Additionally:

• The K-based interpreter for MediK essentially exe-
cutes the language’s semantics rules, it is correct-by-
construction.

• Incorporating changes to MediK only requires updating
the semantics. Since the tools are derived from the
semantics, they’re automatically updated.

The remainder of this section introduces MediK and de-
scribes how it’s designed around characteristics of BPGs from
Section II. Recall that BPGs typically involve concurrent
workflows, often expressed using a flowchart-like notation that
may involve inter-workflow interactions. To ensure MediK
programs are comprehensible to HCPs, they must be repre-
sentable in a flowchart-like notation that HCPs are already
comfortable with, and be capable of expressing inter-workflow
interactions succinctly. To address these diverse requirements,
we borrow from existing state-of-art languages for modeling
large concurrent systems, like P [42], but make adaptions to
make expressing and validating BPGs easier. We explore the
differences to existing techniques in section V. In MediK,
like in P, programs are expressed as concurrently executing
instances of state machines that communicate via passing
messages. Given a BPG where each workflow is expressed
as a flowchart, we express said flowcharts as State Machines
in MediK. Each flowchart node in the BPG is represented as
a state in a state machine, and edges are represented as state
transitions. During execution, instances of these machines are
created, which interact with each other by passing events. Note
the distinction between machine and its instance. A machine
is analogous to an Object Oriented Programming (OOP) class,
whereas its instance is analogous to an OOP object.

Next, we describe MediK using its K-framework definition.
The K definition of a language has two components. The first
is the language’s syntax, which is defined using a BNF-like
notation. K utilizes this grammar to generate a parser for
programs in the language. We describe MediK’s syntax in
depth in Section III-A. The second is the semantics, which
is defined using a K-configuration and rewrite rules. The K-
configuration organizes the program’s execution state. Rewrite
rules that operate over said configuration dictate the evolution
of program state during execution. We describe the semantics
in greater depth in Section III-B1

A. Syntax

We use the skeleton of a MediK machine, and use it
to describe the syntax. Note that we use [...] to denote

1The complete executable semantics is available at [43].

optional constructs, <...> for mandatory constructs, lowercase
for terminals, and uppercase for non-terminals.
1 [init] machine <IDENTIFIER>
2 receives <IDENTIFIER_LIST> {
3 vars <IDENTIFIER_LIST>;
4

5 [init] state <IDENTIFIER> {
6 entry [(IDENTIFIER_LIST)] {
7 <STMT> // entry block
8 }
9 on <IDENTIFIER> [(IDENTIFIER_LIST)] do {

10 <STMT> // event handler
11 }
12 }
13 }

A MediK program consists of a set of machine definitions.
A machine definition starts with the keyword machine, fol-
lowed by its name (line 1). On line 2, following the receives

keyword, is a comma-separated list of identifiers signifying the
events that the machine can receive from other machines. One
machine in a program can be prefixed with the init keyword.
This machine is referred to as the initial machine. On line 3,
following the keyword vars, another comma-separated list of
identifiers signifies the instance-variables. During execution,
each instance maintains a mapping from these variables to
values. Each machine defines a set of states, such as the one
in lines 5-11. A state has a name, an optional entry block
(lines 6-8), and a set of event handlers (lines 9-11). The entry
block begins with the keyword entry, and may contain a list
of variables that are bound to values when the state is entered
during execution. One state in the machine may be prefixed
with init, specifying the initial state. When execution begins,
an implicit instance of the initial machine is created, and the
entry block of its initial state is executed. When an instance
of a machine is dynamically created during runtime, the entry

block of its initial state is executed. Event handlers within a
state begin with on followed by the event name and an optional
list of variables. When the event handler is executed, data
from the received event’s payload is bound to aforementioned
variables which can be used in the code block that follows the
do keyword.

Within the entry and event handler code blocks, there may
be statements. Below, we give a simplified version of the
K-grammar for statements. In K, productions are defined
using the keyword syntax (lines 1, 7). Terminals are enclosed
in quotes (""), and non-terminals begin with an uppercase
character.
1 syntax Exp ::= Id | Val | "this"
2 | Exp "." Exp
3 | "obtainFrom" "(" Exp "," Exp ")"
4 | "interval" "(" Exp "," Exp ")"
5 | Exp "in" Exp
6

7 syntax Stmt ::= Exp "=" Exp ";"
8 | "if" "(" Exp ")" Block "else" Block
9 | "new" Id "(" Exps ")" ";"

10 | "createFromInterface" "(" Id "," String ")" ";"
11 | "sleep" "(" Exp ")" ";"
12 | "send" Exp "," Id "," "(" Exps ")" ";"
13 | "broadcast" Id "," "(" Exps ")" ";"
14 | "goto" Id "(" Exps ")" ";"
15 | Exp "in" "{" CaseDecl "}"

Lines 1-5 define the syntax of MediK expressions. Line 1
defines basic expressions such as identifiers (denoted by the

309

builtin K production Id), values such as booleans, or rationals,
or “this”, which enables an instance to refer to itself. Line 2
defines the usual dot operator (.), which can be used to access
members of an instance. obtainFrom (line 3), interval (line
4) and in (line 5) are useful in context of defining BPGs,
and are described through an example in section IV. Apart
from these, MediK also supports common expressions such
as +, -. >, >= over rationals and &&, || over booleans.

In lines 7-15, we define syntax for MediK statements.
Some of these, such as variable assignment (line 7), if-else
(line 8) and new Id(..); (line 9) are commonly found in
other languages, and have expected meanings. The remaining
statements (lines 10-15) have nuanced meanings in context
of state machines. We shall go over these while discussing
MediK’s semantics in section III-B.

B. Semantics

Semantics of a language defined in K has two components:
(1) description of program state via K-configurations, and
(2) K rules that dictate state evolution. Next we describe these
components in detail.

1) K-Configuration: K represents program execution state
using K-configurations. A K-configuration is an unordered
list of (potentially nested) cells, specified using an XML-like
notation. When declaring rules (as rewrites) over this state,
any subset of the cells present in the configuration can be
mentioned. This allows specifying only necessary parts of the
state for a given rule, letting K assume that the rest of the
configuration remains unchanged. The following configuration
defines the initial state for any MediK program:
1 configuration
2 <instance multiplicity="*" type="Map"> ...
3 <k> createMachineDefs($PGM)
4 ~> createInitInstances </k>
5 <genv> .Map </genv>
6 <env> .Map </env>
7 <inBuffer> .List </inBuffer>
8 <activeState> . </activeState>
9 </instance>

10 <machine multiplicity="*" type="Map"> ...
11 <machineName> . </machineName>
12 <states>
13 <state multiplicity="*" type="Map">
14 <stateName> . </stateName>
15 <entryBlock> . </entryBlock>
16 <eventHandlers> ... </eventHandlers>
17 </state>
18 </states>
19 </machine>

The keyword configuration (line 1) defines a K-
configuration, followed by xml-like notation for the K-cells.
For example <foo> ... </foo> corresponds to a K-cell with
the name foo. The <instance> cell (lines 2-9) contains state
of each MediK machine instance during execution. Each
instance manages its instance variables using a map in the
<genv> cell (line 5), a buffer of incoming events in the
<inBuffer> cell (line 7) and the currently executing code
in the <k> cell (lines 3-4).2 When a MediK program is
executed, K replaces $PGM (line 3) with the Abstract Syntax

2For brevity, we present a simplified version of the configuration. See [43]
for the entire configuration.

Tree (AST) of the program, obtained by parsing the program
using the syntax from section III-A. The createMachineDefs

constructs is defined (using rewrite rules) to traverse the
program AST and populate the configuration with information
related to each machine. The createInitInstances creates
an instance for the machine with the init keyword, leading
to execution of the initial machine’s entry block. Note that
~> symbol (line 3) is interpreted by K as “followed-by”,
i.e., execution of createMachineDefs is followed by execution
of createInitInstances. The attribute multiplicity="*" on
lines 2 and 10 signifies that multiple copies of the correspond-
ing cells, in this case <machine> and <instance> cells, can
exist in the configuration during execution. This allows, during
execution, for multiple machine definitions, each with multiple
instances, to exist. The <machine> cell (lines 10-19) holds
information relevant to a machine definition, such as the name
in the <machineName> cell (line 11) and states in the <states>

cell (lines 12-18). The <state> (lines 13-17) holds information
relevant to a state, such as the entry block in cell <entryBlock>
(line 15) and event handlers in cell <eventHandlers> (line 16).

2) K-Rules: K-rules operate over the configuration and
define the evolution of program state during execution. A K-
rule begins with the keyword rule, and is a statement of the
form φ ⇒ ψ, where φ and ψ are patterns over configuration
terms and K-variables. We say φ is the LHS and ψ is the
RHS of the rule. Let substitution θ be a map from K-variables
to terms. Say, for given pattern φ and substitution θ, φθ be
the term obtained by replacing each variable v in φ with
θ(v). During execution, if the current configuration C, i.e.
program execution state, matches φ with substitution θ, then
it is rewritten to ψθ. We say pattern φ matches configuration
C iff there exists a substition θ s.t. C = φθ. For example,
consider the following rule for updating the value of a local
program variable.

1 rule <k> I:Id = V:Val => V ... </k>
2 <env> (I |-> Loc) ... </env>
3 <store> Store => Store[Loc <- V] </store>

Here, I, V, Loc, and Store are K-variables. Note the distinction
between program variables and K-variables: while program
variables are simply identifiers, K-variables have logical mean-
ing. The ... is used to denote parts of the configuration not
relevant to the rule. Typically, the top of the k cell contains the
statement currently being executed. Suppose we’re executing
the statment i = 2;. In this case, the current configuration
will have a k cell of the form <k> i = 2 ... </k>, an
environment cell env where variable i maps to some pointer
p, and a store cell store containing a map M with some
value pointed-to by p. The LHS matches with substitution
θ = (I 7→ i, V 7→ 2, Loc 7→ p, Store 7→M), resulting in the
top of the k cell to be rewritten to the value 2, and pointer
p updated to point to 2 in M . Note if there exist multiple
rules that can match the current configuration, then one rule
is non-deterministically chosen and applied. An execution is
a sequence of rule applications that continues until no rule
matches the configuration.

310

In the following sections we present several MediK con-
structs relevant to defining BPGs using their K-rules. We first
present the rule for sending and receiving messages.
1 rule
2 <instance>
3 <k> send instance(RecvId) , EventName:Id , (Args)
4 => done ... </k> ...
5 </instance>
6 <instance>
7 <id> RecvId </id>
8 <inBuffer> ... (.List
9 => ListItem(

10 eventArgsPair(EventName | Args | Epoch + 1
11)))
12 </inBuffer> ...
13 </instance>
14 <epoch> Epoch </epoch>

When the top of the k cell has send, the rule above (i) obtains
the id of the receiver instance, the event name and the event
arguments by matching the variables RecvId, EventName and
Args against the current configuration (line 3), (ii) rewrites the
top of the k cell (line 4) to done, marking the completion of
execution for the construct, (iii) adds the event and associated
arguments to the buffer of incoming events (lines 8-12) of the
instance with id RecvId (line 7). (iv) The epoch decides when
the machine can run, and is discussed in Section III-B2a.

To handle interaction with heterogeneous external sources,
MediK models them as interfaces. An interface is a FSM
that has its transition system defined externally. For example,
certain measurements such as the heart rate are often obtained
from sensors. The following code shows the process of ob-
taining external measurements in MediK.
1 interface HeartRateSensor { }
2

3 machine TreatmentMachine { ...
4 var hrSensor = createFromInterface(HeartRateSensor,
5 "heartRateSensor");
6 var heartRate = obtainFrom(hrSensor, "heartRate");
7 }

Since we don’t have the transition system for the heart rate
sensor, we declare it as an interface (line 1). Next, instead
of using new to create an instance, we use a builtin MediK
construct createFromInterface, which takes as arguments
(a) the inteface name (lines 4), (b) a unique identifier string
used to identify the instance outside the MediK process. All
other MediK machines can interact with external sensor using
variable hrSensor. There is no need to make any distinction
between external, and MediK-based machines. To deal with
external interactions, input and output pipes are provided to the
MediK process at launch. When the send construct is used on
an external machine, MediK will write a JSON [44] message
with the event data, the identifier from line 5, and a unique
transaction id to the write-end of the output pipe. At the read-
end, we need to write external code (in any programming
language) to handle the JSON message. In the example above,
this involves reading from the external heart rate sensor. To
send data to MediK, a JSON message in a pre-specified format
needs to be written to the write-end of the input pipe.

Next, we desribe the rule for supporting tables in MediK.
Once a measurement, such as the heart rate has been obtained
from a sensor, we need to use a table, such as TABLE I

to check if the measurement is within a normal range. In
MediK, we can write a function that does the required check,
as shown in Fig. 4. In the code, if the age lies in any of the

1 fun isHeartRateNormal() {
2 days(age) in {
3 interval(days(0) , months(1)): return hr > 205;
4 interval(months(1), months(3)): return hr > 205;
5 // omitting other cases
6 default : return hr > 100;
7 }
8 }

Fig. 4: Checking abnormality using tables

intervals (closed on the left, open on the right) on lines 3-5,
the corresponding statement to the right of the colon (:) is
run. Otherwise line 6 is run. In MediK, the following rules
are responsible for assigning semantics to the in-interval

construct:
1 rule E in interval(L, U) => (E >= L) && (E < U)
2 [macro]
3 rule E in { interval(L, U): S:Stmt Cs:CaseDecl }
4 => if (E in interval(L, U)) {S} else {E in { Cs }}
5 [macro-rec]

Note the rules above are marked with the attributes
macro (line 2) or macro-rec (line 5). This specifies that
these constructs are not part of the language’s semantics,
but merely syntactic sugar. On line 1, we specify that
E in interval(L, R) desugars to checking the expression e

is between the lower and upper bound L and U respectively.
Similary we desugar each case statement to an if-else

statement. In lines 3-5, we say that if the expression E is in
interval with lower and upper bounds L and U respectively,
then execute S, otherwise check E against the remaining cases
Cs. Note the postfix -rec after macro specifies that the rule
applies recursively, to desugar the remaining case statements.

a) MediK Scheduling Semantics: Since the K-generated
interpreter is single-threaded, MediK employs interleaving-
semantics for concurrency, using a single executor thread
shared between machine instances. A machine instance that
is either at the start of an entry block, or has an event in
the input buffer that it can handle is said to be enabled, i.e.
one that can run once the executor becomes available. But, a
naive strategy that non-deterministically chooses one enabled
machine instance may lead to unfairness. Specifically, there
may be situations where a machine instance is enabled but is
never chosen for execution. Therefore, to ensure fairness, we
use a scheduling strategy based on a monotonically increasing
global counter called the epoch. We show this execution
strategy in Fig. 5

Recall from Section III-A that a MediK program consists
of a set of machines, of which one, prefixed with the key-
word init, is the initial machine. Each machine has one
state prefixed with init, referred to as the initial state. Let
P = {M0,M1, . . . ,Mn−1} be a program with n machines,
where M0 is prefixed with init. MediK allows instances of
a machine to be created dynamically at runtime. For machine
Mi ∈ P , let IMi,j−1 be its j-th instance.

311

1 epoch← 0
2 scheduled←

{
I0M0,0

}
3 while scheduled ̸= ∅ do
4 IτMi,j

← choose (scheduled) s.t.
τ ≤ epoch ∧ enabled(IτMi,j

)
5 scheduled← scheduled \ IτMi,j

6 execute(IτMi,j
, scheduled)

7 if ̸ ∃i′, j′, τ ′ s.t. (Iτ ′

Mi′ ,j
′ ∈ scheduled)

∧(τ ′ ≤ epoch) ∧ (enabled(Iτ ′

Mi′ ,j
′)) then

8 epoch← epoch + 1
9 end if

10 end while

Fig. 5: MediK Scheduling Semantics

Execution begins in epoch zero with the implicit (first)
instance of the initial machine, denoted by I0M0,0

. We use
IτMi,j−1 to say that the j-th instance of machineMi is sched-
uled for execution in epoch τ . Recall that a state definition
may have an entry block, containing code that is executed
when the state is entered, or event handlers containing code
that is executed when an event is dequeued from the input
buffer. When execution begins, the entry block of the initial
state of the implicit instance of the initial machine IM0,0

becomes scheduled (line 2) at epoch 0. On line 4, an instance
IτMi,j

is non-deterministically chosen from all machines that
are both scheduled to run when τ ≤ epoch and enabled.
We use execute(IτMi,j

, scheduled) on line 5 to denote this
execution process. Execution of the entry or event handler
block is atomic, i.e., a context-switch can only occur at the
end of the block. Note that when a new instance of a machine
is created using the keyword new, the entry block of the initial
state of the target machine is executed synchronously before
control returns to the source machine, and the instance is added
to the multiset of scheduled machines. A context switch only
occurs in three cases: goto, sleep, and obtainFrom, which we
describe later.

During execution, if an instance IMi,j sends an event
to another instance IMi′ ,j

′ , then the event is scheduled
to be handled by IMi′ ,j

′ in or after the next epoch, i.e.,
scheduled ← scheduled ∪ {Iepoch+1

Mi′ ,j
′ }. Similary, if a goto

statement is encoutered, the entry block of the target state
is scheduled for execution at epoch + 1. If no other machine
is both scheduled to run in the current epoch, and enabled,
then the epoch advances by one (line 8).

b) Timer Semantics: Next, we discuss how MediK han-
dles temporal aspects of BPGs. For instance, consider the Fluid
resuscitation guideline BPG from Section 2. After adminis-
tering fluids, the BPG recommends waiting for 15 minutes
before evaluating their effectiveness. This waiting behavior in
MediK is implemented using a sleep(duration) statement.
Formalizing the execution semantics of such a statement in K
presents a challenge as K does not provide builtin support for
timers. Therefore, in MediK, sleep(duration) is described
by the following rule:

1 rule <k> sleep(Duration:Int) ;
2 => jsonWrite({ "action" : "sleep"
3 , "duration" : Duration
4 , "tid" : TId }
5 , ...)
6 ~> releaseExecutor
7 ~> waitForSleepResponse(TId) ...
8 </k>
9 <tidCount> TId => TId +Int 1 </tidCount>

sleep results in a JSON message being sent to a remote
endpoint (lines 1-5) specified when the MediK process is
launched. This mimics sending an event to an external timer
machine, with the desired duration as the payload. At the
remote endpoint, code must be provided (in any programming
language) to parse the message, and respond with a JSON
message indicating the expiration of the timer once the desired
duration has passed. A unique transaction-id (lines 4, 7, 9),
which the code at the endpoint is expected to provide in
the response, uniquely identifies the machine instance being
responded to. sleep causes a context-switch to occur on line
6, releasing the executor lock to process other scheduled
machines.

When a message signifying the expiration of the timer is
sent to the MediK process, along with the transaction id
of source instance, the corresponding event signalling the
completion of the sleep statement is placed at the beginning
of the source machine instance’s input buffer, and the instance
is scheduled to resume execution in the next epoch. The
following rule handles the external response:
1 rule
2 <k> waitForSleepResponse(TId) => </k>
3 <inBuffer>
4 (ListItem(event($SleepDone | TId | Tau))
5 => .List) ...
6 </inBuffer>
7 <executorAvailable>
8 true => false
9 </executorAvailable>

10 <epoch> Epoch </epoch>
11 requires Tau <=Int Epoch

The waitForSleepResponse(TId) blocks execution until the
external response indicating the expiration of the sleep timer
is received in the input buffer (line 4). Once the response is
received, the machine instance resumes execution when (a) the
execution lock becomes available (indicated by true on line
8), and, (b) the epoch the instance was scheduled in (line 4)
is less than or equal to the current epoch (lines 10-11).

An obtainFrom statement also results in a context switch.
Just as in the case of sleep, a json message is sent to the remote
endpoint, while the machine instance release the execution
lock, and waits for a response. Once data for the requested
field is available, it’s communicated as an event to the MediK
process, and the machine resumes execution.

IV. EVALUATION

A. Sepsis Management CDSS
To evaluate our approach, we collaborated with the Chil-

dren’s Hospital of Illinois at OSF St. Francis Medical Center to
develop a MediK-based CDSS for screening and management
of Pediatric Sepsis 3.

3the entire CDSS for sepsis management is available at [45].

312

1 machine SepsisScreening receives .. {
2 init state Start {
3 on StartScreening do {
4 goto ObtainAge;
5 }
6 }
7 state ObtainAge {
8 entry {
9 send tablet, Instruct, ("get age");

10 } on ConfirmAgeEntered do {
11 goto ObtainWeight;
12 }
13 }
14 state ObtainWeight { ... }
15 state ObtainHighRiskConditions { ... }
16 state CalculateScore {
17 var hrAbnormal = !isInNormalRange("HR", ...);
18 var bucket1 = hrAbnormal || ...
19 var bucket3 = mentalStatusAbnormal || ...
20

21 var sepsisSuspected
22 = bucket1 && bucket2 && bucket3;
23

24 send tablet, SepsisDiagnosis
25 , (sepsisSuspected);
26 }
27 }

Fig. 6: Sepsis Screening in MediK

Recall from Fig. 1 the guideline for sepsis screening. In
Fig. 6, we show MediK code corresponding to the sepsis
screening guideline. When modeled in MediK, a flowchart in
the guideline is represented using a MediK machine. Nodes in
the flowchart are represented as states in a MediK machine,
while flowchart edges as state-transitions. Note that we use
node to refer to constructs in the flowchart, and state to
refer to counterparts in MediK. Also, while it’s desirable
to represent each flowchart node as a state machine state,
the task in the flowchart node may warrant using multiple
state-machine states. For example, in Fig. 1, the step “Obtain
Patient Age, Weight, and High Risk Conditions” is translated
to states ObtainAge (lines 7-13), ObtainWeight (line 14), and
ObtainHighRiskConditions (line 15) in Fig. 6. Within each
of these states, the code permits communication with hetero-
geneous external agents for obtaining required parameters. For
instance, on line 9, an Instruct event is sent to an external
tablet machine with the payload "get age". The recipient
process runs on a tablet held by the Healthcare Provider,
and handles the event by prompting the provider to enter the
patient’s age. A ConfirmAgeEntered event, emitted once the
age is obtained, enables the screening machine to proceed to
the next step (lines 11-13). Once all appropriate measurements
have been obtained, they are checked for abnormality (lines
18-26) using tables shown in Fig. 4 to arrive upon a diagnosis.

Recall from Section II that once a sepsis diagnosis has been
arrived upon, one of the guideline suggested actions include
administering fluids as shown in Fig. 2. In Fig. 7, we show
the corresponding MediK code for administering fluids. The
process starts when an external StartFluidTherapy event,
corresponding to a button press by the HCP is received (line
6). The next steps include (a) obtaining any risks associated
with administering fluids (lines 11-13), (b) suggesting an

appropriate dose to administer based on the risks, if any
(lines 15-17), and, (c) waiting for the HCP to confirm that
the suggested dose was administered (line 21). Once the dose
is administered, the machine waits for the for 15 minutes as
specified by the guideline (line 22), before prompting the HCP
to evaluate the patient’s responsiveness to the administered
fluid dose (lines 27-38), and check for any signs of fluid

1 machine FluidTherapy
2 receives StartFluidTherapy, ... {
3

4

5 init state Start {
6 on StartFluidTherapy do {
7 goto ObtainRisks;
8 }
9 }

10

11 state ObtainRisks {
12 // Obtain fluid overload related risks
13 }
14

15 state SuggestFluidDosage {
16 // Suggest a dosage based on risks
17 }
18

19 state WaitForAdministerFluidConfirmation {
20 // Handler for Normal Saline Administration
21 on ConfirmNormalSalineAdministered do {
22 sleep(900);
23 goto EvaluateResponsiveness;
24 }
25 }
26

27 state EvaluateResponsiveness {
28 entry {
29 send tablet
30 , Instruct
31 , ("get responsiveness to fluids");
32 }
33

34 on FluidResponsivenessEntered(responsiveness) do {
35 isResponsiveToFluids = responsiveness;
36 goto ObtainFluidOverloadSigns;
37 }
38 }
39 state ObtainFluidOverloadSigns {
40 // Obtain signs of fluid overload
41 }
42

43 state AskNextStep {
44 entry {
45 var recommendation;
46 if (this.fluidOverload) {
47 recommendation = "handle fluid overload";
48 } else {
49 // obtain total saline dose
50 if ((totalSalineDose >
51 measurementBounds.salineDosageUpperBound) {
52 if (isResponseiveToFluids) {
53 recommendation = "maintainence fluids"
54 } else {
55 recommendation = "consider inotropic support";
56 broadcast ConsiderInotropicSupport;
57 }
58 } else {
59 recommendation = "repeat fluid bolus";
60 }
61 }
62 // Send recommendation to tablet
63 // Wait for HCP response
64 }
65 }
66 }

Fig. 7: Fluid Resuscitation in MediK

313

overload (lines 39-41). If the patient exhibits any signs of fluid
overload, then a recommendation to handle the overload is
made (line 47). Otherwise, the total dose of administered fluid
is obtained from an external source (line 50). If the total dose
is above the maximum allowed dose, then a recommendation
based on the patient’s responsiveness to administered fluids
is made to either (a) reduce the fluid flow to maintenance
levels (line 53), or, (b) switch to inotropic support to address
circulatory issues is made (lines 52-58). If the total dose of
administered fluids is less than the maximum allowed limit,
then a recommendation to administer one more fluid bolus is
made (lines 58-60).

Note that both the SepsisScreening and FluidTherapy ma-
chines structurally resemble their paper based counterparts in
Fig. 1 and Fig. 2 respectively, making it easier for Healthcare
Providers to comprehend and validate the code.

B. Formal Analysis using MediK
During execution of a MediK program, a machine may be

considered stuck if an event at the head of its input buffer does
not have an associated handler, rendering said machine non-
responsive. For this reason, languages for modeling large con-
current systems, such as P [42] raise an exception for unhan-
dled events. To mitigate such exceptions, we can enforce every
machine to define event handlers for all possible events in all
states, and use static analysis to detect possible violations. But,
for MediK programs, we found that for complex CDSSs, such
as the one for screening and management of sepsis: (a) it’s
tedious and error prone to define handlers for every event in
every state, and, (b) it reduces the comprehensibility of the
program, as many spurious event handlers that may never fire
during execution have to be specified.

Thus, for MediK, we employ a weaker notion of respon-
siveness. We verify that every event that a state may possibly
receive during execution must have a handler defined for it.
This presents a challenge for reactive systems, or systems
involve interactions with the external world, such as MediK-
based CDSSs, as exploring the system’s state space requires
modeling the external components. In MediK, we address
this by specifying external components as ghost machines -
a technique also used by other state machine formalisms such
as P [42]. For program analysis, ghost machines substitute
external agents, permitting exploration of the state space.
During execution, ghosts are discarded and replaced by actual
external agents. Due to this, ghosts machines may have state-
ments to express non-determinism in processes. Consider, for
instance, on a positive sepsis diagnosis, a HCP may chose to
either administer fluids first, followed by antibiotics, or vice-
versa. MediK supports such non-determinism using either-or

statements as follows:
either {
broadcast StartFluidTherapy;
broadcast StartAntibioticTherapy;

} or {
broadcast StartAntibioticTherapy;
broadcast StartFluidTherapy;

}

When writing ghosts, values of measurements need to
be abstract, to encompass all possible values that may be
encountered during execution. For instance, when modeling
entering a parameter such as the Heart Rate, we need to use
an abstract value, representing all possible concrete values. To
this end, we allow using an abstract value #nondet in ghost
machines, with the following abstract semantics:

1 rule #nondet + _:Val => #nondet
2 rule _:Val <= #nondet => #nondet
3 rule #nondet && _ => #nondet
4 rule if (#nondet) Block => Block
5 rule if (#nondet) _ => .

The use of abstract encodings leads to a reduction of
the state space. Recall from Section II that we needed to:
(1) utilize patient’s basic information such as age and weight
to calculate normal ranges for clinical measurements such
as blood pressure and heart rate, and, (2) calculate abnor-
mality in clinical measurements using aforementioned ranges.
For example, determining whether the patient’s heart rate is
abnormal is performed using the in-interval construct as
show in Fig. 4. Recall that the in-interval construct is
merely syntatic sugar for nested if-else statements. When
using ghost machines for model checking, since the actual
measurement is an abstract value, we know the final result
of this abnormality checking operation is an abstract boolean
value. Thus, instead of exploring each branch of if-else

statements corresponding to in-interval constructs in Fig. 4,
we replace the entire checking process with an final abstract
boolean value. This reduces the state space but still allows
us to explore all treatment options for both the normal and
abnormal cases.

C. Model Checking the Sepsis CDSS

To verify responsiveness of the Sepsis CDSS, we imple-
mented ghost machines for the external components using
support for non-determinism and abstract values. We then
added the following rule to the semantics, that takes a machine
in an active state with an unhandled event at the head of the
input buffer to a terminal stuck state.

1 rule
2 <k> handleEvents ~> _ => stuck </k>
3 <activeState> ActiveState </activeState>
4 <class> MachineName </class>
5 <inBuffer>
6 ListItem(event(InputEvent | _ | _)) ...
7 </inBuffer> ...
8 </k>

We utilize the semantics-generated bounded model checker
to search the state space to a depth of 300,000 for a stuck

pattern, i.e., a machine that’s no longer responsive. This depth
we used was adequate for a complete run of the both the fluid
and antibiotics machines simultaneously. The search command
was executed on a machine with 64 GB of memory, and took
roughly 90 minutes, and reported no such state was possible.
To the best of our knowledge, this makes ours the first system
for screening and management of sepsis with some formal
safety guarantees.

314

V. RELATED WORKS

We broadly classify existing work into two categories:
(a) languages/DSLs specifically developed to express BPGs
in executable format, and, (b) languages/DSLs with a more
general focus on expressing asynchronous event driven sys-
tems. We first focus on category (a). The Arden Syntax [46]
is a widely used medium for expressing CIGs. Guidelines
are described using Medical Logic Modules that contains
information related to guideline’s purpose, maintenance, and
medical knowledge. But, Arden Syntax is focused on de-
scribing simple, modular, and independent guidelines (such
as reminders), and not on guidelines with complex logic
(such as treatment protocols) [47]. Arden Syntax’s limitation
in modeling complexity is addressed by GLIF [48]: a lan-
guage that uses flowcharts to express guidelines. A multi-level
approach is employed to manage complexity: at the top is
the conceptual level, where only high-level details relevant
for human-comprehension are present. In the middle is a
computable-level, where details of guideline execution flow
and patient data elements are specified. At the bottom is
the implementable level, where institution-specific details and
mappings into patient data are specified. Both Arden Syntax
and GLIF eliminate the gap between the BPG, i.e. the spec-
ification, and the CIG, i.e. implementation as they’re meant
to be either directly used by clinicians (or in collaboration
with computer scientists) to express BPGs in an executable
medium. CIGs expressed in them are meant to be shared across
hospitals, and are thus modular. However, neither formalism
has complete formal semantics, or a comprehensive suite of
formal analysis tools.

The need for formal analysis is identified by Asbru: a
formalism with formally defined syntax and semantics [27].
In Asbru, a guideline is modeled as a plan that contains:
(i) intentions that define aims, (ii) conditions that specify when
the plan is applicable, (iii) effects that define expected behavior
during execution, and, (iv) a body containing other subplans.
Apart from an execution engine, the Asbru ecosystem also
contains other tools, such as a model checker for verification
[49]. However, the formal semantics of Asbru have been only
partially defined, and is insufficient to implement tools for the
language [26]. The importance of a complete formal-semantics
is identified and addressed by PROforma [26], another formal-
ism that uses plans to model guidelines. A PROforma plan is
made of a sequence of tasks. The plan defines constraints on
their enactment, and circumstances for termination (for ex-
ample, exceptions) [26]. But, despite having complete formal
semantics, PROforma’s semantics is not executable. Therefore,
an interpreter and analysis tools have to be implemented in an
ad-hoc manner. Our work builds on these existing languages,
and addresses their shortcomings by utilizing a semantics-first
approach to build a DSL for expressing CIGs. This provides
MediK with a complete, executable semantics, and a suite
of correct-by-construction tools derived from it, such as an
interpreter, model checker and deductive verifier.

Next we look at existing work for defining large concurrent

systems as State Machines. The closest project to this work, is
probably the P language [42]. While P was considered for this
project, it was given up for the lack of an executable semantics
that would allow the language to quickly evolve to incorporate
physician feedback. Moreover, until recently, P didn’t even
have a symbolic execution, or executable semantics based
tools that can be derived automatically from the executable
semantics, features that we plan to use in future work.

VI. FUTURE WORK

In this work, we introduced MediK, the first step to-
wards building safe CDSSs. While MediK has been used
to implement and analyze a real system, we’re aware of
many challenges that need addressing. Specifically (a) ghost
machines may provide the ideal scenario for behavior of
external agents, and may not take factors such as uncertainties
into account, (b) the need to move beyond bounded model
checking, and using deductive verification capabilities of K,
(c) using symbolic execution to precisely trim unnecessary
interleavings, and, (d) using semantics based compilation to
extract inform, such as HCP-friendly diagrams from the code
itself.

VII. CONCLUSION

Guideline-based Clinical Decision Support Systems
(CDSSs) are now considered vital to the future of Medical
Decision making in general, But, to find widespread adoption,
guideline-based CDSSs must be held to the highest standards
for safety-critical systems. While several advances have
been made to CDSS over the years, several limitations
have also been identified. This work fixed said limitations
by introducing MediK - a new DSL for expressing BPGs
that uses a semantics-first approach to build CDSS. MediK
programs consist of concurrently executing instances of
State Machine. MediK models external agents as machines
with transition systems external to the program called
interfaces, allowing for a uniform way of dealing with
heterogeneous external agents. For program analysis, MediK
allows modeling external agents via ghost machines that
support non-determinism, enabling model-checking CDSSs
for responsiveness. We collaborated with the Children’s
Hospital of Illinois at OSF St. Francis Medical Center to
develop a system for screening and management of pediatric
sepsis using MediK, and demonstrated it satisfies desired
safety properties. To the best of our knowledge, our is the
first system for sepsis management with any formal safety
guarantees.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Johnathan A. Gehlbach
and Dr. Paul M. Jeziorczak at the Children’s Hospital of
Illinois at OSF St. Francis Medical Center for their assistance
with the pediatric sepsis CDSS. The authors extend their
gratitude to Dr. Gehlbach for his assistance with evaluating
the strengths and limitations of the MediK DSL.

315

REFERENCES

[1] T. L. Rodziewicz, B. Houseman, and J. E. Hipskind, Medical Error
Reduction and Prevention. StatPearls Publishing, Treasure Island (FL),
2022. [Online]. Available: http://europepmc.org/books/NBK499956

[2] M. S. Donaldson, J. M. Corrigan, L. T. Kohn et al., To err is human:
building a safer health system. National Academies Press, 2000.

[3] M. A. Makary and M. Daniel, “Medical error—the third leading cause
of death in the us,” The BMJ, vol. 353, 2016. [Online]. Available:
https://www.bmj.com/content/353/bmj.i2139

[4] C. Andel, S. L. Davidow, M. Hollander, and D. A. Moreno, “The
economics of health care quality and medical errors,” Journal of health
care finance, vol. 39, no. 1, p. 39, 2012.

[5] M. J. Field, K. N. Lohr et al., Clinical practice guidelines. National
Academies Press (US) Washington, DC, USA, 1990.

[6] E. Steinberg, S. Greenfield, D. M. Wolman, M. Mancher, R. Graham
et al., Clinical practice guidelines we can trust. National Academies
Press, 2011.

[7] A. R. Panchal, J. A. Bartos, J. G. Cabañas, M. W. Donnino, I. R.
Drennan, K. G. Hirsch, P. J. Kudenchuk, M. C. Kurz, E. J. Lavonas, P. T.
Morley et al., “Part 3: adult basic and advanced life support: 2020 amer-
ican heart association guidelines for cardiopulmonary resuscitation and
emergency cardiovascular care,” Circulation, vol. 142, no. 16 Suppl 2,
pp. S366–S468, 2020.

[8] A. A. Topjian, T. T. Raymond, D. Atkins, M. Chan, J. P. Duff, B. L.
Joyner Jr, J. J. Lasa, E. J. Lavonas, A. Levy, M. Mahgoub et al.,
“Part 4: Pediatric basic and advanced life support: 2020 american heart
association guidelines for cardiopulmonary resuscitation and emergency
cardiovascular care,” Circulation, vol. 142, no. 16 Suppl 2, pp. S469–
S523, 2020.

[9] J. P. Ornato, M. A. Peberdy, R. D. Reid, V. R. Feeser, H. S. Dhindsa,
N. investigators et al., “Impact of resuscitation system errors on survival
from in-hospital cardiac arrest,” Resuscitation, vol. 83, no. 1, pp. 63–69,
2012.

[10] H. A. Wolfe, R. W. Morgan, B. Zhang, A. A. Topjian, E. L. Fink, R. A.
Berg, V. M. Nadkarni, A. Nishisaki, J. Mensinger, R. M. Sutton et al.,
“Deviations from aha guidelines during pediatric cardiopulmonary re-
suscitation are associated with decreased event survival,” Resuscitation,
vol. 149, pp. 89–99, 2020.

[11] C. P. Crowley, J. D. Salciccioli, and E. Y. Kim, “The association between
acls guideline deviations and outcomes from in-hospital cardiac arrest,”
Resuscitation, vol. 153, pp. 65–70, 2020.

[12] K. Honarmand, C. Mepham, C. Ainsworth, and Z. Khalid, “Adherence to
advanced cardiovascular life support (acls) guidelines during in-hospital
cardiac arrest is associated with improved outcomes,” Resuscitation, vol.
129, pp. 76–81, 2018.

[13] M. D. McEvoy, L. C. Field, H. E. Moore, J. C. Smalley, P. J. Nietert, and
S. H. Scarbrough, “The effect of adherence to acls protocols on survival
of event in the setting of in-hospital cardiac arrest,” Resuscitation,
vol. 85, no. 1, pp. 82–87, 2014.

[14] C. Rand, N. Powe, A. Wu, and M. Wilson, “Why don’t physicians
follow clinical practice guidelines,” Journal of the American Medical
Association (JAMA), vol. 282, p. 14581465, 1999.

[15] D. A. Davis and A. Taylor-Vaisey, “Translating guidelines into prac-
tice: a systematic review of theoretic concepts, practical experience
and research evidence in the adoption of clinical practice guidelines,”
Canadian Medical Association Journal (CMAJ), vol. 157, no. 4, pp.
408–416, 1997.

[16] S. H. Woolf, R. Grol, A. Hutchinson, M. Eccles, and J. Grimshaw,
“Potential benefits, limitations, and harms of clinical guidelines,” The
BMJ, vol. 318, no. 7182, pp. 527–530, 1999.

[17] A. X. Garg, N. K. Adhikari, H. McDonald, M. P. Rosas-Arellano, P. J.
Devereaux, J. Beyene, J. Sam, and R. B. Haynes, “Effects of computer-
ized clinical decision support systems on practitioner performance and
patient outcomes: a systematic review,” Journal of the American Medical
Association (JAMA), vol. 293, no. 10, pp. 1223–1238, 2005.

[18] K. Kawamoto, C. A. Houlihan, E. A. Balas, and D. F. Lobach, “Improv-
ing clinical practice using clinical decision support systems: a systematic
review of trials to identify features critical to success,” The BMJ, vol.
330, no. 7494, p. 765, 2005.

[19] P. Bennett and N. R. Hardiker, “The use of computerized clinical
decision support systems in emergency care: a substantive review of
the literature,” Journal of the American Medical Informatics Association
(JAMIA), vol. 24, no. 3, pp. 655–668, 12 2016.

[20] N. Sahota, R. Lloyd, A. Ramakrishna, J. Mackay, J. Prorok, L. Weise-
Kelly, T. Navarro-Ruan, N. Wilczynski, and b. Haynes, “Computer-
ized clinical decision support systems for acute care management: A
decision-maker-researcher partnership systematic review of effects on
process of care and patient outcomes,” Implementation Science (IS),
vol. 6, p. 91, 08 2011.

[21] B. C. James, “Making it easy to do it right,” New England Journal of
Medicine (NEJM), vol. 345, no. 13, pp. 991–993, 2001.

[22] R. T. Sutton, D. Pincock, D. C. Baumgart, D. C. Sadowski, R. N.
Fedorak, and K. I. Kroeker, “An overview of clinical decision support
systems: benefits, risks, and strategies for success,” npj Digital Medicine,
vol. 3, no. 1, p. 17, 2020.

[23] M. Peleg, “Computer-interpretable clinical guidelines: A methodological
review,” Journal of Biomedical Informatics (JBI), vol. 46, no. 4, pp.
744–763, 2013.

[24] P. A. De Clercq, J. A. Blom, H. H. Korsten, and A. Hasman, “Ap-
proaches for creating computer-interpretable guidelines that facilitate
decision support,” Artificial Intelligence in Medicine (AIM), vol. 31,
no. 1, pp. 1–27, 2004.

[25] P. Kubben, M. Dumontier, and A. Dekker, Fundamentals of clinical data
science. Springer, 2019.

[26] D. R. Sutton and J. Fox, “The syntax and semantics of the pro
forma guideline modeling language,” Journal of the American Medical
Informatics Association (AMIA), vol. 10, no. 5, pp. 433–443, 2003.

[27] Y. Shahar, S. Miksch, and P. Johnson, “An intention-based language for
representing clinical guidelines.” in Proceedings of the AMIA Annual
Fall Symposium. American Medical Informatics Association, 1996, p.
592.

[28] A. Rhodes, L. E. Evans, W. Alhazzani, M. M. Levy, M. Antonelli,
R. Ferrer, A. Kumar, J. E. Sevransky, C. L. Sprung, M. E. Nunnally et al.,
“Surviving sepsis campaign: international guidelines for management of
sepsis and septic shock: 2016,” Intensive Care Medicine, vol. 43, pp.
304–377, 2017.

[29] M. Eisenberg, E. Freiman, A. Capraro, K. Madden, M. C. Monuteaux,
J. Hudgins, and M. Harper, “Comparison of manual and automated
sepsis screening tools in a pediatric emergency department,” Pediatrics,
vol. 147, no. 2, 2021.

[30] S. L. Weiss, J. C. Fitzgerald, F. Balamuth, E. R. Alpern, J. Lavelle,
M. Chilutti, R. Grundmeier, V. M. Nadkarni, and N. J. Thomas, “Delayed
antimicrobial therapy increases mortality and organ dysfunction duration
in pediatric sepsis,” Critical Care Medicine, vol. 42, no. 11, p. 2409,
2014.

[31] I. V. Evans, G. S. Phillips, E. R. Alpern, D. C. Angus, M. E. Friedrich,
N. Kissoon, S. Lemeshow, M. M. Levy, M. M. Parker, K. M. Terry et al.,
“Association between the new york sepsis care mandate and in-hospital
mortality for pediatric sepsis,” Journal of American Medicine (JAMA),
vol. 320, no. 4, pp. 358–367, 2018.

[32] F. Balamuth, E. R. Alpern, M. K. Abbadessa, K. Hayes, A. Schast,
J. Lavelle, J. C. Fitzgerald, S. L. Weiss, and J. J. Zorc, “Improving
recognition of pediatric severe sepsis in the emergency department:
contributions of a vital sign–based electronic alert and bedside clinician
identification,” Annals of Emergency Medicine, vol. 70, no. 6, pp. 759–
768, 2017.

[33] R. J. Sepanski, S. A. Godambe, C. D. Mangum, C. S. Bovat, A. L.
Zaritsky, and S. H. Shah, “Designing a pediatric severe sepsis screening
tool,” Frontiers in Pediatrics, vol. 2, p. 56, 2014.

[34] “Cpr and emergency cardiovascular care algorithms.”
[Online]. Available: https://cpr.heart.org/en/resuscitation-science/
cpr-and-ecc-guidelines/algorithms

[35] “Clinical practice algorithms.” [Online]. Available:
https://www.mdanderson.org/for-physicians/clinical-tools-resources/
clinical-practice-algorithms.html

[36] C. Hathhorn, C. Ellison, and G. Roşu, “Defining the undefinedness of c,”
in Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 336–345.

[37] D. Bogdănaş and G. Roşu, “K-Java: A complete semantics of Java,”
in Proceedings of the 42nd Symposium on Principles of Programming
Languages (POPL’15). ACM, January 2015, pp. 445–456.

[38] D. Park, A. Stefănescu, and G. Roşu, “Kjs: A complete formal semantics
of javascript,” in Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
346–356.

316

http://europepmc.org/books/NBK499956
https://www.bmj.com/content/353/bmj.i2139
https://cpr.heart.org/en/resuscitation-science/cpr-and-ecc-guidelines/algorithms
https://cpr.heart.org/en/resuscitation-science/cpr-and-ecc-guidelines/algorithms
https://www.mdanderson.org/for-physicians/clinical-tools-resources/clinical-practice-algorithms.html
https://www.mdanderson.org/for-physicians/clinical-tools-resources/clinical-practice-algorithms.html

[39] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu, “KEVM: A
complete formal semantics of the Ethereum Virtual Machine,” in 2018
IEEE 31st Computer Security Foundations Symposium (CSF), 2018, pp.
204–217.

[40] T. F. Şerbănuţă, A. Arusoaie, D. Lazar, C. Ellison, D. Lucanu, and
G. Roşu, “The K primer (version 3.3),” Electronic Notes in Theoretical
Computer Science, vol. 304, pp. 57–80, 2014, proceedings of the Second
International Workshop on the K Framework and its Applications (K
2011).

[41] G. Ros, u and T. F. S, erbănută, “An overview of the k semantic frame-
work,” The Journal of Logic and Algebraic Programming, vol. 79, no. 6,
pp. 397–434, 2010.

[42] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and
D. Zufferey, “P: Safe asynchronous event-driven programming,” in
Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 321–332.
[Online]. Available: https://doi.org/10.1145/2491956.2462184

[43] “The K semantics of MediK.” [Online]. Available: https://github.com/

fmcad-78/medik-semantics.git
[44] “Ecma-404 the json data interchange standard.” [Online]. Available:

https://www.json.org/json-en.html
[45] “Sepsis screening and management application.” [Online]. Available:

https://github.com/fmcad-78/psepsis.git
[46] G. Hripcsak, “Writing arden syntax medical logic modules,” Computers

in biology and medicine, vol. 24, no. 5, pp. 331–363, 1994.
[47] M. Peleg, A. A. Boxwala, E. Bernstam, S. Tu, R. A. Greenes, and

E. H. Shortliffe, “Sharable representation of clinical guidelines in glif:
relationship to the arden syntax,” Journal of biomedical informatics,
vol. 34, no. 3, pp. 170–181, 2001.

[48] A. A. Boxwala, M. Peleg, S. Tu, O. Ogunyemi, Q. T. Zeng, D. Wang,
V. L. Patel, R. A. Greenes, and E. H. Shortliffe, “Glif3: a representation
format for sharable computer-interpretable clinical practice guidelines,”
Journal of Biomedical Informatics (JBI), vol. 37, no. 3, pp. 147–161,
2004.

[49] S. Bäumler, M. Balser, A. Dunets, W. Reif, and J. Schmitt, “Verification
of medical guidelines by model checking – a case study,” in Model
Checking Software, A. Valmari, Ed. Springer Berlin Heidelberg, 2006,
pp. 219–233.

317

https://doi.org/10.1145/2491956.2462184
https://github.com/fmcad-78/medik-semantics.git
https://github.com/fmcad-78/medik-semantics.git
https://www.json.org/json-en.html
https://github.com/fmcad-78/psepsis.git

ISBN 978-3-85448-060-0

www.tuwien.at/academicpress

The Conference on Formal Methods in Computer-Aided
Design (FMCAD) is an annual conference on the theory
and applications of formal methods in hardware and system
YHUL¿FDWLRQ��)0&$'�SURYLGHV�D�OHDGLQJ�IRUXP�WR�UHVHDUFKHUV�
in academia and industry for presenting and discussing
groundbreaking methods, technologies, theoretical results,
and tools for reasoning formally about computing systems.
FMCAD covers formal aspects of computer-aided system
GHVLJQ� LQFOXGLQJ� YHUL¿FDWLRQ�� VSHFL¿FDWLRQ�� V\QWKHVLV�� DQG�
testing.

N
adel / R

ozier (E
ds.)

PR
O

C
EED

IN
G

S O
F TH

E 23R
D

 C
O

N
FER

EN
C

E O
N

 FO
R

M
A

L
M

ETH
O

D
S IN

 C
O

M
PU

TER
-A

ID
ED

 D
ESIG

N
 – FM

C
A

D
 2023

	Cover
	Front Matter
	Preface
	Organizers
	Program Committee
	Reviewers
	Table of Contents
	01
	References

	02
	03
	04
	05
	06
	07
	08
	References

	09
	Introduction
	Background
	K-Step Formal Explanations
	Computing Formal K-Step Explanations
	Evaluation
	Related Work
	Conclusion
	References

	10
	Introduction
	Related Work
	Solving Sets of Related Problems
	Self-Driven Strategy Learning
	Informal Presentation
	Formal presentation

	Design Space in sdsl
	Gathering Informative Training Data
	Lightweight Online Learning

	Case study: Bounded Model Checking
	Choosing the Cost Function
	Choosing the strategy space
	Implementation

	Experimental Evaluation
	Unrolling the unsolved benchmarks
	Performance of sdsl using the strategy space in Tab. I
	Performance of sdsl using the strategy space in Tab. II

	Mini Hardware Model Checking Competition
	Ablation studies of training budget and model architecture

	Conclusion, limitations, and future work
	References

	11
	Introduction
	Background
	DelBugV: Delta-Debugging Verification Queries
	General Flow
	Simplification Methods

	Implementation and Evaluation
	Related Work
	Conclusion
	References

	12
	Introduction
	Background
	Overview
	Temporal Decomposition
	Certification
	Implementation and Experimental Evaluation
	Conclusion
	References

	13
	Introduction
	Background
	Btor2MLIR
	Correctness
	Evaluation
	Related Work
	Conclusion
	References

	14
	Introduction
	Overview
	background
	Preliminaries
	Verification Conditions for Simple Programs
	Houdini Algorithm

	Equality Invariants using Linear Regression
	Linear Regression
	L1 Regularization
	Univariate Feature Selection

	Inequality Invariants using Linear Programming
	Two Dimensional Inequality Invariants
	Three Dimensional Inequality Invariants

	Overall LPGen Procedure
	Experimental Evaluation
	Related Work
	Conclusion
	References

	15
	Introduction
	Motivating Example: The Sharded Key-Value Store
	Protocol Description
	Cutoff based Verification
	Static Analysis
	Simulation Relation & Lockstep

	Setup
	cutoff based Verification
	Synthesizing the Cutoff Instance
	Pre-processing & Notation
	Static Analysis
	Synthesizing the Cutoff Instance, Simulation Relation & Lockstep
	Synthesis for Consensus Protocols

	Experimental Results
	Related Work and Conclusion
	References

	16
	Introduction
	Bounding the Number of Scheduling Rounds
	Program Traces and Execution Graphs
	Round-Robin Rounds
	Rounds versus Context Switches

	Optimal Unbounded DPOR
	Optimal Bounded DPOR
	Extensions for Weak Memory Models
	Evaluation
	Rounds and Bug Discovery
	Bounding Efficiency

	Related Work and Conclusions

	17
	Introduction
	Background
	Datapath Verification
	E-Graphs

	Proving Equivalence via E-Graph Rewriting
	E-Graph Initialization
	Bitwidth Dependent Rewriting
	Extraction

	Case Study
	Results
	Conclusion
	References

	18
	Introduction
	Background
	Microarchitectural Faults
	Transition System for Sequential Hardware Circuits
	Yosys Framework

	Faulty System Modeling
	Bringing the Software and the Hardware Together
	Attacker Model
	Faulty Hardware Transition System

	Transition System Verification
	Verification Problem Statement
	Sandboxing Execution Paths
	Concretizing Execution Paths
	Discussion

	Tool Implementation
	µArchiFI Usage
	µArchiFI Architecture

	Evaluation
	Use Case I: Robust Software
	Use Case II: Robust Hardware
	Use Case III: Cryptographic Software
	Influences of Verification Strategies

	Related Work
	Conclusion
	References

	19
	Introduction
	Preliminaries
	Example Verilog RTL Fragment
	Symbolic Execution
	Symbolic Execution Trees
	Multiple Clock Cycles
	Comparison with Symbolic Simulation
	Comparison with Bounded Model Checking
	Symbolic Simulation, Model Checking, Symbolic Execution

	Piecewise Composition
	Motivating Example
	Piecewise Composition
	Comparison with Backtracking and Caching
	Complexity Analysis
	Baseline: Lines of Code Symbolically Executed
	Baseline: SMT Queries
	Piecewise Composition: Lines of Code Symbolically Executed
	Piecewise Composition: SMT Queries

	A Symbolic Execution Engine with Piecewise Composition
	Combinational Logic
	Sequential Logic
	Independence
	Read-read dependence
	Read-write dependence
	Write-write dependence

	Further Optimizations
	Repeat Submodules
	Cone of Influence Analysis

	Implementation
	Evaluation
	Dataset and Experimental Setup
	Mitigation of Path Explosion
	Effects of Optimizations
	Finding Assertion Violations
	Comparison to Current State of the Art

	Related Work
	Conclusion
	Acknowledgments
	References

	20
	Introduction
	Paper structure

	Preliminaries
	Binary decision diagrams
	The apply algorithm

	Benchmark methodology and hardware
	Benchmark BDDs
	Hardware configuration
	BDD packages and the benchmark harness

	Algorithms and results
	Comparing modern and legacy systems
	In-degree distribution in BDDs
	Parent-local node table design
	Excluding single-parent tasks from cache
	Performance evaluation
	State-of-the-art BDD packages
	Modern hardware
	Memory consumption and memory layout

	Conclusion
	References

	21
	Introduction
	Background and Related Work
	SAT Solving Basics
	Inprocessing in Incremental SAT Solving

	Problem Statement
	Algorithm for Proof Production
	Implementation
	Deletion of Binary Clauses
	Proper Handling of Equivalent-Literal Substitution
	Internal and External Representations of Literals

	Evaluation
	Conclusion and Future Work
	References

	22
	Introduction
	Preliminaries
	The constraints and their encodings
	The parity constraint
	The at-most-one constraint
	The at-most-k constraint

	Library for verified encodings
	Library preliminaries
	Fresh variable generation and management
	Encodings and correctness

	Proving the encodings correct
	The parity encodings
	The at-most encodings

	Encoding Sudoku
	Related work
	Conclusion and future work

	23
	Introduction
	Preliminaries and Context
	Exact Two-Level Minimization
	The Quine-McCluskey Algorithm
	Distributed Protocols
	An Example rmin Formula

	QSM: SAT-Based Quantified Symmetric Minimization
	Symmetry-Aware Enumeration of Prime Implicant Orbits
	Symmetry-Aware Set Covering

	From Bounded to Unbounded Minimization
	Experimental Evaluation
	Related Work
	Conclusions and Future Work
	References

	24
	Introduction
	Preliminaries
	Single Unit Resolution Backbone
	BIG Backbones
	Related Techniques
	Implementation and Evaluation
	Conclusion
	References

	25
	Introduction
	Related Work
	Contributions
	Paper Organization

	Preliminaries
	Basic Definitions
	Local Search

	Interval-based Operation
	Satisfying Domain
	Equi-make Intervals
	Candidate Values for Operations

	A Tie-breaking Mechanism
	LocalSMT(RA) Algorithm
	Local search Framework
	Local Search in Real and Boolean Mode

	Experiments
	Experiment Preliminaries
	Results on SMTLIB-LRA Benchmark
	Comparison with DPLL(T) solvers
	Comparison with Local Search Solvers

	Results on SMTLIB-MRA Benchmark
	Effectiveness of Proposed strategies

	Conclusion and Future Work
	Acknowledgements
	References

	26
	I Introduction
	II Related Work
	III Methodology
	III-A Characterizing Program Verification Queries
	III-B Mutation Methods
	III-C Detecting Stability
	III-D Accounting for Time Limits
	III-E Results from Different Mutation Methods
	III-F Quantifying (In)stability

	IV Experiments
	IV-A The Mariposa Tool
	IV-B Projects Under Study
	IV-C Experiment Configurations
	IV-D Experimental Results

	V The Mariposa Benchmark
	VI Limitations
	VII Conclusion

	27
	Introduction
	Related Work
	Technical Preliminaries
	Motivating Example

	A Procedure for SyGuS Solution Fitting
	The Term Reconstruction Procedure
	Rewrite Rule Discovery
	Revisiting the Motivating Example
	Properties

	Experimental Evaluation
	Crafted Benchmarks
	SyGuS Competition Benchmarks
	Key Insights

	Conclusion and Future Work
	References

	28
	Introduction
	Preliminaries
	Related Work
	Partitioning
	Atom Source and Selection Heuristics
	Partition Type
	Cubes
	Scattering

	Partition Timing

	Evaluation of Partitioning Strategies
	Partitioning Strategies
	Comparison to OpenSMT2 Partitioning Strategies

	Portfolios of Partitioning Strategies
	Types of Portfolios of Partitioning Strategies
	Comparison to a Traditional Portfolio

	Conclusion
	References

	29
	Introduction
	Design Overview of CRV
	Problem Definition and Scope
	CRV Architecture and Workflow
	Challenges

	Design Model Instrumentation
	Attack Effects
	Utility of CRV's What-if Analyses and Threat Models
	Built-in Threat Models

	Model Checking and Diagnostics
	Attack Traces
	Blame Assignment
	Merit Assignment

	Implementation of CRV
	A Case Study on Unmanned Delivery Drone
	System Architecture of udd
	Design Model of udd
	CRV Analysis
	Details on Case Study Experiments

	Related Work
	Model Checkers
	Cryptographic Protocol Verifiers
	Fault analysis tools
	Specialized analyzers

	Conclusion
	References

	30
	Introduction
	OYSTER Overall Architecture
	Overview of IMA Requirements & OYSTER Annex
	IMA Synthesis & Proof Certificates Generation
	From OYSTER Annex to SMT
	Proof Certificates Generation by Model Checking

	Evaluation
	Lessons Learned

	Related Work
	Conclusion and Future Work
	References

	31
	Introduction
	Motivating Example
	Overview of Fortis
	Analysis and Robustification Methods
	Robustness Analysis
	Robustification
	Integration

	Experiments
	Implementation and Usage
	Case Studies
	Experimental Results

	Related Work
	Conclusions and Future Extensions
	References

	32
	Introduction
	The DAIDALUS library
	Verification approach
	Specification slicing
	Code extraction and verification
	Processing the slices
	The top-level function

	Discussion
	Related work
	Conclusion and future work
	References

	33
	Introduction
	Background
	Instruction Pipelining
	HOL4 Verilog Library
	Silver ISA
	Security Condition

	Pipeline Implementation
	Design
	Formal Implementation in HOL4

	Correctness Proof
	External Environment
	Scheduling Function
	Trace relation
	Correctness and Proof

	Information Flow
	Conditional Noninterference
	Security Analysis

	Discussion and Evaluation
	Discussion
	Evaluation

	Related Work
	Processor Verification
	Low-level Information Flow

	Conclusion
	References

	34
	Introduction
	Illustrative Example
	A Modular TicketVendor Implementation
	The Input of Modular TicketVendor Synthesis
	The Output of Modular TicketVendor Synthesis
	Benefits of Modular System Synthesis

	Modular System Design
	Implementation-specific Specifications
	Implementation-agnostic Specifications

	Synthesis in Modular System Synthesis
	Synthesis of Implementations
	Synthesis of Implementation-agnostic Specifications

	Implementation and Case-Study Evaluation
	Implementation
	Ticket-vendor Case Study
	Case Studies from Mariano et al. DBLP:journals/pacmpl/MarianoRXNQFS19
	Additional Case Studies Based on Mariano et al. DBLP:journals/pacmpl/MarianoRXNQFS19
	Limitations of MoSSKit

	Related Work
	Conclusion
	References

	35
	Introduction and Example
	Modelling resource partitioning schemes
	Resource model
	Resource
	Domains
	Policies
	Overall configuration
	Resource access semantics
	Executions

	Attacker Model and Security Property

	Invariants for resource partitioning schemes
	Conditions on φinv
	Shape of φinv invariants

	Experimental Evaluation
	Dynamically Allocated Way Guard (DAWG)
	Eviction Policy
	Formal Modelling and Verification
	Result and Analysis

	COLORIS
	Formal Modelling and Verification
	Result and Analysis

	Conclusion
	References

	36
	Introduction
	Approach
	Machine-readable architecture example
	Partial evaluation implementation
	Expression Simplification
	Aggregate Values
	Function Inlining
	Iteration
	Branching Control Flow

	Transforms
	Testing

	Binary Analysis Toolchain
	Semantic comparison of lifters
	RetDec
	Remill
	Bugs found

	Related Work
	Conclusion
	References
	Appendix
	ASL Interpreter Bugs

	37
	Introduction
	Motivating Example
	Preliminaries
	Chemical Reaction Networks (CRNs)
	CRN Semantics
	Time-bounded Reachability Property and Target States
	Model Execution

	Related Work
	CRN Independence and Commutability
	Independence Relation for CRN Reactions
	Commutability of Reactions
	Sequences of Conditionally Commutable Reactions

	Parallel Traces via Commutation
	Trace Commutation Algorithm
	Termination Conditions on Algorithm 1
	Exporting Explicit Models
	Lower-Bound Probability Guarantee

	Cycles for Probability Recapture
	Results and Discussion
	Single Species Production-Degradation Model
	Enzymatic Futile Cycle Model
	Modified Yeast Polarization Model
	Simplified motility regulation model
	Comparison to modes rare-event simulation engine
	Comparison to probabilistic model checking tools
	Discussion

	Conclusion
	References

	38
	Introduction
	Problem Statement and Preliminaries
	Distance Metrics and Risk Measures
	System specifications

	Conformance for Stochastic Input-Output Systems
	Transference of System Properties under Conformance
	Transference under stochastic conformance
	Transference under non-conformance risk

	Statistical Estimation of Stochastic Conformance
	Estimating stochastic conformance
	Estimating non-conformance risk

	Case Studies
	Dubin’s car.
	F-16 aircraft.
	Autonomous Driving using the CARLA simulator.
	Spacecraft Rendezvous

	Related Work
	Conclusion
	References

	39
	Introduction
	Motivating Example
	MediK
	Syntax
	Semantics
	K-Configuration
	K-Rules

	Evaluation
	Sepsis Management CDSS
	Formal Analysis using MediK
	Model Checking the Sepsis CDSS

	Related Works
	Future Work
	Conclusion
	References

	Back

